首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early Triassic paleobiogeography is characterised by the stable supercontinental assembly of Pangea. However, at that time, several terranes such as the South Kitakami Massif (SK), South Primorye (SP) and Chulitna (respectively, and presently located in Japan, eastern Russia and Alaska) straddled the vast oceans surrounding Pangea. By means of quantitative biogeographical methods including Cluster Analysis, Non-metric Multidimensional Scaling and Bootstrapped Spanning Network applied to Smithian and Spathian (Early Triassic) ammonoid assemblages; we analyze similarity relationships between faunas and suggest paleopositions for the above-cited terranes.Taxonomic similarities between faunas indicate that primary drivers of the ammonoid distribution were Sea Surface Temperature and currents. Possible connections due to current-controlled faunal exchanges between both sides of the Panthalassa are shown and terranes such as SK, SP and Chulitna played an important role as stepping stones in the dispersal of ammonoids. SK and SP terranes show strong sub-equatorial affinities during the Smithian, thus suggesting a location close to South China. At the same time, the Chulitna terrane shows strong affinities with equatorial faunas of the eastern Panthalassa. This paleoceanographic pattern was markedly altered during the Spathian, possibly indicating significant modifications of oceanic circulation at that time, as illustrated by the development of a marked intertropical faunal belt across Tethys and Panthalassa.  相似文献   

2.
Late Olenekian assemblages in the western Panthalassa have been recovered from bedded radiolarian chert sequences of an accretionary complex, the Ashio belt. These faunas are documented and considered in terms of radiolarian diversity and faunal turnover during the latest Permian to Middle Triassic time. The fauna includes 30 radiolarians belonging to Spumellaria or Entactinaria, with two relicts from the Late Permian. This late Olenekian fauna is markedly different from Permian and Asisian faunas, respectively, and is herein named the Minowa fauna. Study of the literaure indicates that radiolarian provinces were significantly disconnected between the western Panthalassa and eastern Tethys during late Olenekian time. Furthermore, 121 of 143 species disappeared during late Olenekian time, and in turn 118 new species appeared in the western Panthalassa around the Olenekian-Anisian boundary. It is concluded that faunal turnover occurred at least three times between the latest Permian and Middle Triassic.The first turnover is the Poalaozoie-type radiolarian extinction at the Permain-Triassic boundary,the second is the diversification of spheroidal Spumellaria and Entactinaria between early and late Olenekian time, and the third is a faunal turnover from the Minowa fauna to the true Mesozoic-type radiolarian famas that are characterized by mulit0segmented Nassellaria.  相似文献   

3.
Recent collecting in exposures of the lowermost Burgersdorp Formation (Beaufort Group), of the Karoo Basin of South Africa, has revealed a previously unknown fish fauna from the Early Triassic (Scythian), lowermost Cynognathus Assemblage Zone (CAZ), which forms an important component of the total vertebrate assemblage. The newly discovered fish material includes lungfish, saurichthyids, and a large microfauna that includes numerous isolated chondrichthyan teeth, two fin spine fragments, and actinopterygian scales and teeth. The latest fish finds, together with the lowermost Cynognathus Assemblage Zone vertebrate faunas, make this Karoo Basin Assemblage Zone one of the most diverse Early Triassic faunal assemblages, comparable in faunal diversity to those from the Czatkowice Formation (Poland) and the Arcadia Formation (Australia). The presence of the lungfish Ptychoceratodus phillipsi in the early Middle Triassic Cynognathus Assemblage Zone (Subzone B), and in the underlying latest Early Triassic Cynognathus Assemblage Zone (Subzone A), indicates that these lungfish could serve as range index fossils within the CAZ, and thus are potentially useful biostratigraphic markers across the Early-Middle Triassic boundary. Furthermore the ‘new’ fish fauna provides a vital marine realm link in particular with the faunas of Madagascar and Australia, that is unavailable using the tetrapod faunal elements of the lower CAZ.  相似文献   

4.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

5.
杨江海  颜佳新  黄燕 《沉积学报》2017,35(5):981-993
地球在晚古生代晚期—中生代早期经历最近一次从冰室到温室的气候转变,是理解未来地球冰川消融、全球变暖等气候转变的重要窗口。这一时期的沉积记录和气候模型研究揭示,冰川活动、大气pCO2和气候状态间存在复杂的耦合和反馈机制,同时伴随发生陆表植被更替和生物迁移。随冰川消融、大气pCO2升高和全球变暖,低纬大陆区干旱化趋势和季节性降雨增强,出现季风气候并在冰室之后的三叠纪温室盛行。华南和华北是位于东特提斯低纬区的主要大陆,其石炭—二叠系在沉积和生物特征上与Pangea超大陆西侧热带区差异显著,蕴含有丰富的深时气候变化信息。基于前人成果,在简述石炭—三叠纪全球气候变化的基础上,对东特提斯低纬区石炭—三叠纪沉积记录进行总结,阐明其深时古气候研究意义和研究前景。  相似文献   

6.
A Cordilleran model for the evolution of Avalonia   总被引:2,自引:0,他引:2  
Striking similarities between the late Mesoproterozoic–Early Paleozoic record of Avalonia and the Late Paleozoic–Cenozoic history of western North America suggest that the North American Cordillera provides a modern analogue for the evolution of Avalonia and other peri-Gondwanan terranes during the late Precambrian. Thus: (1) The evolution of primitive Avalonian arcs (proto-Avalonia) at 1.2–1.0 Ga coincides with the amalgamation of Rodinia, just as the evolution of primitive Cordilleran arcs in Panthalassa coincided with the Late Paleozoic amalgamation of Pangea. (2) The development of mature oceanic arcs at 750–650 Ma (early Avalonian magmatism), their accretion to Gondwana at ca. 650 Ma, and continental margin arc development at 635–570 Ma (main Avalonian magmatism) followed the breakup of Rodinia at ca. 755 Ma in the same way that the accretion of mature Cordilleran arcs to western North America and the development of the main phase of Cordilleran arc magmatism followed the Early Mesozoic breakup of Pangea. (3) In the absence of evidence for continental collision, the diachronous termination of subduction and its transition to an intracontinental wrench regime at 590–540 Ma is interpreted to record ridge–trench collision in the same way that North America's collision with the East Pacific Rise in the Oligocene led to the diachronous initiation of a transform margin. (4) The separation of Avalonia from Gondwana in the Early Ordovician resembles that brought about in Baja California by the Pliocene propagation of the East Pacific Rise into the continental margin. (5) The Late Ordovician–Early Silurian sinistral accretion of Avalonia to eastern Laurentia emulates the Cenozoic dispersal of Cordilleran terranes and may mimic the paths of future terranes transferred to the Pacific plate.This close similarity in tectonothermal histories suggests that a geodynamic coupling like that linking the evolution of the Cordillera with the assembly and breakup of Pangea, may have existed between Avalonia and the late Precambrian supercontinent Rodinia. Hence, the North American Cordillera is considered to provide an actualistic model for the evolution of Avalonia and other peri-Gondwanan terranes, the histories of which afford a proxy record of supercontinent assembly and breakup in the late Precambrian.  相似文献   

7.
在广西东攀二叠-三叠系界线剖面中发现了Domataceras guangxiensis, Lopingoceras guangdeensis Zhao,Liang et Zheng,Schizoloboceras fusuiensis, Agathiceras sp., Stacheoceras sp.,Pernodoceras robustum Chao et Liang,Dushanoceras cf.rotolarium Zhao, Liang et Zheng,Huananoceras cf.perornatum Chao et Liang,Qianjiangoceras sp.,Laibinoceras cf.compressum Yang,Glyptophiceras sp.,Lytophiceras cf. chamunda(Diener),Ophiceras tingi Tien,Ophiceras sp.化石.在剖面的第2~12-2层产Pernodoceras,Dushanoceras,Huananoceras和Qianjiangoceras化石,均为长兴期菊石带Pseudotirolites-Rotodiscoceras的共生化石.第12-3层产长兴期菊石Laibinoceras cf.compressum Yang.第13-1A~16层产Lytophiceras和 Ophiceras,为早三叠世菊石带Ophiceras-Lytophiceras的带化石.东攀剖面菊石的分布及其与华南其他地区的对比研究表明,广西东攀剖面二叠-三叠系界线位于第12-3层(厚55 cm)内部或者位于第13-1A层的底部.  相似文献   

8.
Recent and new faunal data from the Cambrian to Silurian rocks of the Precordillera, Famatina and Northwest Argentina basins are used to discriminate between different paleogeographic models, and especially to establish to what extent they are compatible with a previous conclusion that the Precordillera is a Laurentian-derived microcontinent. There is no paleontological evidence to support a para-autochthonous Gondwanan origin of the Precordillera. The strong differences in the Cambrian trilobite faunas and lithologic successions preclude a common origin of the Precordillera terrane, eastern Antarctica and South Africa. Recent discoveries of brachiopods and organisms of the Phylum Agmata strengthened Laurentian affinities during the Cambrian. The latest Cambrian-early Ordovician faunas that inhabited the autochthonous Northwest Argentina basin, including the western Puna volcaniclastic successions, are mostly peri-Gondwanan. The early Ordovician brachiopods, ostracods and trilobites display mixed Laurentian, Baltic and Avalonian biogeographical links supporting a drifting of the Precordillera across the Iapetus Ocean. Increasing Gondwanan elements during the Llanvirn, along with varied geological evidence, indicate that the first stages of collision may have begun at that time, involving a major change in the plate kinematics. The distribution of facies and faunas, basin development, and timing of deformation are interpreted as resulting from a north to south diachronous closing of the remnant basin during the last phases of convergence and oblique collision of the Precordillera terrane with the Gondwana margin. The high level of endemism of Caradoc faunas may be a consequence of the rearrangement and partial isolation of sedimentary areas during the strike-slip movement of the colliding Precordillera plate with respect to the Gondwana margin. Suggested relationships between facies distribution, geographic barriers and faunal migrations before and during the collision are depicted in a series of schematic reconstructions at five time slices from late Cambrian to Silurian.  相似文献   

9.
本文所研究的湖北大冶沙田下三叠统菊石、双壳动物群,包括菊石10属11种,双壳类4属9种。文中建立了5个菊石带:Lytophiceras带、Gyronites带、Flemingites带、Pseudosagece-ras—Xenodiscoides带和Anasibirites带;2个双壳动物带:Claraia griesbachi带和Cl.concentrica带,并依据动物群面貌,将原大冶群的时代详细划分为大冶组和观音山组。大冶组的时代相当于格里斯巴赫期至亭纳尔期,观音山组的时代相当于斯密斯期至斯派斯期。  相似文献   

10.
《Earth》2009,96(3-4):119-157
Anomodont synapsids represent the dominant herbivores of Permian and Triassic terrestrial vertebrate ecosystems. Their taxonomic diversity and morphological disparity in combination with their cosmopolitan distribution makes them an ideal study object for macroevolutionary patterns across the most devastating extinction event in earth history. This study provides a thorough review of anomodont-bearing tetrapod faunas to form the basis for a faunal similarity analysis and future studies of anomodont diversity. The stratigraphic correlation and composition of all known anomodont assemblages is revisited, including a discussion of the validity of the globally distributed anomodont species. The similarity analysis of anomodont faunas is performed on the basis of presence–absence data of anomodont taxa, using explorative methods such as cluster analysis (UPGMA) and non-metric multidimensional scaling (NMDS). The recovered faunal groupings indicate a common biostratigraphic age and furthermore reflect biogeographic patterns. Even though endemism and faunal provinciality was a constant element in anomodont faunas of the Permian and Triassic, the available evidence indicates that the end-Permian extinction resulted in a distinct uniformity that was unique to Early Triassic anomodont faunas. This is in particular characterized by the global distribution and overwhelming abundance of the disaster taxon Lystrosaurus. In contrast, cosmopolitan anomodonts also existed in the Late Permian (e.g., Diictodon) and Middle Triassic (e.g., Shansiodon), but those taxa coexisted with endemic faunal elements rather than dominated the fauna as Lystrosaurus did.  相似文献   

11.
The analysis of the basement of the Andes shows the strong Grenville affinities of most of the inliers exposed in the different terranes from Colombia to Patagonia. The terranes have different histories, but most of them participated in the Rodinia supercontinent amalgamation during the Mesoproterozoic between 1200 and 1000 Ma. After Rodinia break-up some terranes were left in the Laurentian side such as Cuyania and Chilenia, while others stayed in the Gondwanan side. Some of the terranes once collided with the Amazon craton remained attached, experiencing diverse rifting episodes all along the Phanerozoic, as the Arequipa and Pampia terranes. Some other basement inliers were detached in the Neoproterozoic and amalgamated again to Gondwana in the Early Cambrian, Middle Ordovician or Permian times. A few basement inliers with Permian metamorphic ages were transferred to Gondwana after Pangea break-up from the Laurentian side. Some of them were part of the present Middle America terrane. An exceptional case is the Oaxaquia terrane that was detached from the Gondwana margin after the Early Ordovician and is now one of the main Mexican terranes that collided with Laurentia. These displacements, detachments, and amalgamations indicate a complex terrane transfer between Laurentia and Gondwana during Paleozoic times, following plate reorganizations and changes in the absolute motion of Gondwana.  相似文献   

12.
In Permian times the Baoshan Block of western Yunnan, southwest China formed the eastern part of the Cimmerian Continent. Most biogeographical and sedimentological data indicate that the Early Permian Dingjiazhai Formation formed on the block under conditions strongly influenced by the Permo-Carboniferous glaciation. After Early Permian rifting, with post-glaciation climatic amelioration, and as the Baoshan Block drifted northwards to approach South China and Indochina, faunal elements characteristic of Gondwana affinity decreased, while those of Cathaysian affinity increased. Finally, Late Permian faunas are characterized by exclusively Cathaysian elements. This shift of marine provinciality becomes an important indicator in understanding the Permian paleoclimatic evolution of the region. This research investigated the composition of carbonate grain associations and the early diagenetic features of limestones from the upper part of the Dingjiazhai Formation, and from the overlying Yongde and Shazipo formations. A sharp distinction in petrological and diagenetic features is recognized between the Dingjiazhai Formation and the two overlying formations. The Dingjiazhai carbonates are characterized by the bryonoderm (bryozoan-echinoderm)-extended facies of the heterozoan association, with no non-skeletal grains. Because early diagenetic cement was rarely formed, the Dingjiazhai carbonates experienced strong diagenetic compaction. In contrast, the Yongde and Shazipo carbonates show a chloroforam facies of photozoan association, with the common occurrence of non-skeletal grains. These carbonates were well cemented during early diagenetic processes. From comparison with Permian cool-water carbonates from northern Pangea and Tasmania, Australia, the Dingjiazhai carbonates are interpreted as deposits of warm-temperate conditions, while the overlying carbonates are considered to be deposits of subtropical or tropical conditions. This climatic interpretation, based on the petrographic features of the Permian carbonates, agrees well with existing biogeographical data from the region.  相似文献   

13.
A new ichthyofauna from southeastern Morocco, comprising five forms, is briefly discussed. The faunal composition differs from the Early Cenomanian Kem Kem and Early Turonian Goulmima assemblages, but is close to that from Jebel Tselfat. We propose a Late Cenomanian age for the new fauna and that from Jebel Tselfat. The evolution of these fish assemblages shows the Moroccan fish faunas to have been related to those from South America until at least the Early Turonian. Central Tethyan influence on faunas seems to have been restricted to a short period of time during the beginning of the Late Cenomanian transgressive phase.  相似文献   

14.
Ultramafic‐intermediate rocks exposed on the South Island of the Percy Isles have been previously grouped into the ophiolitic Marlborough terrane of the northern New England Fold Belt. However, petrological, geochemical and geochronological data all suggest a different origin for the South Island rocks and a new terrane, the South Island terrane, is proposed. The South Island terrane rocks differ from ultramafic‐mafic rocks of the Marlborough terrane not only in lithological association, but also in geochemical features and age. These data demonstrate that the South Island terrane is genetically unrelated to the Marlborough terrane but developed in a supra‐subduction zone environment probably associated with an Early Permian oceanic arc. There is, however, a correlation between the South Island terrane rocks and intrusive units of the Marlborough ophiolite. This indicates that the two terranes were in relative proximity to one another during Early Permian times. A K/Ar age of 277 ± 7 Ma on a cumulative amphibole‐rich diorite from the South Island terrane suggests possible affinities with the Gympie and Berserker terranes of the northern New England Fold Belt.  相似文献   

15.
南海及其围区中生代岩相古地理和构造演化   总被引:19,自引:0,他引:19  
周蒂  孙珍  陈汉宗  丘元禧 《地学前缘》2005,12(3):204-218
以岩相古地理分析和编图为基础,结合构造变动和岩浆活动资料,阐述了南海及其围区中生代构造演化。中生代时研究区位于欧亚大陆的东南缘,受特提斯域和太平洋域交替复合影响。早三叠世时古特提斯洋经过黑水河盆地东延至南海。从中三叠世开始构造岩相古地理演化出现明显的东西分异。晚三叠世时,受印支运动影响华南地块与印支地块拼合,研究区西部抬升,黑水河水道关闭;而研究区东部和东南部却受古太平洋的影响发生海侵,形成“粤东-西北加里曼丹海盆”,该海盆在早侏罗世遭受更大海侵,导致与中特提斯的良好贯通。中侏罗世在中特提斯发生过短暂海侵而形成“滇缅海”。晚侏罗世至早白垩世是中特提斯洋和古太平洋的俯冲鼎盛期,形成绵延数千km的欧亚大陆东南缘俯冲增生带。文中还讨论了中特提斯向南海延伸的通道、中特提斯与古太平洋对南海中生代演化的交替和复合影响以及南海东北部新近发现的晚中生代俯冲带等问题。  相似文献   

16.
17.
Abstract The Nadanhada terrane, a Jurassic disrupted terrane in Heilongjiang Province of China, is principally composed of Permo- Carboniferous limestone and greenstone, Triassic bedded chert and middle Jurassic siliceous shale, all enclosed within younger (presumably Late Jurassic- Early Cretaceous) clastics. Palaeontological and lithological characteristics and structural features of these formations are entirely identical to those of the Mino terrane of the Japanese Islands. Prior to opening of the Sea of Japan, these terranes formed a single superterrane together with the Western Sikhote-Alin terrane. Tectono-stratigraphic terranes very similar to the Nadanhada and Mino terranes are also found in the Ryukyu are, the Philippines and probably in Borneo. All these terranes constituted a belt of accretionary complexes during Late Jurassic and / or Early Cretaceous time along the eastern continental margin of Asia after completion of the Triassic collage of the Chinese continent.  相似文献   

18.
The Lower Triassic Mineral Mountains area (Utah, USA) preserves diversified Smithian and Spathian reefs and bioaccumulations that contain fenestral‐microbialites and various benthic and pelagic organisms. Ecological and environmental changes during the Early Triassic are commonly assumed to be associated with numerous perturbations (productivity changes, acidifica‐tion, redox changes, hypercapnia, eustatism and temperature changes) post‐dating the Permian–Triassic mass extinction. New data acquired in the Mineral Mountains sediments provide evidence to decipher the relationships between depositional environments and the growth and distribution of microbial structures. These data also help to understand better the controlling factors acting upon sedimentation and community turnovers through the Smithian–early Spathian. The studied section records a large‐scale depositional sequence during the Dienerian(?)–Spathian interval. During the transgression, depositional environments evolved from a coastal bay with continental deposits to intertidal fenestral–microbial limestones, shallow subtidal marine sponge–microbial reefs to deep subtidal mud‐dominated limestones. Storm‐induced deposits, microbialite–sponge reefs and shallow subtidal deposits indicate the regression. Three microbialite associations occur in ascending order: (i) a red beds microbialite association deposited in low‐energy hypersaline supratidal conditions where microbialites consist of microbial mats and poorly preserved microbially induced sedimentary structure; (ii) a Smithian microbialite association formed in moderate to high‐energy, tidal conditions where microbialites include stromatolites and associated carbonate grains (oncoids, ooids and peloids); and (iii) a Spathian microbialite association developed in low‐energy offshore conditions that is preserved as multiple decimetre thick isolated domes and coalescent domes. Data indicate that the morphologies of the three microbialite associations are controlled primarily by accommodation, hydrodynamics, bathymetry and grain supply. This study suggests that microbial constructions are controlled by changes between trapping and binding versus precipitation processes in variable hydrodynamic conditions. Due to the presence of numerous metazoans associated with microbialites throughout the Smithian increase in accommodation and Spathian decrease in accommodation, the commonly assumed anachronistic character of the Early Triassic microbialites and the traditional view of prolonged deleterious conditions during the Early Triassic time interval is questioned.  相似文献   

19.
Theprimaryobjectofthesequencestratigraphyistorecoghzetherepetitivesequenceswithinstratigraphicsuccession,andtostudythetemporalandspatialdistriblltionofdepositionalsyStemsandstratalgeometries.TherearethreemajorparadigmSwhichcanbeusedtOdelineatethesequences:(1)delineatingdepositionalsequenCeSbyimportantunconfodritiesandtheircorrelatableconformitiesopsarnentierandVail,1988),(2)delineatinggeneticsequencesbymaximum--floodingsurfacesandtheircorrelatableconformities(Galloway,1989);and(3)delineating…  相似文献   

20.
The Early Triassic Induan–Olenekian Stage boundary (Dienerian–Smithian sub-stage boundary) has been identified at a depth of 2719.25 m in the petroleum exploration well Senecio-1 located in the northern Perth Basin, Western Australia. Conodont faunas represent three conodont zones in ascending order, the Neospathodus dieneri Zone, the Neospathodus waageni eowaageni Zone and the Neospathodus waageni waageni Zone. The Induan–Olenekian (Dienerian–Smithian) boundary is placed at the base of the Neospathodus waageni eowaageni Zone equivalent to the first appearance of Neospathodus ex. gr. waageni utilised elsewhere and adopted by the IUGS ICS Triassic Subcommission to define the base of the Olenekian. Bulk kerogen δ13C carbon isotopes define a positive peak of c. 4 per mille that essentially coincides with the Induan–Olenekian boundary as seen in proposed Global Stratotype Sections and Points (GSSPs) in South China and Spiti, India demonstrating the global utility of this level for correlation. An anoxic zone is recognised in the lower part of the Senecio-1 core and the upper limit of this zone is dated as late Induan (late Dienerian). Temporal and spatial mapping of marine anoxia and dysoxia globally demonstrates that pulses of dysoxia/anoxia affected shallow-marine zones at different times in different locations. Dysoxia/anoxia in the shallow-marine environment appeared in the latest Permian at the extinction level, later than in the deep-marine environment, and appears to be largely restricted to the Induan (Griesbachian and Dienerian) and early Olenekian (Smithian). Temporally and geographically restricted upwelling of an oxygen minimum zone into the ocean surface layer due to environmental perturbations including extreme global warming, increased terrestrial chemical weathering intensity and continental erosion, sea level rise, and changes in marine nutrient inventories and productivity rates, is interpreted as a likely cause of observed variation in shallow-marine dysoxia/anoxia in the Early Triassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号