首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 8 毫秒
1.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper considered the tide-induced head fluctuations in two coastal multi-layered aquifer systems. Model I comprises two semi-permeable layers and a confined aquifer between them. Model II is a four-layered aquifer system including an unconfined aquifer, an upper semi-permeable layer, a confined aquifer and a lower semi-permeable layer. In each model, the submarine outlet of the confined aquifer is covered with a skin layer (“outlet-capping”). Analytical solutions of the two models are derived. In both models, leakages of the semi-permeable layers decrease the tidal head fluctuations. The outlet-capping reduces the aquifer’s head fluctuation by a constant factor and shifts the phase by a positive constant. The solution to Model II explains the inconsistency between the relatively small lag time and the strong amplitude damping effect of the tidal head fluctuations reported by Trefry and Johnston [Ground Water 1998;36:427–33] near the Port Adelaide River, Australia.  相似文献   

3.
A large quantity of submarine groundwater discharge (SGD) of about 1000 m3 day?1 m?1 of the 600‐km‐long shoreline of South Atlantic Bight has been estimated by Moore (Global Biogeochemical Cycles, 2010b, 24, GB4005, doi: 10.1029/2009GB003747 ). However, there is great uncertainty in estimating the percentage of net, land‐originated groundwater recharge of SGD. Moreover, most previous studies considered the homogeneous case for the coastal superficial aquifers. Here, we investigated the terrestrial‐originated SGD through a multilayered submarine aquifer system, which comprises two confined aquifers and two semi‐permeable layers. The inland recharge includes a constant part representing the annual average and a periodical part representing its seasonal variation. An analytical solution was derived and used to analyse the distributions of the terrestrial‐originated SGD from the multilayered aquifers along the Winyah Bay transect, South Atlantic Bight. It is found that the width of the zone of SGD from the upper aquifer ranges from ~0.8 to ~8.0 km depending on the leakance of the seabed semi‐permeable layer. A head of the upper aquifer at a coastline 1.0 m higher than the mean sea level will cause a SGD of 1.82– 18.3 m3 day?1 m?1 from that aquifer as the seabed semi‐permeable layer's leakance varies from 0.001 to 0.1 day?1, providing considerable possibility for considerable land‐originated SGD. Seasonal terrestrial‐originated SGD variations predicted by the analytical model provide consistent explanation of the seasonal variation of 226Ra observed by Moore (Journal of Geophysics, 2007, 112, C10013, doi: 10.1029/2007JC004199 ). The contribution of the lower aquifer to SGD is only 1.2–12% of that of the upper aquifer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The study on the hydraulic properties of coastal aquifers has significant implications both in hydrological sciences and environmental engineering. Although many analytical solutions are available, most of them are based on the same basic assumption that assumes aquifers extend landward semi‐infinitely, which does not necessarily reflect the reality. In this study, the general solutions for a leaky confined coastal aquifer have been developed that consider both finitely landward constant‐head and no‐flow boundaries. The newly developed solutions were then used to examine theoretically the joint effects of leakage and aquifer length on hydraulic head fluctuations within the leaky confined aquifer, and the validity of using the simplified solution, which assumes the aquifer is semi‐infinite. The results illustrated that the use of the simplified solution may cause significant errors, depending on joint effects of leakage and aquifer length. A dimensionless characteristic parameter was then proposed as an index for judging the applicability of the simplified solution. In addition, practical application of the general solution for the constant‐head inland boundary was used to characterize the hydraulic properties of a leaky confined aquifer using the data collected from a field site at the Seine River estuary, France, and the versatility of the general solution was further justified.  相似文献   

5.
This paper presents an analytical solution to tide‐induced head fluctuations in a two‐dimensional estuarine‐coastal aquifer system that consists of an unconfined aquifer and a heterogeneous confined aquifer extending under a tidal river with a semipermeable layer between them. This study considers the joint effects of tidal‐river leakage, inland leakage, dimensionless transmissivity between the tidal‐river and inland confined aquifer, and transmissivity anisotropic ratios. The analytical solution for this model is obtained via the separation of variables method. Three existing solutions related to head fluctuation in one‐ or two‐dimensional leaky confined aquifers are considered as special cases in the present solution. This study shows that there is a threshold of tidal‐river confined aquifer length. When the tidal‐river length is greater than the threshold length, the inland head fluctuations remain sensitive to the leakage effect but become insensitive to the tidal‐river width and dimensionless transmissivity. Considering leakage and transmissivity anisotropy, this study also demonstrates that at a location farther from the river–inland boundary, head fluctuations increase with increasing leakage and transmissivity anisotropy; the maximum head fluctuation occurs when leakage and transmissivity anisotropy are both at their maximum values. The combined action of the 3 effects of loading, tidal‐river aquifer leakage, and inland aquifer leakage differs significantly according to various aquifer parameters. The analytical solution in this paper can be applied to demonstrate the behaviours of the head fluctuations of an estuarine‐coastal aquifer system, and the head fluctuations can be clearly described when the tidal and hydrogeological parameters are derived from field measurement data or hypothetical cases.  相似文献   

6.
In alluvial coastal aquifers, finer sediments are preferentially deposited along the downstream direction, so the hydraulic conductivity is generally heterogeneous and changes with distance from the coastline. To investigate the influence of aquifer heterogeneity on seawater‐groundwater interaction, a new two‐dimensional model characterising groundwater flow in an aquifer‐aquitard system was developed assuming that the hydraulic conductivity of the aquifer linearly increases with the distance from the coastline along the inland direction. A closed‐form analytical solution was derived using the separation‐of‐variables method. Comparing the new solution with the numerical solution by comsol Multiphysics (Sweden) based on the finite‐element method, one can see that the new solution agreed with the numerical solution very well except at the early time. We found that both aquitard leakance and the heterogeneity factor (b) could result in the propagation bias. The propagation bias represents the inconsistency between the theoretical calculation and the observed strong attenuation and small time lag between the head and tide fluctuations. The attenuation decreased with perpendicular distance from the coastline (x‐axis), whereas the time lag increased with distance along the x‐axis. The relationship between the time lag and the distance along the x‐axis seemed to be linear when b was 0.001 m?1, whereas it obeyed a power function when b was greater than 0.01 m?1. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This study is aimed to understand the hydraulic mechanism of coastal aquifer systems that include highly permeable layers (HPLs). These hydrologic conditions can be found in many volcanic islands that are composed of a series of lava flows discharged into sea or other standing body of water. In the first part, we developed a numerical model based on the geologic and hydrologic data obtained from the eastern Jeju Island, Korea, of which the aquifer contains clinker and hyaloclastite layers. The simulation results reproduced spatial location of fresh‐saline water interface, especially the abrupt decline of interface at the inland part and the thickness variation of transition zone along the cross‐section observed at the eastern Jeju coastal aquifer. We were able to find out that these phenomena are strongly related to the presence of the HPL. In the second part, quantitative analyses were conducted with the use of hypothetical models in order to understand the dynamic characteristics of coastal system that includes HPLs. A series of sensitivity studies were conducted to assess the effect of the horizontal length and vertical depth of HPL on the spatial location of the interface toe and the configuration of transition zone. Various case studies have shown that the seawater intruded into the inland more as the horizontal length of HPL was increased and its vertical depth was decreased. In other simulations including two HPLs, the vertical distance between these two HPLs primarily controlled the flow regime, flux variations, and the configuration of the transition zone. Finally, we performed simulations to evaluate the effect of a rising sea‐level. This study provides more understanding of how the presence of HPL controls the seawater intrusion processes, and the spatial configurations of fresh‐saline water interface at coastal aquifers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
To supplement conventional geophysical log data, this study presents temporal variations in electrical conductivity (EC) and temperature with depth in a multilayered coastal aquifer, on the eastern part of Jeju Island, Korea. One‐month time‐series data obtained at eight points from a multi‐depth monitoring system showed that semidiurnal and semimonthly tidal variations induced dynamic fluctuations in EC and temperature. At some depths, EC ranged from 1483 to 26 822 µS cm?1, while some points showed no significant variations. The results of EC log and time‐series data revealed that a sharp fresh‐saltwater interface occurred at low tide, but the diffusion zone broadened to 20 m at high tide. EC, temperature, and tide level data were used for the cross‐correlation analysis. The response time of EC and temperature to tide appears to range from less than 30 min to 11 h. Using end‐member mixing analysis (EMMA), the fraction of variations of chloride concentration in the multilayered aquifer was explained, and a conceptual model was developed which subdivided the coastal aquifer into four vertical zones. The percentage of water derived from seawater varied from 2 to 48 at specific depth, owing to tidal fluctuations. Continuous observations of EC and temperature at multiple depths are powerful tools for quantifying the transport of saline water by tidal variations in multilayered coastal aquifers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The fresh groundwater lenses (FGLs) of small islands can be highly vulnerable to climate change impacts, including sea‐level rise (SLR). Many real cases of atoll or sandy islands involve two‐layer hydrogeological conceptualizations. In this paper, the influential factors that affect FGLs in two‐layer small islands subject to SLR are investigated. An analytical solution describing FGLs in circular islands, composed of two geological layers, is developed for the simplified case of steady‐state and sharp‐interface conditions. An application of the developed model is demonstrated to estimate the FGL thickness of some real‐world islands by comparison with existing FGL thickness data. Furthermore, numerical modelling is applied to extend the analysis to consider dispersion effects and to confirm comparable results for both cases. Sensitivity analyses are used to assess the importance of land‐surface inundation caused by SLR, relative to other parameters (i.e. thickness of aquifer layers, hydraulic conductivity, recharge rate and land‐surface slope) that influence the FGL. Dimensionless parameters are used to generalize the findings. The results demonstrate that land‐surface inundation has a considerable impact on a FGL influenced by SLR, as expected, although the FGL volume is more sensitive to recharge, aquifer thickness and hydraulic conductivity than SLR impacts, considering typical parameter ranges. The methodology presented in this study provides water resource managers with a rapid‐assessment tool for evaluating the likely impacts of SLR and accompanying LSI on FGLs.  相似文献   

10.
A two‐dimensional semi‐analytical solution to analyse stream–aquifer interactions in a coastal aquifer where groundwater level responds to tidal effects is presented. The conceptual model considered is a two‐dimensional subsurface system with stream and coastline boundaries at right angles. The dimensional and non‐dimensional boundary value problems were solved for water level in the aquifer by successive application of Laplace and Fourier transform techniques, and the results were obtained by numerical inversion of the transformed solution. The solution was then verified by reducing the solutions to one‐dimensional known problems and comparing the results with those from previous studies. Hypothetical examples were used to examine the characteristics of water‐level variations due to the variations in stream stage and the fluctuations in tide level. Sensitivity analysis indicated that streambed leakance has no influence over the amplitude of groundwater fluctuations, but that the effect of stream stage increases with increasing leakance. Little difference was observed in the water level for different aquifer penetration ratios with narrow stream width. Increases in streambed leakance caused increases in the effect of aquifer penetration by the stream on the water level. An increased specific yield value resulted in decreased amplitude of water fluctuations and mean water level, and showed that water‐level variations due to stream and tidal boundaries are sensitive to specific yield. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A mathematical model that describes the drawdown due to constant pumpage from a finite radius well in a two‐zone leaky confined aquifer system is presented. The aquifer system is overlain by an aquitard and underlain by an impermeable formation. A skin zone of constant thickness exists around the wellbore. A general solution to a two‐zone leaky confined aquifer system in Laplace domain is developed and inverted numerically to the time‐domain solution using the modified Crump (1976) algorithm. The results show that the drawdown distribution is significantly influenced by the properties and thickness of the skin zone and aquitard. The sensitivity analyses of parameters of the aquifer and aquitard are performed to illustrate their effects on drawdowns in a two‐zone leaky confined aquifer system. For the negative‐skin case, the drawdown is very sensitive to the relative change in the formation transmissivity. For the positive‐skin case, the drawdown is also sensitive to the relative changes in the skin thickness, and both the skin and formation transmissivities over the entire pumping period and the well radius and formation storage coefficient at early pumping time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
During May–June 2005, a 17-d cruise was carried out in Ría de Pontevedra (Galician Rías Baixas) to study the physical–biological interactions that may lead to subsurface aggregations of phytoplankton organisms in thin layers (TLs). Physical processes governed the initiation and development, maintenance, and decline of a diatom (toxin producing Pseudo-nitzschia spp. and Chaetoceros socialis) TL during an upwelling relaxation-upwelling–downwelling sequence. Differences in shear profiles appeared to lead to the formation of a TL during upwelling events. These results reveal that the coupling between maximum values of shear and buoyancy frequency can shape a subsurface chlorophyll maximum (SCM) into a TL. The effect of shear upon phytoplankton patches, which has been predicted on the basis of theoretical studies, has been corroborated in this study in which the vertical distribution of an observed TL was controlled by physical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号