首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xin Qu  Alex Hall 《Climate Dynamics》2014,42(1-2):69-81
Snow-albedo feedback (SAF) is examined in 25 climate change simulations participating in the Coupled Model Intercomparison Project version 5 (CMIP5). SAF behavior is compared to the feedback’s behavior in the previous (CMIP3) generation of global models. SAF strength exhibits a fivefold spread across CMIP5 models, ranging from 0.03 to 0.16 W m?2 K?1 (ensemble-mean = 0.08 W m?2 K?1). This accounts for much of the spread in 21st century warming of Northern Hemisphere land masses, and is very similar to the spread found in CMIP3 models. As with the CMIP3 models, there is a high degree of correspondence between the magnitudes of seasonal cycle and climate change versions of the feedback. Here we also show that their geographical footprint is similar. The ensemble-mean SAF strength is close to an observed estimate of the real climate’s seasonal cycle feedback strength. SAF strength is strongly correlated with the climatological surface albedo when the ground is covered by snow. The inter-model variation in this quantity is surprisingly large, ranging from 0.39 to 0.75. Models with large surface albedo when these regions are snow-covered will also have a large surface albedo contrast between snow-covered and snow-free regions, and therefore a correspondingly large SAF. Widely-varying treatments of vegetation masking of snow-covered surfaces are probably responsible for the spread in surface albedo where snow occurs, and the persistent spread in SAF in global climate models.  相似文献   

2.
Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at ?0.15 W m?2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m?2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060–2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with ?0.34 and ?0.28 W m?2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between ?12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed ?3 W m?2.  相似文献   

3.
The entropy budget is calculated of the coupled atmosphere–ocean general circulation model HadCM3. Estimates of the different entropy sources and sinks of the climate system are obtained directly from the diabatic heating terms, and an approximate estimate of the planetary entropy production is also provided. The rate of material entropy production of the climate system is found to be ~50 mW m?2 K?1, a value intermediate in the range 30–70 mW m?2 K?1 previously reported from different models. The largest part of this is due to sensible and latent heat transport (~38 mW m?2 K?1). Another 13 mW m?2 K?1 is due to dissipation of kinetic energy in the atmosphere by friction and Reynolds stresses. Numerical entropy production in the atmosphere dynamical core is found to be about 0.7 mW m?2 K?1. The material entropy production within the ocean due to turbulent mixing is ~1 mW m?2 K?1, a very small contribution to the material entropy production of the climate system. The rate of change of entropy of the model climate system is about 1 mW m?2 K?1 or less, which is comparable with the typical size of the fluctuations of the entropy sources due to interannual variability, and a more accurate closure of the budget than achieved by previous analyses. Results are similar for FAMOUS, which has a lower spatial resolution but similar formulation to HadCM3, while more substantial differences are found with respect to other models, suggesting that the formulation of the model has an important influence on the climate entropy budget. Since this is the first diagnosis of the entropy budget in a climate model of the type and complexity used for projection of twenty-first century climate change, it would be valuable if similar analyses were carried out for other such models.  相似文献   

4.
A Regional Climate Chemistry Modeling System that employed empirical parameterizations of aerosol-cloud microphysics was applied to investigate the spatial distribution, radiative forcing (RF), and climate effects of black carbon (BC) over China. Results showed high levels of BC in Southwest, Central, and East China, with maximum surface concentrations, column burden, and optical depth (AOD) up to 14 μg?m?3, 8 mg?m?2, and 0.11, respectively. Black carbon was found to result in a positive RF at the top of the atmosphere (TOA) due to its direct effect while a negative RF due to its indirect effect. The regional-averaged direct and indirect RF of BC in China was about +0.81 and ?0.95 W?m?2, respectively, leading to a net RF of ?0.15 W?m?2 at the TOA. The BC indirect RF was larger than its direct RF in South China. Due to BC absorption of solar radiation, cloudiness was decreased by 1.33 %, further resulting in an increase of solar radiation and subsequently a surface warming over most parts of China, which was opposite to BC’s indirect effect. Further, the net effect of BC might cause a decrease of precipitation of ?7.39 % over China. Investigations also suggested large uncertainties and non-linearity in BC’s indirect effect on regional climate. Results suggested that: (a) changes in cloud cover might be more affected by BC’s direct effect, while changes in surface air temperature and precipitation might be influenced by BC’s indirect effect; and (b) BC second indirect effect might have more influence on cloud cover and water content compared to first indirect effect. This study highlighted a substantial role of BC on regional climate changes.  相似文献   

5.
Vegetation is a major component of the climate system because of its controls on the energy and water balance over land. This functioning changes because of the physiological response of leaves to increased CO2. A climate model is used to compare these changes with the climate changes from radiative forcing by greenhouse gases. For this purpose, we use the Community Earth System Model coupled to a slab ocean. Ensemble integrations are done for current and doubled CO2. The consequent reduction of transpiration and net increase of surface radiative heating from reduction in cloudiness increases the temperature over land by a significant fraction of that directly from the radiative warming by CO2. Large-scale atmospheric circulation adjustments result. In particular, over the tropics, a low-level westerly wind anomaly develops associated with reduced geopotential height over land, enhancing moisture transport and convergence, and precipitation increases over the western Amazon, the Congo basin, South Africa, and Indonesia, while over mid-latitudes, land precipitation decreases from reduced evapotranspiration. On average, land precipitation is enhanced by 0.03 mm day?1 (about 19 % of the CO2 radiative forcing induced increase). This increase of land precipitation with decreased ET is an apparent negative feedback, i.e., less ET makes more precipitation. Global precipitation is slightly reduced. Runoff increases associated with both the increased land precipitation and reduced evapotranspiration. Examining the consistency of the variations among ensemble members shows that vegetation feedbacks on precipitation are more robust over the tropics and in mid to high latitudes than over the subtropics where vegetation is sparse and the internal climate variability has a larger influence.  相似文献   

6.
The radiative impacts of the stratosphere in global warming simulations are investigated using abrupt CO2 quadrupling experiments of the Coupled Model Inter-comparison Project phase 5 (CMIP5), with a focus on stratospheric temperature and water vapor. It is found that the stratospheric temperature change has a robust bullhorn-like zonal-mean pattern due to a strengthening of the stratospheric overturning circulation. This temperature change modifies the zonal mean top-of-the-atmosphere energy balance, but the compensation of the regional effects leads to an insignificant global-mean radiative feedback (?0.02 ± 0.04 W m?2 K?1). The stratospheric water vapor concentration generally increases, which leads to a weak positive global-mean radiative feedback (0.02 ± 0.01 W m?2 K?1). The stratospheric moistening is related to mixing of elevated upper-tropospheric humidity, and, to a lesser extent, to change in tropical tropopause temperature. Our results indicate that the strength of the stratospheric water vapor feedback is noticeably larger in high-top models than in low-top ones. The results here indicate that although its radiative impact as a forcing adjustment is significant, the stratosphere makes a minor contribution to the overall climate feedback in CMIP5 models.  相似文献   

7.
This paper proposes a coupled atmosphere–surface climate feedback–response analysis method (CFRAM) as a new framework for estimating climate feedbacks in coupled general circulation models with a full set of physical parameterization packages. The formulation of the CFRAM is based on the energy balance in an atmosphere–surface column. In the CFRAM, the isolation of partial temperature changes due to an external forcing or an individual feedback is achieved by solving the linearized infrared radiation transfer model subject to individual energy flux perturbations (external or due to feedbacks). The partial temperature changes are addable and their sum is equal to the (total) temperature change (in the linear sense). The decomposition of feedbacks is based on the thermodynamic and dynamical processes that directly affect individual energy flux terms. Therefore, not only those feedbacks that directly affect the TOA radiative fluxes, such as water vapor, clouds, and ice-albedo feedbacks, but also those feedbacks that do not directly affect the TOA radiation, such as evaporation, convections, and convergence of horizontal sensible and latent heat fluxes, are explicitly included in the CFRAM. In the CFRAM, the feedback gain matrices measure the strength of individual feedbacks. The feedback gain matrices can be estimated from the energy flux perturbations inferred from individual parameterization packages and dynamical modules. The inter-model spread of a feedback gain matrix would help us to detect the origins of the uncertainty of future climate projections in climate model simulations.  相似文献   

8.
The theoretical framework of the vertical discretization of a ground column for calculating Earth’s skin temperature is presented. The suggested discretization is derived from the evenly heat-content discretization with the optimal effective thickness for layer-temperature simulation. For the same level number, the suggested discretization is more accurate in skin temperature as well as surface ground heat flux simulations than those used in some state-of-the-art models. A proposed scheme (“op(3,2,0)”) can reduce the normalized root–mean–square error (or RMSE/STD ratio) of the calculated surface ground heat flux of a cropland site significantly to 2% (or 0.9 W m?2), from 11% (or 5 W m?2) by a 5-layer scheme used in ECMWF, from 19% (or 8 W m?2) by a 5-layer scheme used in ECHAM, and from 74% (or 32 W m?2) by a single-layer scheme used in the UCLA GCM. Better accuracy can be achieved by including more layers to the vertical discretization. Similar improvements are expected for other locations with different land types since the numerical error is inherited into the models for all the land types. The proposed scheme can be easily implemented into state-of-the-art climate models for the temperature simulation of snow, ice and soil.  相似文献   

9.
Snow surface and sea-ice energy budgets were measured near 87.5°N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to ?7°C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between ?50 W m?2 and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m?2, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area.  相似文献   

10.
Global average ocean temperature variations to 2,000 m depth during 1955–2011 are simulated with a 40 layer 1D forcing-feedback-mixing model for three forcing cases. The first case uses standard anthropogenic and volcanic external radiative forcings. The second adds non-radiative internal forcing (ocean mixing changes initiated in the top 200 m) proportional to the Multivariate ENSO Index (MEI) to represent an internal mode of natural variability. The third case further adds ENSO-related radiative forcing proportional to MEI as a possible natural cloud forcing mechanism associated with atmospheric circulation changes. The model adjustable parameters are net radiative feedback, effective diffusivities, and internal radiative (e.g., cloud) and non-radiative (ocean mixing) forcing coefficients at adjustable time lags. Model output is compared to Levitus ocean temperature changes in 50 m layers during 1955–2011 to 700 m depth, and to lag regression coefficients between satellite radiative flux variations and sea surface temperature between 2000 and 2010. A net feedback parameter of 1.7Wm?2 K?1 with only anthropogenic and volcanic forcings increases to 2.8Wm?2 K?1 when all ENSO forcings (which are one-third radiative) are included, along with better agreement between model and observations. The results suggest ENSO can influence multi-decadal temperature trends, and that internal radiative forcing of the climate system affects the diagnosis of feedbacks. Also, the relatively small differences in model ocean warming associated with the three cases suggests that the observed levels of ocean warming since the 1950s is not a very strong constraint on our estimates of climate sensitivity.  相似文献   

11.
Troy Masters 《Climate Dynamics》2014,42(7-8):2173-2181
Climate sensitivity is estimated based on 0–2,000 m ocean heat content and surface temperature observations from the second half of the 20th century and first decade of the 21st century, using a simple energy balance model and the change in the rate of ocean heat uptake to determine the radiative restoration strength over this time period. The relationship between this 30–50 year radiative restoration strength and longer term effective sensitivity is investigated using an ensemble of 32 model configurations from the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting a strong correlation between the two. The mean radiative restoration strength over this period for the CMIP5 members examined is 1.16 Wm?2K?1, compared to 2.05 Wm?2K?1 from the observations. This suggests that temperature in these CMIP5 models may be too sensitive to perturbations in radiative forcing, although this depends on the actual magnitude of the anthropogenic aerosol forcing in the modern period. The potential change in the radiative restoration strength over longer timescales is also considered, resulting in a likely (67 %) range of 1.5–2.9 K for equilibrium climate sensitivity, and a 90 % confidence interval of 1.2–5.1 K.  相似文献   

12.
This study diagnoses the climate sensitivity, radiative forcing and climate feedback estimates from eleven general circulation models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5), and analyzes inter-model differences. This is done by taking into account the fact that the climate response to increased carbon dioxide (CO2) is not necessarily only mediated by surface temperature changes, but can also result from fast land warming and tropospheric adjustments to the CO2 radiative forcing. By considering tropospheric adjustments to CO2 as part of the forcing rather than as feedbacks, and by using the radiative kernels approach, we decompose climate sensitivity estimates in terms of feedbacks and adjustments associated with water vapor, temperature lapse rate, surface albedo and clouds. Cloud adjustment to CO2 is, with one exception, generally positive, and is associated with a reduced strength of the cloud feedback; the multi-model mean cloud feedback is about 33 % weaker. Non-cloud adjustments associated with temperature, water vapor and albedo seem, however, to be better understood as responses to land surface warming. Separating out the tropospheric adjustments does not significantly affect the spread in climate sensitivity estimates, which primarily results from differing climate feedbacks. About 70 % of the spread stems from the cloud feedback, which remains the major source of inter-model spread in climate sensitivity, with a large contribution from the tropics. Differences in tropical cloud feedbacks between low-sensitivity and high-sensitivity models occur over a large range of dynamical regimes, but primarily arise from the regimes associated with a predominance of shallow cumulus and stratocumulus clouds. The combined water vapor plus lapse rate feedback also contributes to the spread of climate sensitivity estimates, with inter-model differences arising primarily from the relative humidity responses throughout the troposphere. Finally, this study points to a substantial role of nonlinearities in the calculation of adjustments and feedbacks for the interpretation of inter-model spread in climate sensitivity estimates. We show that in climate model simulations with large forcing (e.g., 4 × CO2), nonlinearities cannot be assumed minor nor neglected. Having said that, most results presented here are consistent with a number of previous feedback studies, despite the very different nature of the methodologies and all the uncertainties associated with them.  相似文献   

13.
In HadGEM2-A, AMIP experiments forced with observed sea surface temperatures respond to uniform and patterned +4 K SST perturbations with strong positive cloud feedbacks in the subtropical stratocumulus/trade cumulus transition regions. Over the subtropical Northeast Pacific at 137°W/26°N, the boundary layer cloud fraction reduces considerably in the AMIP +4 K patterned SST experiment. The near-surface wind speed and the air-sea temperature difference reduces, while the near-surface relative humidity increases. These changes limit the local increase in surface evaporation to just 3 W/m2 or 0.6 %/K. Previous studies have suggested that increases in surface evaporation may be required to maintain maritime boundary layer cloud in a warmer climate. This suggests that the supply of water vapour from surface evaporation may not be increasing enough to maintain the low level cloud fraction in the warmer climate in HadGEM2-A. Sensitivity tests which force the surface evaporation to increase substantially in the +4 K patterned SST experiment result in smaller changes in boundary layer cloud and a weaker cloud feedback in HadGEM2-A, supporting this idea. Although global mean surface evaporation in climate models increases robustly with global temperature (and the resulting increase in atmospheric radiative cooling), local values may increase much less, having a significant impact on cloud feedback. These results suggest a coupling between cloud feedback and the hydrological cycle via changes in the patterns of surface evaporation. A better understanding of both the factors controlling local changes in surface evaporation and the sensitivity of clouds to such changes may be required to understand the reasons for inter-model differences in subtropical cloud feedback.  相似文献   

14.
Aerosol and its effects, especially its indirect effects, on climate have drawn more and more attention in recent years. In this study, the first indirect radiative forcing (RF) of sulfate aerosol and its impacts on the regional climate in East Asia during the period from December 2008 to November 2009 were investigated. Affected by the general circulation and the conversion efficiency from SO2 to SO4 2? in aqueous phase, a remarkable seasonal variation of sulfate was found. The results show that the highest sulfate concentration as large as 24 g m?2 appears in the summer. The indirect RF due to sulfate aerosol at the top of atmosphere (TOA) and the surface is negative, which leads to a cooling effect on the surface by 0.12°C and a reduction of precipitation by 0.01 mm d?1. The tendencies of temperature and rainfall have significant diversity in space and time. The cloud feedback, associated with the hydrologic cycle and energy budget, is responsible for this discordant distribution. The variation of low cloud dominates the change of surface temperature. The subsidence due to the cooling effect in the mid atmosphere restrained and reduced the low clouds, leading to an apparent warm effect on the surface in Northeast Mongolia.  相似文献   

15.
R. A. Colman 《Climate Dynamics》2001,17(5-6):391-405
This study addresses the question: what vertical regions contribute the most to water vapor, surface temperature, lapse rate and cloud fraction feedback strengths in a general circulation model? Multi-level offline radiation perturbation calculations are used to diagnose the feedback contribution from each model level. As a first step, to locate regions of maximum radiative sensitivity to climate changes, the top of atmosphere radiative impact for each feedback is explored for each process by means of idealized parameter perturbations on top of a control (1?×?CO2) model climate. As a second step, the actual feedbacks themselves are calculated using the changes modelled from a 2?×?CO2 experiment. The impact of clouds on water vapor and lapse rate feedbacks is also isolated using `clear sky' calculations. Considering the idealized changes, it is found that the radiative sensitivity to water vapor changes is a maximum in the tropical lower troposphere. The sensitivity to temperature changes has both upper and lower tropospheric maxima. The sensitivity to idealized cloud changes is positive (warming) for upper level cloud increases but negative (cooling) for lower level increases, due to competing long and shortwave effects. Considering the actual feedbacks, it is found that water vapor feedback is a maximum in the tropical upper troposphere, due to the large relative increases in specific humidity which occur there. The actual lapse rate feedback changes sign with latitude and is a maximum (negative) again in the tropical upper troposphere. Cloud feedbacks reflect the general decrease in low- to mid-level low-latitude cloud, with an increase in the very highest cloud. This produces a net positive (negative) shortwave (longwave) cloud feedback. The role of clouds in the strength of the water vapor and lapse rate feedbacks is also discussed.  相似文献   

16.
The present and twenty-first century near-surface wind climate of Greenland is presented using output from the regional atmospheric climate model RACMO2. The modelled wind variability and wind distribution compare favourably to observations from three automatic weather stations in the ablation zone of southwest Greenland. The Weibull shape parameter is used to classify the wind climate. High values (κ > 4) are found in northern Greenland, indicative of uniform winds and a dominant katabatic forcing, while lower values (κ < 3) are found over the ocean and southern Greenland, where the synoptic forcing dominates. Very high values of the shape parameter are found over concave topography where confluence strengthens the katabatic circulation, while very low values are found in a narrow band along the coast due to barrier winds. To simulate the future (2081–2098) wind climate RACMO2 was forced with the HadGEM2-ES general circulation model using a scenario of mid-range radiative forcing of +4.5 W m?2 by 2100. For the future simulated climate, the near-surface potential temperature deficit reduces in all seasons in regions where the surface temperature is below the freezing point, indicating a reduction in strength of the near-surface temperature inversion layer. This leads to a wind speed reduction over the central ice sheet where katabatic forcing dominates, and a wind speed increase over steep coastal topography due to counteracting effects of thermal and katabatic forcing. Thermally forced winds over the seasonally sea ice covered region of the Greenland Sea are reduced by up to 2.5 m s?1.  相似文献   

17.
Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.  相似文献   

18.
Land-surface heterogeneity effects on the subgrid scale of regional climate and numerical weather prediction models are of vital interest for the energy and mass exchange between the surface and the atmospheric boundary layer. High-resolution numerical model simulations can be used to quantify these effects, and are a tool used to obtain area-averaged surface fluxes over heterogeneous land surfaces. We present high-resolution model simulations for the LITFASS area near Berlin during the LITFASS-2003 experiment, which were carried out using the non-hydrostatic model FOOT3DK of the University of Köln with horizontal resolutions of 1 km and 250 m. The LITFASS-2003 experimental dataset is used for comparison. The screen level quantities show good quality for the simulated pressure, temperature, humidity and wind speed and direction. Averaged over the four week experimental period, simulated surface energy fluxes at land stations show a small bias for the turbulent heat fluxes and an underestimation of the net radiation caused by excessive cloudiness in the simulations. For eight selected days with low cloud amounts, the net radiation bias is close to zero, but the sensible heat flux shows a strong positive bias. Large differences are found for latent heat fluxes over a lake, which are partly due to local effects on the measurements, but an additional problem seems to be the overestimation of the turbulent exchange under stable conditions in the daytime internal boundary layer over the lake. In the area average over the LITFASS area of 20 ×  20 km2, again a strong positive bias of 70 W m?2 for the sensible heat is present. For the low soil moisture conditions during June 2003, the simulation of the turbulent heat fluxes is sensitive to variations in the soil type and its hydrological properties. Under these conditions, the supply of ground water to the lowest soil layer should be accounted for. Different area-averaging methods are tested. The experimental set-up of the LITFASS-2003 experiment is found to be well suited for the computation of area-averaged turbulent heat fluxes.  相似文献   

19.
The sensitivity of the global climate is essentially determined by the radiative damping of the global mean surface temperature anomaly through the outgoing radiation from the top of the atmosphere (TOA). Using the TOA fluxes of terrestrial and reflected solar radiation obtained from the Earth radiation budget experiment (ERBE), this study estimates the magnitude of the overall feedback, which modifies the radiative damping of the annual variation of the global mean surface temperature, and compare it with model simulations. Although the pattern of the annually varying anomaly is quite different from that of the global warming, the analysis conducted here may be used for assessing the systematic bias of the feedback that operates on the CO2-induced warming of the surface temperature. In the absence of feedback effect, the outgoing terrestrial radiation at the TOA is approximately follows the Stefan-Boltzmann’s fourth power of the planetary emission temperature. However, it deviates significantly from the blackbody radiation due to various feedbacks involving water vapor and cloud cover. In addition, the reflected solar radiation is altered by the feedbacks involving sea ice, snow and cloud, thereby affecting the radiative damping of surface temperature. The analysis of ERBE reveals that the radiative damping is weakened by as much as 70% due to the overall effect of feedbacks, and is only 30% of what is expected for the blackbody with the planetary emission temperature. Similar feedback analysis is conducted for three general circulation models of the atmosphere, which was used for the study of cloud feedback in the preceding study. The sign and magnitude of the overall feedback in the three models are similar to those of the observed. However, when it is subdivided into solar and terrestrial components, they are quite different from the observation mainly due to the failure of the models to simulate individually the solar and terrestrial components of the cloud feedback. It is therefore desirable to make the similar comparison not only for the overall feedback but also for its individual components such as albedo- and cloud-feedbacks. Although the pattern of the annually-varying anomaly is quite different from that of global warming, the methodology of the comparative analysis presented here may be used for the identification of the systematic bias of the overall feedback in a model. A proposal is made for the estimation of the best guess value of climate sensitivity using the outputs from many climate models submitted to the Intergovernmental panel on Climate Change.  相似文献   

20.
Richard VanCuren 《Climatic change》2012,112(3-4):1071-1083
Exploiting surface albedo change has been proposed as a form of geoengineering to reduce the heating effect of anthropogenic increases in greenhouse gases (GHGs). Recent modeling experiments have projected significant negative radiative forcing from large-scale implementation of albedo reduction technologies (“cool” roofs and pavements). This paper complements such model studies with measurement-based calculations of the direct radiation balance impacts of replacement of conventional roofing with “cool” roof materials in California. This analysis uses, as a case study, the required changes to commercial buildings embodied in California’s building energy efficiency regulations, representing a total of 4300 ha of roof area distributed over 16 climate zones. The estimated statewide mean radiative forcing per 0.01 increase in albedo (here labeled RF01) is ?1.38 W/m2. The resulting unit-roof-area mean annual radiative forcing impact of this regulation is ?44.2 W/m2. This forcing is computed to counteract the positive radiative forcing of ambient atmospheric CO2 at a rate of about 41 kg for each square meter of roof. Aggregated over the 4300 ha of cool roof estimated built in the first decade after adoption of the State regulation, this is comparable to removing about 1.76 million metric tons (MMT) of CO2 from the atmosphere. The point radiation data used in this study also provide perspective on the spatial variability of cool roof radiative forcing in California, with individual climate zone effectiveness ranging from ?37 to ?59 W/m2 of roof. These “bottom-up” calculations validate the estimates reported for published “top down” modeling, highlight the large spatial diversity of the effects of albedo change within even a limited geographical area, and offer a potential methodology for regulatory agencies to account for the climate effects of “cool” roofing in addition to its well-known energy efficiency benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号