首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of the structure of the radio galaxy 3C338 at decameter wavelengths obtained using the URAN-1 and URAN-2 radio interferometers are presented. The structure of this object at these wavelengths differs appreciably from images obtained at higher frequencies. The most probable simple models for the radio brightness distributions at 25 and 20 MHz are determined: two extended components with sizes from 40″ to 50″ whose centers are separated by 90″–100″ in position angle about 100°, and a single compact component 9″×4″ in size, whose flux density does not exceed 10% of the total flux density of the radio galaxy.  相似文献   

2.
Results of radio interferometric observations of the quasar 3C 380 carried out on the URAN interferometers at decameter wavelengths and on the aperture synthesis radio telescope VLA at meter wavelengths are reported. The spectral index of an extended lobe about 10″ in size is considerably lower than at decimeter wavelengths. Below ~ 100 MHz, the ratio of the emission from the compact components associated with hot spots in the radio lobe to the total flux of the source decreases due to synchrotron self-absorption at hot spots, whose flux density at 20 MHz does not exceed 65 Jy. A halo with a full width at a half-maximum of about 40″ was detected, whose angular extent considerably exceeds the total source size measured at shorter wavelengths.  相似文献   

3.
Physical processes that can, under cosmic conditions, give rise to emission whose spectrum peaks at some frequency are discussed in the context of the spectrum of the central extended component of a model brightness distribution for the radio galaxy 3C 234. This component is not detected at decameter wavelengths, probably due to the absorption of the radiation in the plasma in the source itself.  相似文献   

4.
Preliminary resuts of interferometric observations of 4C 21.53 and PSR 1937+214 at 25 and 20 MHz are presented. The observations were obtained using the URAN-1 and URAN-2 interferometers, with baselines of 42.4 and 152.3 km. In addition to the pulsar radiation, which provides about 70% of the total flux of the object, radio emission from extended components with dimensions of several tens arcseconds has been detected for the first time. The angular size of the pulsar is 3″ at 25 MHz and 4″.8 at 20 MHz. The pulsar’s low-frequency spectrum deviates appreciably from the power law derived at higher frequencies.  相似文献   

5.
Many-year measurements of the radio flux of the young supernova remnant Cassiopeia A relative to the radio galaxy Cygnus A were continued at 290 and 151.5 MHz. The new data are used together with previously published observations carried out at decameter, meter, centimeter, and millimeter wavelengths to derive the frequency dependence of the secular variation of the radio flux density of Cas A: $d_\nu [\% year^{ - 1} ] = - (0.63 \pm 0.02) + (0.04 \pm 0.01)\ln \nu [GHz] + (1.51 \pm 0.16) \times 10^{ - 5} (\nu [GHz])^{ - 2.1} $ . The observed slowing of the secular variations with decreasing frequency at decameter wavelengths can be explained by a decrease in the optical depth of a remnant HII zone around Cas A with time due to recombination of hydrogen atoms. The new derived frequency dependence for the rate of the secular decrease, absolute and relative measurements of the radio flux density of Cas A carried out over the last 25 years, and the absolute spectrum of Cyg A are used to construct the spectrum of Cas A in the range 5–250 000 MHz predicted for epoch 2015.5.  相似文献   

6.
Long-term measurements of the radio flux density of the young supernova remnant Cassiopeia A relative to the radio galaxy Cygnus A have been carried out at 38 MHz (1987–2004) and 151.5 MHz (1980–2004). Using other data from the literature, we find a secular decrease of the radio flux density of Cassiopeia A at the rates d(38 MHz) = ?0.79 ± 0.14% yr?1 (for 1956–2004) and d(151.5 MHz) = ?0.83 ± 0.04% yr?1 (for 1966–2004). Based on measurements made in 1997 and 1998 and data from the literature, this secular decrease at 81.5 MHz is d(81.5 MHz) = ?0.86 ± 0.14% yr?1 (for 1966–1998). Absolute flux densities of Cassiopeia A at 38 and 151.5 MHz for epoch 2005.5 are calculated based on the relative flux density of Cassiopeia A and the spectrum of Cyg A, which is approximated using an empirical formula at meter and decameter wavelengths.  相似文献   

7.
Interplanetary-scintillation observations of the radio source B0531+194 (J0534+1927) obtained over a wide range of elongations at 111 MHz using the Big Scanning Antenna of the Lebedev Physical Institute are presented. Near the Sun, the temporal spectra of the scintillations have a two-component form, corresponding to the superposition of refractive and diffractive scintillations that is characteristic of the saturated regime. A method for estimating the angular size of the scintillating component based on measurement of the break frequency in the diffractive part of the scintillation spectrum is presented. The scintillating component as a fraction of the total flux can be determined using the maximum scintillation index. The angular size of the scintillating component in B0531+194 is found to be 0.24″ ± 0.05″, and the ratio of the fluxes in the core and halo to be roughly one-third. The flux density in the compact radio component is 5 Jy. The estimated parameters of the angular structure of the source are compared with observations at other frequencies.  相似文献   

8.
The recent publication of evidence for a new mechanism producing background radio emission of the Galaxy at centimeter wavelengths (in addition to synchrotron radiation, free—free transitions in ionized gas, and the weak radio emission of standard dust) gave rise to a strong reaction among observers, and requires independent experimental verification. This signal is of special concern in connection with studies of the polarization of the cosmic microwave background (CMB) using new-generation experiments. We have derived independent estimates of the validity of the “spinning-dust” hypothesis (dipole emission of macromolecules) using multi-frequency RATAN-600 observations. Test studies in the Perseus molecular cloud show evidence for anomalous extended emission in the absence of strong radio sources (compact HII regions) that could imitate an anomalous radio spectrum in this region. A statistical analysis at centimeter wavelengths over the Ratan Zenith Field shows that the upper limit for the polarized noise from this new component in the spinning-dust hypothesis is unlikely to exceed 1 µK at wavelengths of 1 cm or shorter on the main scales of the EE mode of Sakharov oscillations. Thus, this emission should not hinder studies of this mode, at least to within several percent of the predicted level of polarization of the CMB emission.  相似文献   

9.
Radio astronomy at decameter wavelengths is currently undergoing very active development. Large-scale, new generation low-frequency radio telescopes are being constructed and already used in many countries around the world. As before, the largest, most sensitive, and most versatile telescope at decameter wavelengths is the Ukrainian UTR-2 radio telescope operating at 8–32 MHz, which has an effective area of more than 105 m2 and an angular resolution of about 0.5?, as well as the URAN interferometric system based on the UTF-2. Many studies that have been carried out on these facilities have been based on important results and far-sighted predictions of Shklovskii. These include, in particular, studies of dynamical spectra and the brightness distributions of the sporadic and quiescent decameter radio emission of the hot solar corona, complex, broadband radio spectroscopy of the interstellar medium, and multi-frequency monitoring of secular decreases in the flux densities of supernova remnants. The coordinated use of highly effective existing and newly constructed radio telescopes joined into ground networks, as well as specialized space missions, are opening new prospects for low-frequency radio astronomy.  相似文献   

10.
A cluster of three galaxies has been observed around the unusual object S5 0716+714, which displays a lineless continuum throughout all wavelength intervals (from radio to gammarays) and rapid variability (even within a day). The galaxies have very similar redshifts: 0.264 ± 0.004, 0.257 ± 0.005, and 0.249 ± 0.003. for the first time, our observations with the 6-m telescope of the Special Astrophysical Observatory equipped with the multimode SCORPIO spectral camera have revealed some evidence for the host galaxy around the object—an elliptically shaped flux excessively extended by 3″–5″ from S5 0716+714.  相似文献   

11.
We present optical identifications, classifications, and radio spectra for 19 radio sources from a complete sample in flux density with declinations 10°–12°30′ (J2000) obtained with the 6-m optical telescope (4000–9000 Å) and RATAN-600 radio telescope (0.97–21.7 GHz) of the Special Astrophysical Observatory. Twelve objects with redshifts from 0.573 to 2.694 have been classiffied as quasars, and two objects with featureless spectra as BL Lac objects. Four objects are emission-line radio galaxies with redshifts from 0.204 to 0.311 (one also displaying absorption lines), and one object is an absorption-line galaxy with a redshift of 0.214. Radio flux densities have been obtained at six frequencies for all the sources except for two extended objects. The radio spectra of five of the sources can be separated into extended and compact components. Three objects display substantial rapid (on time scales from several days to several weeks) and long-term variability of their flux densities.  相似文献   

12.
A cross-identification of objects in the low-frequency (365 MHz) Texas radio catalog and in IRAS catalogs at four infrared wavelengths has yielded a list of 715 objects for further studies. Objects with steep spectra for which the difference in the centers of gravity of the radio and infrared sources was less than 3″ were selected from this list. Seventeen of the objects have been observed at six wavelengths using the RATAN-600 radio telescope. Spectra of nine objects from the initial list for which there were candidate optical counterparts were obtained using the 2.1-m telescope of the INAOE. The results of these observations are discussed. The presence of steep spectral indices for the radio sources is confirmed. The possible optical counterparts include interacting galaxies, an infrared galaxy, two emission-line galaxies, and a candidate BL Lac object. Optical images of the optical counterparts are presented together with radio and optical spectra.  相似文献   

13.
The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ~ 10?1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ~ 10?3 G, and the density of relativistic electrons is n e ~ 10?3 cm?3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, 〈E H 〉 = 〈E e 〉 ~ 10?7–10?6 erg cm?3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.  相似文献   

14.
Temporal spectra of interplanetary scintillations of the strong radio source 3C 48 based on 111 MHz observations on the Large Scanning Antenna of the Lebedev Physical Institute obtained near the solar-activity minimum are analyzed. Measurements of the temporal spectrum of the scintillations are used to estimate the angular size of the source, the velocity of inhomogeneities, and the power-law index for the spatial spectrum of the turbulence in the interplanetary plasma. The mean angular size of the source is θ 0 = 0.326″ ± 0.016″, and the mean index for the three-dimensional turbulence spectrum is n = 3.7 ± 0.2. There is some evidence that n decreases in the transition from the fast, high-speed to the slow, low-latitude solar wind.  相似文献   

15.
The spectrum of the maximum values of the variable component of the radio source J0157+7442 is presented. The flux densities obtained on the RATAN-600 radio telescope at centimeter wavelengths in 2009 and 2010 are minimum for all observations of the source, and it was assumed that the variable component was absent in these years. After subtracting these RATAN-600 data from the upper envelope of all available flux density data, the spectrum of the variable component was obtained. The form of the spectrum of the variable component is typical of a nonuniform, spherically symmetric source with synchrotron self-absorption.  相似文献   

16.
Using literature data on approximately 400 compact radio sources detected with the Very Large Array and located in the direction of the Galactic center within 2° of the compact source Sgr A*, 69 sources whose angular sizes are determined by scattering on electron density inhomogeneities were distinguished. Fifty-five of these are extragalactic, two are supercompact HII regions, ten are sources of maser emission, and two are variable Galactic sources. The excess of the apparent angular sizes of maser sources within 2° of the Galactic center above the mean size of objects of this class in other parts of the Galaxy found in many studies cannot be explained purely by the effect of scattering of their radio emission on interstellar plasma inhomogeneities. The angular sizes of these objects are increased due to scattering only within Galactic longitudes of about 0.4° and Galactic latitudes less than 0.1°. The turbulent medium responsible for scattering of radio emission of compact sources in the immediate vicinity of the Galactic center is strongly concentrated toward the compact source Sgr A* at the Galactic center. No extragalactic sources are observed within 0.4° in longitude and 0.2° in latitude of the Galactic center, because of their low brightness due to the superstrong scattering in this region. Data on scatter broadening can be used to study the distribution of turbulent plasma near the Galactic center.  相似文献   

17.
The search for compact components of strong ($${{S}_{{{\text{int}}}}} \geqslant 5$$ Jy at 102.5 MHz) discrete radio sources from the Pushchino catalogue was carried out using the method of interplanetary scintillation. A total of 3620 sources were examined, and 812 of them were found to harbor compact (scintillating) components. Estimates of fluctuations of the flux density of these compact components were derived from the scintillation index ($${{m}_{{\max}}}$$) corresponding to an elongation of 25°. The angular size and compactness of 178 sources with compact components were estimated. Scintillation indices of sources corresponding to the compact component ($${{m}_{0}}$$) and flux densities of compact components were determined. It was demonstrated that slow variations of the spatial distribution of interplanetary plasma, which are related to the 11-year cycle of solar activity, may exert a systematic influence on the estimates of angular sizes of sources. Coefficients compensating the deviation from the spherical symmetry of solar wind in the estimates of angular sizes were found using the coefficient of asymmetry of the statistical distribution of intensity fluctuations. The study of correlations between the parameters of sources in the sample revealed that the maximum value of the scintillation index decreases as the integrated flux increases, while the angular size has no marked dependence on the integrated flux.  相似文献   

18.
An original method for determining the main parameters of the radio emission of pulsar subpulses at decameter wavelengths is proposed. The method involves the combined use of spectral and correlation analyses for the recorded signals. The novelty of the method is connected with two conditions that must be fulfilled to determine all the characteristics of the subpulse decameter emission. First, the signal-to-noise ratio in the output data must be increased, which can be done only by accumulating more data. Second, the phase characteristics of the subpulse component in the main pulse window must be preserved during the accumulation process. The method proposed makes it possible to fulfill these conditions simultaneously. A reference transfer function obtained from a spectral analysis of data with a relatively high number of individual detected pulses is used in the correlation analysis. The method is used to determine the drift rate, subpulse component width, individual subpulse width, secondary periods P 2 and P 3, and the subpulse structure coherence timescale recorded for the pulsar PSR B0809+74 at the central frequency 23.7 MHz. Perspectives for future application of the method are discussed.  相似文献   

19.
We present classifications, optical identifications, and radio spectra for 19 radio sources from three complete samples, with declinations 4°–6° (B1950, S 3.9 GHz > 200 mJy), 10°–12°30′ (J2000, S 4.85 GHz > 200 mJy), and 74°–75° (J2000, S 4.85 GHz > 100 mJy). We also present corresponding information for the radio source J0527+0331. The right ascensions are 0–24h and the Galactic latitudes |b| > 15° for all the samples. Our observations were obtained with the 6 m telescope from the Special Astrophysical Observatory in the range 4000–9000 Å or 4000–7500 Å and the RATAN-600 radio telescope at frequencies in the range 0.97–21.7 GHz. We obtained flux densities for the radio sources and optical spectra for their optical counterparts. Nine objects were classified as quasars with redshifts from z = 1.029 to 3.212; nine objects are emission-line galaxies with redshifts from 0.172 to 0.546, and one is a galaxy with burstlike star formation at z = 0.156, and one is a BL Lac object with z = 0.509. The spectra of five radio sources were decomposed into extended and compact components. The radio source J0527+0331, identified with a BL Lac object, displays significant variations of time scales from several days to several years. Data on flux variations are presented for 11 radio sources, as well as their spectra at several epochs.  相似文献   

20.
Long-term measurements of the radio flux density of the young supernova remnant Cassiopeia A relative to the radio galaxy Cygnus A have been carried out at 290 and 927 MHz. We have obtained for the mean rates of the secular decrease of the radio emission of Cassiopeia A d 290 MHz = ?0.67 ± 0.04% year?1 for 1978–2005 and d 927 MHz = ?0.71 ± 0.035% year?1 for 1977–2004. The evolution of the radio spectrum of Cassiopeia A is traced based on long-term observations at 38, 151.5, 290, 927, and 2924 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号