首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The 3000 Orebody is one of two orebodies in the Deep Copper Mine at Mount Isa, Australia. Owing to concerns about potential shaft pillar instabilities, an integrated seismic system was introduced to monitor seismic activity associated with pillar and country rock deformation. Coupled with numerical modelling of the stress regime, the system may assist in the characterization of rock mass damage resulting from mining, and perhaps the identification of near- and far-field geological structures that affect stope performance. A study was undertaken to quantify the seismicity and to determine potential applications of the seismic technology. The relation between geological structure and seismicity is strong, suggesting good prospects for the use of the system in the ground-control activities noted above. The induction of seismicity, which involves small magnitude events, is associated with reduction of normal stress on planes of weakness, suggesting that stress path may be an important factor in the level of seismicity observed in hard rock mines.  相似文献   

2.
Stress concentrations produced by rock deformation due to extraction in underground mines induce seismicity that can take the shape of violent and quite dangerous rockbursts.The hazard evaluation presented in this paper is based on a Bayesian probabilistic synthesis of information determined from mining situations during excavation, with previous and present data from microseismicity and seismoacustics.The method proposed in this study is an example of time-dependent on-line seismic hazard evaluation. All results presented were obtained retrospectiely for different underground coal mines in Poland and Czechoslovakia.On leave from Institute of Geophysics, Polish Academy of Sciences 01-452 Warszawa, ul. Ksiecia Janusza 64, Poland.  相似文献   

3.
W.G. Milne  M.J. Berry   《Engineering Geology》1976,10(2-4):219-226
The annual and cumulative catalogues of Canadian earthquakes prepared by the Department of Energy, Mines and Resources, are critically examined to determine if they contain examples of induced seismic activity caused by fluid injection in oil fields, by the impounding of water in large reservoirs or by mining.

It is concluded that there is just one example each of induced seismic activity caused by fluid injection and by reservoir impoundment, but that there are many examples of induced seismic activity associated with mining. These include both mine bumps and rockbursts.  相似文献   


4.
Strike stabilizing pillars are included in the mine layout of a number of deep South African gold mines as a means of providing regional support with the principal aim of controlling rockbursts. Large seismic events associated with stabilizing pillars can cause extensive damage to working areas. Mining-induced seismicity recorded at Western Deep Levels Limited has been analysed in an attempt to improve the design of stabilizing pillars, and thereby reduce their associated seismic hazard. This work revealed that the vast majority of stabilizing pillars, regardless of their dimensions and those of their adjacent stopes, will, at some time, give rise to seismic events of magnitude, M2. Contrary to expectations, this work strongly indicates that the rock mass in the near vicinity of the mined out areas does not behave in an elastic manner. Consequently, the currently employed design methodologies, based on elastic principles, should not provide the only criteria when designing strike stabilizing pillars.  相似文献   

5.
Hot dry rock is becoming an important clean energy source. Enhanced geothermal systems (EGS) hold great promise for the potential to make a contribution to the energy inventory. However, one controversial issue associated with EGS is the impact of induced seismicity. In August 2019, a hydraulic stimulation experiment took place at the hot dry rock site of the Gonghe Basin in Qinghai, China. Earthquakes of different magnitudes of 2 or less occurred during the hydraulic stimulation. Correlations between hydraulic stimulation and seismic risk are still under discussion. Here, we analyze the hydraulic stimulation test and microseismic activity. We quantify the evolution of several parameters to explore the correlations between hydraulic stimulation and induced seismicity, including hydraulic parameters, microseismic events, b-value and statistical forecasting of event magnitudes. The results show that large-magnitude microseismic events have an upward trend with an increase of the total fluid volume. The variation of the b-value with time indicates that the stimulation experiment induces small amounts of seismicity. Forecasted magnitudes of events can guide operational decisions with respect to induced seismicity during hydraulic fracturing operations, thus providing the basis for risk assessment of hot dry rock exploitation.  相似文献   

6.
Stope stability is a key factor for the success of a mining operation. To optimise ore productivity while maintaining stope stability, the mining block/stope must be extracted in stages. Ore dilution will occur if the stope is not properly excavated/blasted. This study examines stope stability during mining in three stages, where the height of each stage stope is 10 m. The paper also presents simulation analysis of a typical steeply dipping tabular orebody at 1200 m depth below the surface, which is common in many Canadian underground hard rock mines. Numerical modelling analysis was conducted using the finite element program, RS2D, where the non-linear elasto-plastic Mohr-Coulomb failure criterion was adopted. The rock reinforcement system (i.e. cable bolts) was modelled/installed in the stope footwall after each mining stage to strengthen access drifts and stabilise the rock mass around the stope that was disturbed by mining activity. Results are discussed in terms of depth of failure zones, total deformation and axial forces in cable bolts with respect to mining stage.  相似文献   

7.
Moment tensors and micromechanical models   总被引:4,自引:0,他引:4  
A numerical modelling approach that simulates cracking and failure in rock and the associated seismicity is presented and a technique is described for quantifying the seismic source mechanisms of the modelled events. The modelling approach represents rock as an assemblage of circular particles bonded together at points of contact. The connecting bonds can break under applied stress forming cracks and fractures in the modelled rock. If numerical damping is set to reproduce realistic levels of attenuation, then energy is released when the bonds break and seismic source information can be obtained as damage occurs. A technique is described by which moment tensors and moment magnitudes can be calculated for these simulated seismic events. The technique basically involves integrating around the source and summing the components of force change at the surrounding particle contacts to obtain the elements of the moment tensor matrix. The moment magnitude is then calculated from the eigenvalues of the moment tensor. The modelling approach is tested by simulating a well-controlled experiment in which a tunnel is excavated in highly stressed granite while microseismicity is recorded. The seismicity produced by the model is compared to the actual recorded seismicity underground. The model reproduces the spatial and temporal distribution of seismicity observed around the tunnel and also the magnitudes of the events. A direct comparison between the actual and simulated moment tensors is not performed due to the two-dimensional nature of the model, however, qualitative comparisons are presented and it is shown that the model produces intuitively realistic source mechanisms. The ability to obtain seismic source information from the models provides a unique means for model validation through comparison with actual recorded seismicity. Once it is established that the model is performing in a realistic manner, it can then be used to examine the micromechanics of cracking, failure and the associated seismicity and to help resolve the non-uniqueness of the geophysical interpretation. This is demonstrated by examining in detail the mechanics of one of the modelled seismic events by observation of the time dependence of the moment tensor and by direct examination of the particle motions at the simulated source.  相似文献   

8.
The Upper Silesian Coal Basin (USCB) is a region where high seismic activity is observed. Most of these seismic events have a local magnitude not exceeding 2.3. Their location and type of focal mechanism suggest that they are connected with new discontinuities in the rock mass caused by mining activity. Shocks with higher magnitude are also observed but their frequency is much lower. The strong events have a different focal mechanism than the low energetic events. The spatial distribution of shock epicentres is not uniform in the USCB area and shows the fractal character of seismic phenomena. Despite extensive mining activity throughout the area, the epicentres of strong events are concentrated in four regions belonging to different geological units. The temporal variability of epicentre co-ordinates and the general decrease of seismic activity points to the migration of seismicity across the investigated area. Analysing the spatial and temporal distributions of the strongest shocks, one can suppose this area to be critically self-organised. These facts suggest that induced seismicity in the USCB is triggered by a nonlinear dynamic process, having regional character and connected with recent tectonic activity.  相似文献   

9.
基于双岩模式的抚顺煤田矿震成因机理探讨   总被引:1,自引:0,他引:1  
矿震是由采矿活动所引起的,产生于某些特定岩体,一定深度受高应力影响的微震.抚顺是我国著名的"煤都",但由于开采深度的加大,产生的矿震对城市的影响日益严重,并产生了强烈的破坏作用,影响了城区的发展和人们的正常生活.本文在介绍抚顺矿震特征类型基础上,提出了产生矿震的可能潜在条件,借用双岩模式对抚顺煤田矿震成因机理进行了探讨,并借鉴日本Miike煤矿认为矿震可能主要产生于1140 m以上,煤层中的巷道表面高应力集中地带为矿震发生的主要区域.  相似文献   

10.
The Aysén Region, southern Chile, is the area located at the southern end of the Nazca-South America subduction zone, to the east of the Chile Triple Junction. This region has historically presented low levels of seismicity mostly related to volcanism. Nonetheless, a seismic sequence occurred in 2007, related to the reactivation of the strike-slip Liquiñe-Ofqui Fault System (LOFS), confirmed that this region is not exempt from major seismic activity M ∼ 7. Here we present results from background local seismicity of two years (2004–2005) preceding the sequence of 2007. Event magnitudes range between 0.5 and 3.4 ML and hypocenters occur at shallow depths, mostly within the upper 10 km of crust, in the overriding South American plate. No events were detected in the area locus of the 2007 sequence, and the Wadati–Benioff (WB) plane is not observable given the lack of subduction inter-plate seismicity in the area. A third of the seismicity is related to Hudson volcano activity, and sparse crustal events can be spatially associated with the trace of the Liquiñe-Ofqui fault, showing the largest detected magnitudes, in particular at the place where the two main branches of the LOFS meet. Other minor sources of seismicity correspond to glacial calving in the terminal zones of glaciers and mining explosions.  相似文献   

11.
岩爆类型及其防治   总被引:13,自引:0,他引:13  
谭以安 《现代地质》1991,5(4):450-456
本文将在水电洞室、交通隧洞、矿山坑道岩体或矿体中发生的急剧猛烈释放弹性变形能的动力破坏现象统称为岩爆。在讨论岩爆与其他动力现象之间的区别和岩爆含义基础上,按照地应力作用方式,将其分为水平应力型、垂直应力型以及混合应力型3种主要类型,并分别讨论了各类岩爆的具体特征以及防治措施。  相似文献   

12.
Summary Conditions under which dynamic loads occur in mines are briefly described and the special vulnerability of roadways in coal mines to fail under dynamic load is considered. A method for assessment of shock load energy anticipated is proposed, based on the volume of rock and the velocity of rock particles induced by rapid rock failure and/or seismic tremors. Case examples from Upper Silesian coal mines are given and the safety factor of steel supports against the shock energy from rockbursts is discussed. The shock energy damping ability of various parts of steel supports and support systems is calculated as a basis for rational support design. Results of six mine experiments where various types of roadway support were installed and then loaded dynamically by blasting within surrounding rocks are discussed.  相似文献   

13.
Summary This paper presents a rock mechanics design methodology applicable to steeply dipping orebodies typical of many underground hardrock mines. The first stage in the design process is the characterization of the rock mass using bothin situ and laboratory data. The effects of anisotropy on rock mass behaviour are discussed with reference to laboratory and field observations. The second stage involves the use of a number of selected numerical modelling techniques to investigate ground response in the near-field rock mass surrounding the mining excavations. This study shows that the use of several numerical methods in conjunction, allowing for the advantages of each method to be maximized, provides a more comprehensive analysis of the different facets of stope design. This approach differs from those in the literature which seek to compare the different numerical methods in order to select just one method best suited for a problem. The design methodology employed emphasizes the importance of developing an understanding of ground deformation mechanisms as opposed to predicting absolute behaviour.  相似文献   

14.
 As depth of mining increases, so the production costs of the aurifereous Witwatersrand deposits are continuously increasing, with some mines already mining at depths exceeding 3500 m. Health and safety aspects are, simultaneously, gaining in importance. Therefore, in order to mine deep orebodies in existing mines, as well as to develop new mining ventures safely and efficiently, novel approaches, including mining strategies, layouts and support systems have to be adopted. Geological features largely control the deformation mechanisms associated with Witwatersrand orebodies. These features are grouped into two major categories: primary and secondary features. Both impact on the rockmass behaviour associated with the excavations, and contribute to the definition of geotechnical areas. Primary geological features are defined by the various rock types, orebody geometry, and the frequency and mineralogical characteristics of sedimentary structures (e.g. various kinds of bedding planes and lithological boundaries). The primary features also control rock engineering properties, closure rates, attitude and frequency of mining-induced stress fracturing, and planes may be reactivated during seismic events. Secondary geological features are faults, dykes and veins/joints, and associated metamorphism. These cause stability problems and are often associated with seismic events. Compositional and textural characteristics of these features, and their controls on the rockmass behaviour, are ill-defined. Primary and secondary geological characteristics also play an important role in identifying the appropriate mining strategy, layout and support. Geological features can be predicted into deep unmined areas, and therefore contribute to the safest and most efficient extraction of the orebody. Witwatersrand orebodies are mined in complex geological environments, with the rockmass behaviour differing from one orebody to the other. This is approached by employing a new methodology that attempts to quantify the problems encountered when mining the major Witwatersrand orebodies. Received: 7 June 1996 / Accepted: 7 January 1997  相似文献   

15.
This paper presents an analysis of the development of the current seismic state of the Kuznetsk coal basin, which is characterized by an increase in technogenic seismicity of different types under the influence of prolonged intensive mining operations. The development of technogenesis led to a significant increase in technogenic seismicity in the Kuznetsk Basin in the 1970-1980s, when the number of technogenic earthquakes began to exceed the number of natural earthquakes. Among the various types of induced seismicity, special attention is paid to strong technogenic tectonic earthquakes with a regional magnitude Mb ≥ 3 and, accordingly, a seismic energy release of more than 109 J, i.e., earthquakes of energy class K > 9. These small-focus earthquakes are often accompanied by destruction of underground mines, collapse of quarries and pits, damage to surface facilities and equipment, and other adverse effects. In this paper, such earthquakes are defined as technogenic tectonic to emphasize their dual origin: technogenic impacts and the subsequent relaxation of tectonic stresses. It is also noted that the Earth’s interior in Kuzbass initially had its own natural seismicity and a developed system of tectonic faults. Natural seismotectonic activity combined with constantly increasing scales of mining and explosive consumption has led to an increase in the number of technogenic seismic events and their intensity. A striking example of such an event was the 18 June, 2013 Bachat earthquake with a regional magnitude Mb= 5.8 and a seismic intensity of 7 in the epicentral zone. It was the world’s largest man-made earthquake induced by the mining of solid minerals. We consider the possible causes of this catastrophic earthquake and discuss the conditions favoring the formation of foci of such technogenic tectonic earthquakes resulting from changes in the geodynamic and hydrogeological conditions in the Earth’s crust under man-caused impacts. These induced changes in natural processes are accompanied by a change in the stress-strain state, resulting in the concentration of tectonic stresses at heterogeneities and in fault zones, which become sources of induced technogenic seismicity.The paper discusses the current period of the occurrence and increase in such anthropogenic seismicity in the Kuzbass region with increasing scales of coal mining and blasting. Over the last 20 years, the consumption of explosives at Kuzbass enterprises increased from 100-200 to 500-600 thousand tons per year, and, accordingly, the amounts of broken and transported rock increased from several million tons per year to a billion tons per year, which disturbed the dynamic equilibrium in the Earth’s crust and changed the existing field of tectonic stresses. Moreover, the continuously increasing consumption of explosives has also increased the technogenic impact on the crust structures. The location of the epicenters of large-scale blasts inducing seismic events with regional magnitudes Mb= 3.0-4.5 has made it possible to identify regions with the greatest technogenic impact in Kuzbass. Using the data of the ISC seismological catalog, we separated seismic events with the above magnitudes into day and night ones. Since blasting work is forbidden at night, night seismic events are referred to as technogenic tectonic earthquakes (night event criterion). The maximum magnitude of seismic events induced by blasting operations in the Kuznetsk Basin was estimated at Mb ≤ 4.4. The annual number of technogenic tectonic earthquakes with 3.0 ≤ Mb ≤ 3.4, 3.5 ≤ Mb ≤ 3.9, 4.0 ≤ Mb ≤ 4.4, and Mb ≥ 4.5 was determined based on the night event criterion. The regions of their occurrence were identified from the location of the epicenters of technogenic tectonic earthquakes.  相似文献   

16.
Five seismic events occurred between August 1979 and May 1980 in the Belchatow trench area in central Poland, where large brown-coal deposits have been surface-mined since 1976. The three largest shocks had a local magnitudeML = 3.5 , seismic momentMo = 1.5 · 1014 N-m and source radiusr = 350m , approximately. The tremors had maximum intensity between 5 and 6, and from the magnitude—intensity—depth relation, the focal depth was estimated to be between 1 and 5 km.

The Belchatow tremors are the manifestation of an unusual type of induced seismicity, i.e., seismicity connected with surface mining. The removal of overburden and extensive ground-water withdrawal by the mining operations seem to be direct factors responsible for stress concentration, although preexisting tectonic stress might be the most important indirect factor responsible for the origin of these events.  相似文献   


17.
Landslides and slope failures are very common phenomena in hilly regions, Southwestern China. These are hazardous because of the accompanying progressive movement of the slope-forming material. To minimize the landslide effects, slope failure analysis and stabilization require in-depth understanding of the process that governs the behavior of the slope. The present paper first briefly describes a three-dimensional numerical brittle creep model for rock. The model accounts for material heterogeneity, through a stochastic local failure stress field, and local material degradation using an exponential material softening law. Then a case study of the Jiweishan rockslide that occurred in China is numerically investigated considering the effect of the mining activity. Numerical simulations visualize the entire process of the Jiweishan rockslide from the fracture initiation, propagation and coalescence. The distribution and evolution of associated stress and deformation field during the slide are also presented. Numerical simulations show that the underground mining excavations have remarkably negative effect on the stability of the rock slope, which is one of the important triggering factors of the rockslide. Moreover, it is possible to take some precautions for the unstable failure of rock mass by monitoring acoustic emission (AE) events or microseismicities since the occurrence of clusters of AE events prior to the final unstable rockslide. The results are of general interest, because they can be applied to the investigation of time-dependent instability in rock masses, to the mitigation of associated rock hazards in rock engineering, and even to a better understanding of the seismic activities in geological and geophysical phenomena occurring in the earth’s crust.  相似文献   

18.
Summary. Studies of source mechanisms of mining-induced seismic events play an important role in understanding the various modes of failure observed around underground excavations and enable the geometry of likely planes of failure to be determined. These planes can be mapped using conventional techniques, for example, geological fracture mapping. However, such an approach is often problematical due to limited access to the site and/or poor exposures (if any) of the failure plane. An added difficulty is that planes of failure often do not follow faults of geological origin, but are related to the geometry of the advancing stope face. For example, the development of face-parallel shear zones ahead of deep-level stope faces. In such cases, the stresses induced by mining dominate over the geological structure in the critical region close to the stope face. Seismic methods therefore have the potential of being a practical method of studying the development of seismic shear zones underground.Slip on such a failure plane generates a three dimensional elastic wave that propagates through the rockmass, carrying a wealth of information regarding the source rupture process. The ground motions caused by the passage of the wave can be recorded by arrays of sensitive instruments called seismometers. These sets of recordings (seismograms) provide the basic data that seismologists use to study these elastic waves as they propagate through the Earth. Conventional seismic analyses provide scalar measurements of the rupture size and intensity. However, through a process known as moment tensor inversion (MTI), the seismograms recorded from a seismic event can be used to calculate a moment tensor that describes the three dimensional nature of the source mechanism. Interpretation of the moment tensor gives insight into whether the rockmass failed in tension, compression or shear and indicates the direction of movement and the failure plane.Moment tensor solutions computed using conventional MTI methods are sensitive to noise and may be biased due to systematic errors in the measurements. The primary objective of this study was to develop a robust MTI method to estimate the moment tensors of clusters of seismic events recorded in the underground environment. To achieve this, three hybrid MTI methods were developed by the author. These methods involve different iterative weighting schemes designed to enhance the accuracy of the computed moment tensors by decreasing the effect of outliers (data points whose residuals lie far from the mean or median error). The additional information required for hybrid methods is obtained by considering a spatial cluster of seismic events and assuming that the waves generated by each event in the cluster follow a similar path through the rockmass and allowing a common ray-path to be assumed. Hence the unknown effect of the heterogeneous rockmass on the waveform is similar for all the events in the cluster.The final objective was to determine whether the techniques developed could be successfully applied to real data. The hybrid MTI methods using the median and the weighted mean correction were applied to a cluster of 10 events, having remarkably similar waveforms, recorded at Oryx Gold Mine. For comparative purposes, the more conventional absolute method was also applied. The solutions computed using the hybrid MTI with a median correction displayed a distinct improvement after the iterative residual correction procedure was applied, in contrast to the solutions obtained from the absolute method. The radiation patterns and fault-plane solutions from the hybrid method showed a high degree of similarity, and were probably more accurate reflections of reality. These observations are very encouraging and point towards the potential for using the hybrid MTI method with a median correction as a standard processing tool for mine seismicity.The implications of this work are that a robust method for calculating the focal mechanisms of clusters of seismic events induced by mining activities has been developed. Regular application will lead to a better understanding of rock fracture processes and to improved safety underground.  相似文献   

19.
Failure mechanisms of the rock mass in the regions of maximum stress concentrations around a longwall face were assessed. In this respect, seismic events that result from changes in the stress field were analyzed to gain more knowledge about rock failure mechanisms in the proximity of the face area. A deep longwall mine developed at depths of about 3–3.5 km in South Africa was selected as a case study. Seismic moment tensor solutions were obtained for 32 seismic events with moment magnitudes in the range of 0.49 and 2.10. Through moment tensor decomposition, the dominant failure mechanisms were investigated by drawing focal mechanism plots. Further analysis was implemented by depicting the corresponding 3D radiation patterns of P-wave particle motions. Although the results cover various failure mechanisms, the dominant mechanisms are shear, implosional, and compressional failures. According to the results, most of the maximum principal stresses in the mine are compressive and oriented nearly vertical, which are in accordance with the gravitational collapses of the mined out areas. The results obtained from this research show that measuring and analyzing mining-induced seismicity can be a reliable measure to characterize the dominant failure mechanisms in a nondestructive manner and to provide a useful assessment of the stability of the longwall face in advance of extraction.  相似文献   

20.
Fracturing around a preconditioned deep level gold mine stope   总被引:4,自引:0,他引:4  
The mining faces of the highly stressed tabular stopes in South Africa's deep level gold mines are prone to a type of rock burst termed a face-burst. As a means of ameliorating these face-burst conditions, a destressing technique termed preconditioning has been employed. Part of the studies into the quantification of the effects and mechanisms of preconditioning was a detailed investigation of the fracture pattern around unpreconditioned and preconditioned stopes. Techniques included mapping of the fractures exposed in the mined areas of the stope, measurement of profiles of the stope hangingwall and the use of Ground Penetrating Radar (GPR). These studies indicate that preconditioning does not produce new sets of fractures and stress redistribution ahead of the face occurs by re-activation of specific pre-existing fractures, thereby reducing the potential for face-bursting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号