首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary ?This is a sequel to a study of the empirical estimation of the annual mean temperature and its range, at any location on land, based on the historical surface climate record. Here the spatial patterns of the daily temperature range (DTR) and its seasonal variation are examined. The DTR is highest in the subtropical deserts and is less at high latitudes, as well as within 30–150 km from an ocean. It is generally higher in winter (summer) at low (high) latitudes. The coastal DTR reduction is explained by sea breezes, onshore advection, and low-level cloud cover. Even large bodies of water, such as Lake Michigan, affect the near-shore DTR. Elevation does not directly affect the DTR, but valleys tend to have a DTR that is 2–6 K larger than adjacent hills or ridges. The main factor affecting the DTR is the afternoon relative humidity, which is dynamically linked to low-level cloud cover. An empirical relationship between DTR and afternoon relative humidity has an uncertainty of about 1.4 K for monthly-mean values. Received March 6, 2002; revised September 20, 2002; accepted November 3, 2002  相似文献   

2.
Summary ?This is a sequel to a study of the empirical estimation of the annual-mean temperature at any location on land, using only geographical information – latitude, elevation, distance from the nearer ocean shore at the same latitude – and coastal sea-surface temperature. Here long-term mean station data and NCAR/NCEP (National Center for Atmospheric Research/National Centers for Environmental Prediction) global re-analysis data are used to describe and estimate spatial patterns of annual range of monthly-mean temperatures. The two key influences on annual range are the latitude and the distance from the upwind shore. Secondary factors include mountain barriers, shape of the local topography, elevation, and vicinity to large bodies of water. An empirical relationship is derived, based on the two key factors alone, assuming zonal winds and adjustments for the effects of mountain barriers and for the proximity to a sea to the north or south. An independent test of this relationship yields errors around 1.0 K. The range estimates yield January and July average temperatures when combined with annual-mean temperatures. Such estimates also carry an uncertainty of about 1.0 K. The procedure can be inverted, i.e. knowledge of the annual mean and range can be used to infer location. Received August 23, 2001; accepted June 17, 2002  相似文献   

3.
Summary ?We have analyzed daily rainfall trends throughout the second half of the 20th century in the western Mediterranean basin (Valencia Region, E of Spain). The area is characterized by high torrentiality, and during the second half of the 20th century some of the highest daily rainfall values in the Mediterranean basin have been recorded. In this area, mean annual rainfall varies between 500 and 300 mm and is overwhelmingly dependent on just a few days of rain. Daily maximum rainfall varies on average from 120 mm day−1 to 50 mm day−1, and represents a mean of 17% (coastland) to 9% (inland) of annual rainfall. The 10 days in each year with the heaviest rainfall (called “higher events”) provide over 50% of the annual rainfall and can reach more than 400 mm on average. We compared the annual rainfall trend and the trend of higher and minor events defined by percentiles, both in volume and variability. We, therefore, tested whether annual rainfall changes depend on the trend of the higher (rainfall) events. To overlap spatial distribution of trends (i.e.: positive, no significant and negative trends) we have used cross-tab analysis. The results confirm the hypothesis that annual rainfall changes depend on changes found in just a few rainy events. Furthermore, in spite of their negative trend, higher events have increased their contribution to annual rainfall. As a consequence, although torrential events may have diminished in magnitude, future scenarios seem to be controlled by a limited number of rainy events which will become more and more variable year on year. The high spatial density of data used in this work, (97 observatories per 24.000 km2, overall mean 1 observatory per 200 km2), suggests to us that extreme caution should be applied when analyzing regional and sub-regional changes in rainfall using GCM output, especially in areas of high torrentiality. Received August 1, 2002; revised November 11, 2002; accepted December 1, 2002 Published online May 19, 2003  相似文献   

4.
Summary We have examined station data from around the world to study the separate effects of the latitude (between 60° N–40° S), elevation and distance inland, on the annual-mean screen temperature. In the first 200–400 km from some west coasts, screen temperatures (after adjustment for elevation) rise inland, reaching a maximum called the ‘thermal-ridge temperature’ Tr. The rise of temperature within this littoral fringe (of width F) depends mainly on the difference between the sea-surface temperature off the west coast and the zonal mean. Further inland than such a fringe, adjusted temperatures generally decline eastwards, approximately linearly, at a rate C. The rate is related to hemisphere and latitude. Empirical relationships between latitude and the observed coastal sea-surface temperature, the near-shore screen temperature, Tr, C and F for each continent are used to estimate annual mean temperatures on land. Independent estimates of this kind for 48 places, using a look-up table, differ overall by only 0.7 K from the actual long-term average annual mean temperatures. This is less than half the error resulting from an assumption of zonal-mean temperatures. Basing estimates on coastal sea-surface temperatures, instead of the look-up table, results in an average error of 1.0 K for the 48 places. The errors are comparable with the standard deviation of annual mean temperatures during 30 years or so. Received March 6, 2001 Revised July 30, 2001  相似文献   

5.
Summary ?Long-term trends in annual, seasonal, and monthly mean temperature (abbreviated as AMT, SMT, MMT, respectively) in Japan are investigated. The magnitude of a trend is measured by assuming it to be linear. The statistical significance of a site trend is assessed by the Mann-Kendall (MK) with consideration of serial correlation. The statistical field significance of trends in three major climatic regions: Hokkaido (I), areas adjacent to the Japan sea (II), and to the Pacific Ocean (III), is evaluated by the bootstrapping test which preserves cross-correlation among sites. From 1900 to 1996, AMT increased from 0.51 to 2.77 °C averaged across all 46 sites. At the regional scale, AMT increased by 1.38, 1.08, and 1.32 °C in regions I, II, and III, respectively. The trends at both sites and regions are statistically significant even at the significance level (α) of 0.005. SMT increased from 0.47 to 3.69 °C at all the 19 available sites with the highest increases in winter and spring. Except for a few series, the changes in SMT are statistically significant at α = 0.01. The upward trends in SMT are statistically significant even at α = 0.001 in both regions II and III. MMT at 19 sites increased within a wide range from 0.17 to 4.12 °C. The increases are largest in the winter and spring months, and most of the site increases are statistically significant at α = 0.05. The trends are statistically significant at α = 0.025 and 0.001 in regions II and III, respectively. The trends in both SMT and MMT in region III are larger than those in region II. Received January 28, 2002; revised November 11, 2002; accepted December 1, 2002 Published online May 19, 2003  相似文献   

6.
Summary  The possibility of climate change in the Korean Peninsula has been examined in view of the general increase in greenhouse gases. Analyses include changes in annual temperature and precipitation. These analyses are supplemented with our observations regarding the apparent decrease of forest areas. It was found that there was a 0.96 °C (0.42 °C per decade) increase in annual mean temperature between 1974 and 1997. The increase in large cities was 1.5 °C but only 0.58 °C at rural and marine stations. The difference in the mean temperature between large cities and rural stations was small from 1974 to 1981. However, the difference increased from 1982 to 1997. In particular, the warming appears most significant in winter. Prior to 1982, the lowest temperatures were often −18 °C in central Korea, and since then the lowest temperatures have been only −12∼−14 °C. Recently, the minimum January temperature has increased at a rate of 1.5 °C per decade. It is estimated that the increase of1 °C in annual mean temperature corresponds to about a 250 km northward shift of the subtropical zone boundary. The analysis of data from 1906 to 1997 indicates a trend of increasing annual precipitation, an increase of 182 mm during the 92-year peirod, with large year-to-year variations. More than half of the annual mean amount, 1,274 mm, occurred from June to September. Meteorological data and satellite observations suggest that changes have occurred in the characteristics of the quasi-stationary fronts that produce summer rain. In recent years scattered local heavy showers usually occur with an inactive showery front, in comparison with the classical steady rain for more than three weeks. For instance, local heavy rainfall, on 6 August 1998 was in the range of 123–481 mm. The scattered convective storms resulted in flooding with a heavy toll of approx. 500 people. The northward shift of the inactive showery front over Korea, and of a convergence zone in central China, correlate with the increase in temperature. It has been suggested that the decrease in forest areas and the change in ground cover also contribute to the warming of the Korean Peninsula. Received March 16, 2000  相似文献   

7.
 Palaeodata in synthesis form are needed as benchmarks for the Palaeoclimate Modelling Intercomparison Project (PMIP). Advances since the last synthesis of terrestrial palaeodata from the last glacial maximum (LGM) call for a new evaluation, especially of data from the tropics. Here pollen, plant-macrofossil, lake-level, noble gas (from groundwater) and δ18O (from speleothems) data are compiled for 18±2 ka (14C), 32 °N–33 °S. The reliability of the data was evaluated using explicit criteria and some types of data were re-analysed using consistent methods in order to derive a set of mutually consistent palaeoclimate estimates of mean temperature of the coldest month (MTCO), mean annual temperature (MAT), plant available moisture (PAM) and runoff (P-E). Cold-month temperature (MAT) anomalies from plant data range from −1 to −2 K near sea level in Indonesia and the S Pacific, through −6 to −8 K at many high-elevation sites to −8 to −15 K in S China and the SE USA. MAT anomalies from groundwater or speleothems seem more uniform (−4 to −6 K), but the data are as yet sparse; a clear divergence between MAT and cold-month estimates from the same region is seen only in the SE USA, where cold-air advection is expected to have enhanced cooling in winter. Regression of all cold-month anomalies against site elevation yielded an estimated average cooling of −2.5 to −3 K at modern sea level, increasing to ≈−6 K by 3000 m. However, Neotropical sites showed larger than the average sea-level cooling (−5 to −6 K) and a non-significant elevation effect, whereas W and S Pacific sites showed much less sea-level cooling (−1 K) and a stronger elevation effect. These findings support the inference that tropical sea-surface temperatures (SSTs) were lower than the CLIMAP estimates, but they limit the plausible average tropical sea-surface cooling, and they support the existence of CLIMAP-like geographic patterns in SST anomalies. Trends of PAM and lake levels indicate wet LGM conditions in the W USA, and at the highest elevations, with generally dry conditions elsewhere. These results suggest a colder-than-present ocean surface producing a weaker hydrological cycle, more arid continents, and arguably steeper-than-present terrestrial lapse rates. Such linkages are supported by recent observations on freezing-level height and tropical SSTs; moreover, simulations of “greenhouse” and LGM climates point to several possible feedback processes by which low-level temperature anomalies might be amplified aloft. Received: 7 September 1998 / Accepted: 18 March 1999  相似文献   

8.
Summary  This paper summarizes results from a mesoscale modeling study to quantify the possible meteorological and energy-use impacts of large-scale increases in surface albedo and vegetative fraction. Ten regions in the U.S. were characterized and simulated in base- and modified-surface conditions. Time- and space-dependent meteorological variables were simulated for each region in four 3-day episodes to represent a range of seasonal variations. Using a simple interpolative procedure, a complete year of hourly weather data was created for each region (based on episodic meteorological simulation results) and input into energy-use models. The modified weather input was used to assess the effects of large-scale albedo and vegetative fraction changes on annual energy consumption in each of the ten areas targeted in this study. The simulations suggest annual electricity savings of between 1and 6.7 kWh m−2 (of roof area) in residential neighborhoods and between 2 and 6.1 kWh m−2 in office areas, depending on region. Annual gas penalties amount to up to 34.8 MJ m−2 (of roof area) in residential neighborhoods and up to 21.1 MJ m−2 in office areas. Received December 1, 1996 Revised May 11, 1998  相似文献   

9.
 The influence of different vegetation distributions on the atmospheric circulation during the Last Glacial Maximum (LGM, 21 000 years before present) is investigated. The atmospheric general circulation model of the Bureau of Meteorology Research Center was run using a modern vegetation and in a second experiment with a vegetation reconstruction for the LGM. It is found that a change from conifer to desert and tundra causes an additional LGM cooling of 1–2 °C in Western Europe, up to −4 °C in North America and −6 °C in Siberia. An expansion of dryland vegetation causes an additional annual cooling of 1–2 °C for Australia and northern Africa. On the other hand, an increase of temperature (2 °C) is found in Alaska due to changes in circulation. In the equatorial region the LGM vegetation leads to an increased modelled temperature of 0.5–1.5 °C and decreased precipitation (30%) over land due to a reduction of the tropical rainforest, mainly in Indonesia, where the reduction of precipitation over land is associated with an increase of precipitation of 30% over the western Pacific. Received: 15 December 1999 / Accepted: 10 January 2001  相似文献   

10.
Summary.  Using 9 years (1985–1993) data, final stratospheric warmings in the Southern Hemisphere are studied. Interannual variations in the onset date and the temperatures are noted. In 1985 the stratosphere was colder by about 5 K and the wave activity was less. This year the final warming got delayed. In contrast in 1988 the final warming occurred earlier when compared with the mean picture and the wave activity was more. An examination of Eliassen-Palm fluxes showed the important role of planetary waves in the wave-mean flow interaction. In the energetics the most spectacular change is the reduction of zonal kinetic energy. Before the warming the energy exchanges were Pz → Pe → Ke → Kz ← Pz and after the warming they were Pz ← Pe ← Ke → Kz ← Pz. The dramatic reduction of zonal kinetic energy seems to be due to two effects: the reduction in Ke → Kz conversion and the weakening of direct meridional circulation. Received October 3, 2001; revised June 5, 2002  相似文献   

11.
Summary ?By analyzing normalized variables, it was found that the latitudinal secular variations of the rainwater deuterium fractionation ratio δ2H, oxygen fractionation ratio δ18O, vapor pressure, and surface temperature were almost non-linear, occurred in parallel, and decreased with latitude. The rate of depletion around the equator is asymmetric and smaller to the south of 45° S than to the north of 45° N. In the east Mediterranean, the rate of change of δ18O with height was found to be −.2‰ per 100 m and that of δ2H is comparable with the dry lapse rate in the atmosphere. Analysis of the annual time series of δ2H at Alexandria has indicated that variations show sinusoidal waveform with a major cycle of two years that accounts for 68% of the total variance. Although the quasi-biannual cycle in the atmosphere has small amplitude in the lower layers of the atmosphere at East Mediterranean latitudes, the major cycle in annual series of δ2H or δ18O may be linked to the quasi-biannual oscillation in the atmosphere. It was also found that the first three Empirical Orthogonal Functions (EOF) account for 72% of the seasonal variation of δ2H and share 68% of the seasonal variation of δ18O. Share of variances of monthly EOF in the months of the year indicate that the main underlying factors that cause fractionation processes for δ2H and δ18O are similar across the east Mediterranean especially in late winter and early spring. Received May 13, 2002; revised July 8, 2002; accepted August 6, 2002  相似文献   

12.
Summary The present study is an analysis of the observed extreme temperature and precipitation trends over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorological stations. The intention is to identify whether or not the frequency or intensity of extreme events has increased with climate warming over Yangtze River basin in the last 40 years. Both the Mann-Kendall (MK) trend test and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes. Trend tests reveal that the annual and seasonal mean maximum and minimum temperature trend is characterized by a positive trend and that the strongest trend is found in the winter mean minimum in the Yangtze. However, the observed significant trend on the upper Yangtze reaches is less than that found on the middle and lower Yangtze reaches and for the mean maximum is much less than that of the mean minimum. From the basin-wide point of view, significant increasing trends are observed in 1-day extreme temperature in summer and winter minimum, but there is no significant trend for 1-day maximum temperature. Moreover, the number of cold days ≤0 °C and ≤10 °C shows significant decrease, while the number of hot days (daily value ≥35 °C) shows only a minor decrease. The upward trends found in the winter minimum temperature in both the mean and the extreme value provide evidence of the warming-up of winter and of the weakening of temperature extremes in the Yangtze in last few decades. The monsoon climate implies that precipitation amount peaks in summer as does the occurrence of heavy rainfall events. While the trend test has revealed a significant trend in summer rainfall, no statistically significant change was observed in heavy rain intensity. The 1-day, 3-day and 7-day extremes show only a minor increase from a basin-wide point of view. However, a significant positive trend was found for the number of rainstorm days (daily rainfall ≥50 mm). The increase of rainstorm frequency, rather than intensity, on the middle and lower reaches contributes most to the positive trend in summer precipitation in the Yangtze.  相似文献   

13.
Summary ?A major limitation in predicting the ultraviolet-B irradiance on humans, plant leaves and flowers and aquatic organisms is the difficulty in estimating exposure. This study analyzes the spatial variability in the daily exposure of narrow band 300 nm and 368 nm and broadband 290–315 nm (UVB) solar radiation between twelve paired locations in the United States Department of Agriculture (USDA) UVB Climate Network over two summer growing seasons (May through August of 2000 and 2001). The spatial correlation of the UVB, 300 nm and 368 nm daily exposures between locations was approximately 0.7 to 0.8 for spacing distances of 100 km. The 300 nm daily exposure was typically more highly correlated between locations than the 368 nm daily exposure. Both the diffuse and direct beam components to the 300 nm daily exposure were similarly correlated with distance between locations. The 368 nm diffuse component of the daily exposures was less correlated with distance than the direct beam component, limiting the ability to interpolate daily exposures from measurement locations. In general the variability in daily exposures of UVB in the USDA UVB Climate Network is too large to interpolate daily exposures of solar radiation, with estimated 300 nm, 368 nm and broadband UVB errors at one-half the mean station spacing of the USDA Network of 22%, 21% and 16% respectively. More accurate interpolations of UVB exposure from this network will require either the incorporation of cloud cover variability from satellite imagery for daily exposure or the use of longer periods of accumulated exposure. Received May 14, 2002; revised October 25, 2002; accepted November 16, 2002  相似文献   

14.
Summary ?It is postulated that before the influence of glaciation, it was the amount of cloud cover and the thermal inertia of the ocean that controlled the Earth’s temperature. The control system went into oscillation 37 myr BP when Antarctica started moving into its present position, the temperature of the ocean and that of the rest of the environment opposing each other in antisymmetric mode. Support for this theory is provided by the observation of periods of enhanced glaciation at regular intervals. The enhancement, being attributed to harmonics with the Earth’s 22,000 yr-precession and 41,000 yr-nutation cycles, allows the calculation of 23,500 yr for the period of the ocean/atmosphere-temperature cycle. The corresponding lag time between atmosphere and ocean is 11,750 yr. Received February 17, 2002; revised March 19, 2002; accepted April 9, 2002  相似文献   

15.
Summary ?For the LITFASS-98 experiment, from June 1 until June 30, 1998, the spatially resolved insolation at surface could be computed from NOAA-14 AVHRR data applying the modular analysis scheme SESAT (Strahlungs- und Energiebilanzen aus Satellitendaten). The satellite inferred insolation for this period shows for clear-sky regions a good agreement with surface based observations with a rms error of 76 Wm−2. For cloudy conditions the insolation is overestimated with respect to ground based observations, with a rms error between 83 and 118 Wm−2, depending on the cloud optical thickness. This overestimation can be explained by the surface heterogeneity, leading to underestimated cloud optical thickness, and also by a fixed relative humidity below clouds (55%, dry atmosphere) and a fixed horizontal visibility (50 km, clear atmosphere). A detailed study of comparable scales in space and time, considering the different observation geometries and sampling intervals, shows that a 30 min ground based observation can be compared with a 8 × 8 km2 mean by the satellite data. Received July 12, 2001; revised April 29, 2002; accepted June 7, 2002  相似文献   

16.
Summary ?The LITFASS project (‘Lindenberg Inhomogeneous Terrain – Fluxes between Atmosphere and Surface: a Long-term Study’) of the Deutscher Wetterdienst (DWD, German Meteorological Service) aims to develop and to test a strategy for the determination and parameterisation of the area-averaged turbulent fluxes of heat, momentum, and water vapour over a heterogeneous land surface. These fluxes will be representative for an area of about 10 * 10 km2 (while the typical patch size is between 10−1 to 100 km2) corresponding to the size of a grid cell in the present operational numerical weather prediction model of the DWD. LITFASS consists of three components: – the development of a non-hydrostatic micro-α-scale model (the LITFASS local model – LLM) with a grid-size of about 100 * 100 m2, – experimental investigations of land surface – atmosphere exchange processes and boundary layer structure within a 20 * 20 km2 area around the Meteorological Observatory Lindenberg, – the assimilation of a data base as an interface between measurements and modelling activities. The overall project strategy was tested over a three-week period in June 1998 during the LITFASS-98 field experiment. This paper gives an overview on the LITFASS project, on the design and measurement program of the LITFASS-98 experiment, and on the weather conditions during the period of the experiment. Conclusions are formulated for the operational realisation of the LITFASS measurement concept and for future field experiments aimed at studying the land surface – atmosphere interaction in the Lindenberg area. Selected results from both experimental and modelling activities are presented in a series of companion papers completing this special issue of the journal. Received June 18, 2001; revised March 18, 2002; accepted April 2, 2002  相似文献   

17.
In the present study, an attempt has been made to examine the governing photochemical processes of surface ozone (O3) formation in rural site. For this purpose, measurements of surface ozone and selected meteorological parameters have been made at Anantapur (14.62°N, 77.65°E, 331 m asl), a semi-arid zone in India from January 2002 to December 2003. The annual average diurnal variation of O3 shows maximum concentration 46 ppbv at noon and minimum 25 ppbv in the morning with 1σ standard deviation. The average seasonal variation of ozone mixing ratios are observed to be maximum (about 60 ppbv) during summer and minimum (about 22 ppbv) in the monsoon period. The monthly daytime and nighttime average surface ozone concentration shows a maximum (55 ± 7 ppbv; 37 ± 7.3 ppbv) in March and minimum (28 ± 3.4 ppbv; 22 ± 2.3 ppbv) in August during the study period. The monthly average high (low) O3 48.9 ± 7.7 ppbv (26.2 ± 3.5 ppbv) observed at noon in March (August) is due to the possible increase in precursor gas concentration by anthropogenic activity and the influence of meteorological parameters. The rate of increase of surface ozone is high (1.52 ppbv/h) in March and lower (0.40 ppbv/h) in July. The average rate of increase of O3 from midnight to midday is 1 ppbv/h. Surface temperature is highest (43–44°C) during March and April months leading to higher photochemical production. On the other hand, relative humidity, which is higher during the rainy season, shows negative correlation with temperature and ozone mixing ratio. It can be seen that among the two parameters are measured, correlation of surface ozone with wind speed is better (R 2=0.84) in compare with relative humidity (R 2=0.66).  相似文献   

18.
Summary ?One hundred and thirty six years (1856–1991) of monthly sea-surface temperature (SST) data in the Tropical Atlantic Ocean are used to investigate the propagating signals of the SST at a decadal (DD) time scale. The first and the third evolving modes show a relationship between the equatorial and the inter-hemispheric patterns, one evolving into the other mode and vice-versa. These modes describe two different evolutions of the SST at DD time-scale. The first EEOF features a 12-year period oscillatory regime with a strong 2-year duration inter-hemispheric pattern evolving into a weak 1-year duration equatorial pattern and vice-versa. This mode exhibits also a northward displacement of the anomalies in the band 15° S–15° N. The third EEOF also shows an oscillatory regime, but with a period of 10 years and with a relatively strong 2-year duration equatorial pattern evolving into a weak 1-year duration inter-hemispheric pattern and vice-versa. For this mode, the SST anomalies show a southward displacement in the band 15° S–15° N. These results have not yet been documented in previous works and explain some of the previous findings on the DD variability in the Tropical Atlantic. Received December 31, 2001; revised April 9, 2002; accepted September 4, 2002 Published online: March 20, 2003  相似文献   

19.
Summary ?Above orographically structured terrain considerable differences of the regional wind field may be identified during large-scale extreme wind events. So far, these regional differences could not be resolved by climate models. To determine the relationships between large-scale atmospheric conditions, the influence of orography, and the regional wind field, data measured in the upper Rhine valley within the framework of the REKLIP Regional Climate Project were analyzed and calculations were made using the KAMM mesoscale model. In the area of the upper Rhine valley, ratios of the wind velocity in the Rhine valley at 10 m above ground level, νval, and the large-scale flow velocity, νlar, are between νvallar ≈ 0.1 and νvallar ≈ 1. The νvallar ratio exhibits a strong dependence on thermal stratification, δ, and decreases from νvallar ≈ 1 at δ = 0 K m−1 to νvallar ≈ 0.2 at δ = 0.0075 K m−1. In areas, where the lateral mountainous border of the Rhine valley is interrupted, the νvallar ratio increases again with increasing stability or decreasing Froude number. This is obviously due to flow around the Black Forest under stable stratification. It is demonstrated by model calculations that a complex wind field develops in the Rhine valley at small Froude numbers (Fr < 1) irrespective of the direction of large-scale flow. The νvallar ratio is characterized by small values in the direct lee side (νvallar ≈ 0.2) and high values on the windward side of the lateral mountainous border of the Rhine valley (νvallar ≈ 0.8). Received October 22, 2001; revised June 18, 2002; accepted June 23, 2002  相似文献   

20.
Summary The evolution of geophysical parameters over Indian Ocean during two contrasting monsoon years 2002 (drought) and 2003 (normal) were studied using TRMM/TMI satellite data. Analysis indicates that there was a lack of total water vapour (TWV) build up over Western Indian Ocean (WIO) during May 2002 (drought) when compared to 2003 (normal). Negative (positive) TWV anomalies were found over the WIO in May 2002 (2003). In 2002, negative SST anomaly of ∼1.5 °C is found over entire WIO when compared to 2003. Anomalously high sea surface wind speed (SWS) anomaly over the South West Indian Ocean (SWIO) and WIO would have resulted in cooling of the sea surface in May 2002 in comparison to 2003. In 2003 the wind speed anomaly over entire WIO and Arabian Sea (AS) was negative, whereas sea surface temperature (SST) anomaly was positive over the same region, which would have resulted in higher moisture availability over these regions. A negative (positive) TWV anomaly over Eastern Arabian Sea (EAS) and positive (negative) anomaly over WIO forms a dipole structure. In the month of June no major difference is seen in all these parameters over the Indian Ocean. In July 2002 the entire WIO and AS was drier by 10–15 mm as compared to 2003. The pentad (5 day) average TWV values shows high (>55 mm) TWV convergence over EAS and Bay of Bengal (BoB) during active periods of 2003, which gives high rainfall over these regions. However, during 2002 although TWV over BoB was >55 mm but it was ∼45–55 mm over EAS during entire July and hence less rainfall. The evaporation has been calculated from the bulk aerodynamic formula using TRMM/TMI geophysical products. It has been seen that the major portion of evaporative moisture flux is coming from southern Indian Ocean (SIO) between 15 and 25° S. Evaporation in June was more over AS and SIO in 2003 when compared to 2002 which may lead to reduce moisture supply in July 2002 and hence less rainfall compared to July 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号