首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study focuses on the late Quaternary landscape evolution in the Chifeng region of Inner Mongolia, China, its relations to the history of the Pleistocene‐Holocene loess accumulation, erosion and redeposition, and their impact on human occupation. Based on 57 optically stimulated luminescence (OSL) ages of loess sediments, fluvial sand and floodplain deposits accumulated on the hill slopes and floodplains, we conclude that during most of the Pleistocene period the region was blanketed by a thick layer of aeolian loess, as well as by alluvial and fluvial deposits. The loess section is divided into two main units that are separated by unconformity. The OSL ages at the top of the lower reddish loess unit yielded an approximate age of 193 ka, roughly corresponding to the transition from MIS 7 to 6, though they could be older. The upper gray loess unit accumulated during the upper Pleistocene glacial phase (MIS 4–3) at a mean accumulation rate of 0·22 m/ka. Parallel to the loess accumulation on top of the hilly topography, active fans were operating during MIS 4–2 at the outlet of large gullies surrounding the major valley at a mean accumulation rate of 0·24 m/ka. This co‐accumulation indicates that gullies have been a long‐term geomorphic feature at the margins of the Gobi Desert since at least the middle Pleistocene. During the Holocene, the erosion of the Pleistocene loess on the hills led to the burial of the valley floors by the redeposited sediments at a rate that decreases from 3·2 m/ka near the hills to 1–0·4 m/ka1 in the central part of the Chifeng Valley. This rapid accumulation and the frequent shifts of the courses of the river prevented the construction of permanent settlements in the valley floors, a situation which changed only with improved man‐made control of the local rivers from the tenth century AD. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
详细研究了离石北部一带阶地的地层地貌特征,并尝试对吕梁山山体的隆升进行分析探讨。结果表明,晚更新世以来该区有过三次间歇性隆升,并且三级阶地形成以来即晚更新世早期山体隆升相对快速强烈,二级阶地形成以来即晚更新世晚期至全新世时期山体隆升处于相对缓慢的过程。  相似文献   

3.
Since the end of the post‐glacial sea level rise 6800 years ago, progradation of river mouths into estuaries has been a global phenomenon. The responses of upstream alluvial river reaches to this progradation have received little attention. Here, the links between river mouth progradation and Holocene valley aggradation are examined for the Macdonald and Tuross Rivers in south‐eastern Australia. Optical and radiocarbon dating of floodplain sediments indicates that since the mid‐Holocene sea level highstand 6800 years ago vertical floodplain aggradation along the two valleys has generally been consistent with the rate at which each river prograded into its estuary. This link between river mouth progradation and alluvial aggradation drove floodplain aggradation for many tens of kilometres upstream of the estuarine limits. Both rivers have abandoned their main Holocene floodplains over the last 2000 years and their channels have contracted. A regional shift to smaller floods is inferred to be responsible for this change, though a greater relative sea level fall experienced by the Macdonald River since the mid‐Holocene sea level highstand appears to have been an additional influence upon floodplain evolution in this valley. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Floodplains and terraces in river valleys play important roles in the transport dynamics of water and sediment. While flat areas in river valleys can be identified from LiDAR data, directly characterizing them as either floodplain or terraces is not yet possible. To address this challenge, we hypothesize that, since geomorphic features are strongly coupled to hydrological and hydraulic dynamics and their associated variability, there exists a return frequency, or possibly a narrow band of return frequencies, of flow that is associated with floodplain formation; and this association can provide a distinctive signature for distinguishing them from terraces. Based on this hypothesis we develop a novel approach for distinguishing between floodplains and terraces that involves transforming the transverse cross‐sectional geometry of a river valley into a curve, named a river valley hypsometric (RVH) curve, and linking hydraulic inundation frequency with the features of this curve. Our approach establishes that the demarcation between floodplains and terraces can be established from the structure of steps and risers in the RVH curves which can be obtained from the DEM data. Further, it shows that these transitions may themselves be shaped by floods with 10‐ to 100‐year recurrence. We additionally show that, when floodplain width and height (above channel bottom) are normalized by bankfull width and depth, the ratio lies in a narrow range independent of the scale of the river valley. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Three groups of alluvial terraces together with the modern floodplain mark the Postglacial development of the middle part of the Dane Valley, Cheshire. These are a High terrace group of late Pleistocene age, a Middle terrace group of late Pleistocene to early Holocene age, a Low terrace of mid–late Holocene age, and a modern (post ca. 1840 AD) floodplain. A chronology of erosion, deposition, and landform development since mid-Holocene times is established in this paper on the basis of terrace morphology, stratigraphy, sedimentology, soil analysis, magnetic mineral analysis, and four radiocarbon dates. After dissection of the Middle terrace during the early to mid-Holocene, a long period of lateral activity by the river was followed by a major aggradation phase, which formed the Low terrace surface. This was followed by dissection during the last ca. 300 years and the development of the modern floodplain since ca. 1840 AD. Various explanations for the changes during the Holocene are considered; the Low terrace aggradation appears to be related to a major phase of mediaeval soil erosion.  相似文献   

6.
海南岛北西部新构造特征及其演化研究   总被引:3,自引:1,他引:2  
张军龙  田勤俭  李峰  高站武  苏刚 《地震》2008,28(3):85-94
利用DGPS系统测量海南岛西部阶地, 绘制地质地貌综合剖面, 将西部阶地分为海成阶地和河流阶地两种。 其中海成地貌包括一条砂堤和四级阶地: 砂堤宽2~10 m, 高程约10 m, 形成于5 ka以来; 海成一级阶地发育较好, 阶地面高程21~22 m, 形成于晚更新世至全新世之间; 海成二级阶地顶面高程约32 m左右, 形成于晚更新世晚期; 海成三级阶地较为发育, 阶地面高程40~42 m, 形成于121.8 ka; 海成四级阶地零星分布, 阶地面高程约57 m, 形成于中更新世晚期。 河流阶地也可分出四级: 一级阶地高程约20 m, 局部发育, 形成于11.4 ka; 二级阶地高程约34 m, 形成于47.2 ka; 三级阶地高约50 m, 其基座顶面标高约41 m, 形成于晚更新世早期; 四级阶地高程约71 m, 基座面标高约60 m, 形成于中更新世晚期。 这些阶地中均以二级最为发育。 晚更新世以来全区处于整体加速抬升的状态。 依据阶地面的综合剖面特征, 认为王五-文教断裂晚更新世以来的活动性较弱。  相似文献   

7.
Cosmogenic 26Al, 10Be, and 14C dating of fluvial fill terraces in steep canyons of the Colorado Front Range provides a temporal framework for analysing episodic aggradation and incision. Results from Boulder Canyon show that terrace heights above the modern channel (grade) can be divided into: (1) Bull Lake (≳100 ka; 20–15 m above grade); (2) Pinedale (32–10 ka; 15–4 m above grade); and (3) Holocene age (<4 m above grade). No pre‐Bull Lake deposits are preserved along Boulder Canyon, and only three small remnants >15 m above grade record Bull Lake deposition. Well‐preserved terraces of Pinedale age suggest that the range of terrace height above grade reflects short‐term fluctuations in the river profile during periods of rapidly changing stream load and power. Net river incision apparently occurred during transitions to interglacial periods. Soil development and stratigraphic position, along with limited cosmogenic and 14C dating, suggest that ∼130 ka terraces in Boulder Canyon correlate with the Louviers Alluvium, and that 32 to 10 ka fills in the canyon correlate with the Broadway Alluvium on the adjacent High Plains. Late Pleistocene incision rates (∼0·15 m ka−1) along Boulder Canyon exceed pre‐late Pleistocene incision rates, and are higher than middle to late Pleistocene incision rates (∼0·04 m ka−1) on the High Plains. This study provides an example of how modern geochronologic techniques allow us to understand better rivers that drain glaciated catchments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Knut  Kaiser  Zhongping  Lai  Birgit  Schneider  Werner H.  Schoch  Xuhui  Shen  Georg  Miehe  Helmut  Brückner 《Island Arc》2009,18(3):404-427
Abstract The Tibetan Plateau is highly sensitive to environmental changes and affects the settings of a far larger territory in Central Asia and beyond. Thus, knowledge on past environmental changes in that area is essential. Even though the Kyichu (Lhasa River) Valley and its tributaries is an easily accessible area, the Late Quaternary landscape evolution of southern Tibet is in general scarcely known. Therefore, 12 sedimentary sections in the middle and lower catchment were subjected to multidisciplinary analyses (sedimentology, paleopedology, AMS 14C and luminescence dating, and charcoal determination) aiming at results on regional paleoenvironmental changes. At the altitude studied (3600–4000 m above sealevel), no glacial relics could be detected, indicating that the valley positions have been unglaciated since the Last Interglacial. The lack of fluvial–lacustrine structures above the floodplain is due to the aggradational character of this tectonically (sub‐)active valley, which caused an alluvial burying of older valley bottoms. During the Late Pleistocene the mouth area of the Kyichu was occupied by a lake which was part of a larger dam‐lake in the superordinate Yarlung Zhangbo Valley. On the valley flanks, loesses were predominantly deposited before the Last Glacial Maximum (LGM), whereas eolian sands were predominantly deposited around and after the LGM. Paleosols of Last Interglacial, Last Glacial and Holocene ages regularly occur at terrestrial sites representing temperate to cool and humid to semiarid conditions during soil formation. Ages of colluvial sediments indicate that the widespread barren valley slopes were primarily formed by Late Pleistocene erosion followed by a secondary Holocene erosion phase. Charcoal spectra indicate a Late Holocene change from a forest environment to a pastoral environment with sparse grasses, herbs and dwarf shrubs. It is assumed that the Late Holocene environmental changes, such as loss of forests/woodlands and erosion, have at least been reinforced by humans, enhancing a regional climatic aridification and cooling trend.  相似文献   

9.
A recently exposed section across a ?rst‐order valley buried beneath the regional blanket peat on hillside slopes in the upper Liffey valley, Co. Wicklow, is described. The section shows two alluvia within a shallow valley form underlain by an extensive boulder and stone line over regional till and weathered granite. 14C dates from wood in the alluvia indicate the older alluvium to have formed between 4324 ± 53 BP and 4126 ± 45 BP and the younger between 3217 ± 53 BP and 2975 ± 53 BP . The basal layer of the overlying peat yielded a date of 2208 ± 61 BP . The younger alluvium shows the effects of soil paludi?cation prior to the peat expansion. Dated pollen analyses elsewhere in the upper catchment con?rm the spread of blanket peat over most areas above 350 m after 4000–3600 BP . The buried valley was contributing sediments to the mid‐Holocene ?oodplains in the upper Liffey valley prior to the extension of blanket peat over the catchment after which sediment yields from it and the other catchment slopes declined. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
通过对河曲县城一带出露较好的黄河阶地剖面进行研究,认为河曲一带黄河三、四级阶地形成于中更新世时期,晚更新世早期形成二级阶地,全新世形成一级阶地。本区中更新世抬升速率为0.14mm/a,晚更新世抬升速率为0.18mm/a,全新世抬升速率为0.70mm/a,晚更新世和全新世抬升速率的突然加大,可能与黄河下游三门湖的贯通、区域侵蚀基准面突然降低、河流侵蚀加大有关。  相似文献   

11.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The present study focuses on the morphotectonic evolution of the axial portion of the Southern Apennine chain between the lower Calore River valley and the northern Camposauro mountain front (Campania Region). A multidisciplinary approach was used, including geomorphological, field‐geology, stratigraphical, morphotectonic, structural, 40Ar/39Ar and tephrostratigraphical data. Results indicate that, from the Lower Pleistocene onwards, this sector of the chain was affected by extensional tectonics responsible for the onset of the sedimentation of Quaternary fluvial, alluvial fan and slope deposits. Fault systems are mainly composed of NW‐SE, NE–SW and W‐E trending strike‐slip and normal faults, associated to NW‐SE and NE–SW oriented extensions. Fault scarps, stratigraphical and structural data and morphotectonic indicators suggest that these faults affected the wide piedmont area of the northern Camposauro mountain front in the Lower Pleistocene–Upper Pleistocene time span. Faults affected both the oldest Quaternary slope deposits (Laiano Synthem, Lower Pleistocene) and the overlying alluvial fan system deposits constrained between the late Middle Pleistocene and the Holocene. The latter are geomorphologically and chrono‐stratigraphically grouped into four generations, I generation: late Middle Pleistocene–early Upper Pleistocene, with tephra layers 40Ar/39Ar dated to 158±6 and 113±7 ka; II generation: Upper Pleistocene, with tephra layers correlated with the Campanian Ignimbrite (39 ka) and with the slightly older Campi Flegrei activity (40Ar/39Ar age 48±7 ka); III generation: late Upper Pleistocene–Lower Holocene, with tephra layers correlated with the Neapolitan Yellow Tuff (~15 ka); IV generation: Holocene in age. The evolution of the first three generations was controlled by Middle Pleistocene extensional tectonics, while Holocene fans do not show evidence of tectonic activity. Nevertheless, considering the moderate to high magnitude historical seismicity of the study area, we cannot rule out that some of the recognized faults may still be active. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
This study investigates the post‐glacial development of four small river–lake systems in the Weichselian belt of northern central Europe. The valleys investigated are part of an immature drainage system characterized by frequent and abrupt changes in flow direction and the presence of numerous stagnant‐ice depressions in the valley course. The depressions contain thick sedimentary sequences which provide excellent archives for the reconstruction of the post‐glacial valley development. Study results indicate that the valleys reuse segments of former subglacial meltwater channels. During the Late Pleniglacial these channels carried meltwater streams. Stagnant‐ice melting occurred in stages from the Oldest Dryas to the early Holocene and was often followed by the formation of lakes in the valley course. Flow reversals occurred during the Late‐glacial–Holocene transition and were in response to general base‐level lowering caused by stagnant‐ice melting, headwater erosion and lake overspills. Lacustrine deposition typically started during the early Late‐glacial comprising mainly silicate gyttjas, whereas organic gyttjas and peats accumulated during the Allerød. The Younger Dryas is associated with a marked increase in fluvial and aeolian sedimentation, and lake‐level high stands. This was followed by early Holocene lake‐level low stands and a subsequent stabilization phase with decreasing silicate input and increasing organic lacustrine deposition. In general, dramatic changes in Late Pleniglacial to early Holocene sedimentation suggest that small‐scale catastrophic events played a more important role in triggering geomorphic changes then previously recognized. Infilling continued until peat accumulation and terrestrialization of lake basins became widespread during the mid‐ to late Holocene. Beginning in the late Holocene anthropogenic influences become important mainly involving an increase in sediment supply due to forest clearing and land use, followed by mill stowage, river course correction and anthropogenic lake‐level manipulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Late Quaternary stratigraphy of a 50 km2 catchment on the south-eastern highlands of Australia reveals processes and history of denudation, and helps resolve a long-standing debate about factors controlling episodic valley aggradation and degradation during Holocene times. Valley sedimentation occurred when swampy vegetation fully colonized valley floors and obliterated all channels, promoting aggradation for periods of several thousand years, with most incoming sediment being trapped in swampy meadows. Much of the sediment was reworked from late Pleistocene alluvial fan and valley fill deposits, and primary hillslope erosion was minor during the Holocene. Differing sedimentation patterns between the Late Pleistocene, Holocene and Post-European settlement periods reflect regional changes in sediment supply and transport capacity as a result of major environmental change. Within the Holocene, however, valley fill stratigraphy is controlled by massive, episodic gully erosion terminating aggradation. Gully initiation appears to be controlled more by thresholds of incision into vegetated valley floors than by changes to sediment supply. Whether the thresholds are exceeded because of climatic change, autonomous change or extreme events cannot yet be determined. Overall, the Holocene history represents continuing complex response to events of the Late Pleistocene, and does not support the K-cycle concept, which has strongly influenced late Quaternary geomorphology in Australia.  相似文献   

15.
Located at the west of the Linfen basin, the Luoyunshan piedmont fault zone controls the western boundary of the basin. According to the measurements of the terraces in eight gullies along the Luoyunshan fault zone, five levels of terraces, namely T1~T5 have developed in these gullies. The heights of terraces T1, T2, T3, T4 and T5 are about 3m, 8~10m, about 20m, about 30m and 40~50m, respectively. The dating data of the terraces and investigation of the faulted landforms show that the Luoyunshan fault zone has experienced much activity since the Late Quaternary. The uplift rate of the terraces was 0.41mm/a since the Middle-Late Pleistocene, and 0.75mm/a since the Holocene. The increasing trend of uplift rate of the terraces along the Luoyunshan fault zone from the Middle-Late Pleistocene to Holocene indicates the tendency of gradual tectonic uplift of the fault zone since the late Quaternary. This is in good agreement with the increasing trend of subsidence rate of the Linfen basin from the Late Pleistocene to Holocene.  相似文献   

16.
Holocene and Pleistocene tectonic deformation of the coast in the Mexico subudction margin is recorded by geomorphic and stratigraphic markers. We document the spatial and temporal variability of active deformation on the coastal Mexican subduction margin. Pleistocene uplift rates are estimated using wave-cut platforms at ca. 0.7?C0.9?m/ka on the Jalisco block coast, Rivera-North America tectonic plate boundary. We examine reported measurements from marine notches and shoreline angle elevations in conjunction with their radiocarbon ages that indicate surface uplift rates increasing during the Holocene up to ca. 3?±?0.5?m/ka. In contrast, steady rates of uplift (ca. 0.5?C1.0?m/ka) in the Pleistocene and Holocene characterize the Michoacan coastal sector, south of El Gordo graben and north of the Orozco Fracture Zone (OFZ), incorporated within the Cocos-North America plate boundary. Significantly higher rates of surface uplift (ca. 7?m/ka) across the OFZ subduction may reflect the roughness of subducting plate. Absence of preserved marine terraces on the coastal sector across El Gordo graben likely reflects slow uplift or coastal subsidence. Stratigraphic markers and their radiocarbon ages show late Holocene (ca. last 6?ka bp) coastal subsidence on the Guerrero gap sector in agreement with a landscape barren of marine terraces and with archeological evidence of coastal subsidence. Temporal and spatial variability in recent deformation rates on the Mexican Pacific coast may be due to differences in tectonic regimes and to localized processes related to subduction, such as crustal faults, subduction erosion and underplating of subducted materials under the southern Mexico continental margin.  相似文献   

17.
Three Weichselian Lateglacial (13-10 ka) terraces have been distinguished in the Maas valley which were formed when the Maas repeatedly incised in an increasingly narrow floodplain. The River Maas changed from a braided system (before c. 12·5 ka) via a transitional phase to a high-sinuosity meandering river (c. 12·5-11 ka), to a braided system (c. 11-10 ka) again and finally to a low-sinuosity meandering river (after 10 ka). These fluvial style changes involved phases of erosion and deposition. The amounts of eroded, deposited and reworked sediment during each Lateglacial period are calculated in this paper. The sediment budgets allow comparison of the transport capacity of the different river styles, which will help to explain the observed fluvial changes. Borehole information regarding the thickness of terrace sediments and lateral extensions of the Lateglacial terrace surfaces were combined in a three-dimensional approach, using a geographical information system. Multiple regression analyses were used in calculating altitudes of entire terrace surfaces from individual altitude measurements. It will be shown that the fluvial development of the Maas can be explained not only by climate-related external factors such as sediment-discharge ratios and discharge characteristics, but possibly also by intrinsic factors such as floodplain dimensions and the channel morphology of previous periods. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The I ingwu fault is in the eastern boundary of the southern section of Yinchuan graben. It hasa close relation to seismicity in the Lingwu-Wuzhong region.Few researches have been done.In this Paper,on the basis of tee data obtained from field investigation,the activity features inLate Quaternary have been discussed.The vertical displacement and its slip rate have been alsoestimated.The fault is 48km in length,being divided into 3 segments according to geologicaland topographical characteristics.The last rupture along its northern and middle segments wasoccurred in late of Late Pleistocene or early Holocene while that along the southern segmentwas occurred in midle Holocene.The vertical slip rate is estimated as 0.23~025mm/a sinceabout 66ka B.P.based on the vertical displacements of terracesⅠ,Ⅱ and Ⅲ and their ages.  相似文献   

19.
Relationships between the surface area and age of alluvial deposits were used to estimate the residence time of alluvium in the 2205 km2 Waipaoa River basin, New Zealand. The contemporary Waipaoa River is an efficient transporter of sediment to the continental shelf, but the basin has been characterized by rapid channel and valley aggradation in the historic period, and by extensive mid‐ to late Holocene alluvial storage in the lower reaches. The area‐weighted mean age of alluvial deposits in the lower part of the river basin is ~4400 yr. These deposits comprise terrace remnants isolated by downcutting, and Holocene to Recent sediments that are potentially remobilizable by the modern river. Even though the amount of storage is small relative to downstream transport, the majority of the potentially remobilizable alluvium is likely to remain in storage for >100 yr, and its half‐life (time for 50 per cent removal) is >2000 yr. Within the confines of the flfloodplain, the apparent ‘loss’ of older deposits is due primarily to burial, but losses of the most recent deposits are due almost entirely to remobilization (30–40 per cent), with the remainder preserved in the alluvial record for at least 104 yr. Most of this sediment is likely to remain in storage until there is a shift to a degradational state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Deposits of late‐Holocene beach sand buried conifer forests episodically emerge on beaches of the Oregon coast. Simultaneously, sand dunes buried late‐Holocene forests growing on marine terraces landward of the beaches. Dune ramps, up to 60 m in elevation, connected the beach and dune deposits. The average age of wood samples from stumps rooted on the shore platforms is 3·07 ± 1·45 ka. The average age of wood and charcoal samples embedded in forest soil on the marine terraces is 3·27 ± 1·46 ka. Between 1994 and 2006, winter storm waves exposed more than 4·5 km2 of late‐Holocene forest soil on shore platforms at 19 localities. Rooted stumps without soil were uncovered at an additional 14 localities. Once exposed, wave action eroded the soil rapidly (one to two years). The intact forest soil and roots on the shore platforms must have been nearly continuously buried, protected and preserved prior to recent exposure. The late‐Holocene buried forest provides the basis for a conceptual model of coastal evolution. A three stage reversal of erosion and sand supply must have occurred: (1) wave erosion switched to seaward advancement of forests, (2) forest growth and soil development switched to burial beneath beach and dune sand and (3) burial and preservation switched to wave erosion, truncation of dune ramps and landward retreat of sea cliffs. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号