首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Previous studies of the wander of the rotation pole associated with the Late Pleistocene glacial cycles indicate that the predicted polar wander speed is sensitive to the density jump at the 670 km discontinuity, the thickness of the elastic lithosphere, and the lower mantle viscosity. In particular, the M1 mode related to the density jump at 670 km depth has been shown to contribute a dominant portion of predicted polar wander speed for sufficiently small lower mantle viscosities. In this study, we examine the sensitivity of polar wander to variations in the viscosity of the viscoelastic lithosphere using simplified compressible Maxwell viscoelastic earth models. Model calculations for earth models with a viscoelastic lithosphere of finite viscosity indicate that the contribution of the M1 mode is similar to those associated with the density discontinuity at the core–mantle boundary (C0 mode) and the lithosphere (L0 mode). We speculate that this is due to the interaction between the M1 mode and the transient mode associated with the viscoelastic lithosphere, which reduces the magnitude of polar wander rates. Therefore, the M1 mode does not contribute a dominant portion of the predicted polar wander speed for earth models with a viscoelastic lithosphere of finite viscosity. In this case, predictions of polar wander speed as a function of lower mantle viscosity exhibit the qualitative form of an 'inverted parabola', as predicted for the J ˙2 curve. We caution, however, that these results are obtained for simplified earth models, and the results for seismological earth models such as PREM may be complicated by the interaction between the M1 mode and the large set of transient modes.  相似文献   

2.
Most previous earth models used to calculate viscoelastic relaxation after the removal of the Late Pleistocene ice loads implicitly assume that there is no exchange of mass across the mantle density discontinuities on periods of tens of thousands of years (the material boundary formulation). In the present study, simple incompressible models are used to determine the Earth's behaviour in the case where the density discontinuity remains at a constant pressure rather than deforming with the material (the isobaric boundary formulation). The calculation of the movement of the boundary is more rigorous than in earlier studies and uses the local incremental pressure calculated at the depth of the boundary and allows for the vertical deformation caused by the change in volume as material changes phase. It is shown that the buoyancy modes associated with the density discontinuities decrease in strength and increase in relaxation time analogous to what results when the density contrast is reduced. Also, two viscoelastic modes arise from an isobaric boundary, which is also predicted when there is a contrast in rigidity or viscosity across a material boundary. The difference in predicted radial deformation between the isobaric boundary model and the material boundary model is largest for long-wavelength loads for which the material incremental pressure at depth is largest. If the isobaric boundary model is appropriate for the treatment of the mineral phase changes in the mantle on glacial rebound timescales, then previous inferences of the deep-mantle to shallow-mantle viscosity ratio based on large-scale deformation (spherical harmonic degree < 10) of the Earth and including data from the early part of the glacio-isostatic uplift are too small.  相似文献   

3.
The   M w γ 9.0  2004 December 26 Sumatra-Andaman and   M w = 8.7  2005 March 28 Nias earthquakes, which collectively ruptured approximately 1800 km of the Andaman and Sunda subduction zones, are expected to be followed by vigorous viscoelastic relaxation involving both the upper and lower mantle. Because of these large spatial dimensions it is desirable to fully account for gravitational coupling effects in the relaxation process. We present a stable method of computing relaxation of a spherically-stratified, compressible and self-gravitating viscoelastic Earth following an impulsive moment release event. The solution is cast in terms of a spherical harmonic expansion of viscoelastic normal modes. For simple layered viscoelastic models, which include a low-viscosity oceanic asthenosphere, we predict substantial post-seismic effects over a region several 100s of km wide surrounding the eastern Indian Ocean. We compare observed GPS time-series from ten regional sites (mostly in Thailand and Indonesia), beginning in 2004 December, with synthetic time-series that include the coseismic and post-seismic effects of the 2004 December 26 and 2005 March 28 earthquakes. A viscosity structure involving a biviscous (Burgers body) rheology in the asthenosphere explains the pattern and amplitude of post-seismic offsets remarkably well.  相似文献   

4.
Analytical approach for the toroidal relaxation of viscoelastic earth   总被引:1,自引:0,他引:1  
This paper is concerned with post-seismic toroidal deformation in a spherically symmetric, non-rotating, linear-viscoelastic, isotropic Maxwell earth model. Analytical expressions for characteristic relaxation times and relaxation strengths are found for viscoelastic toroidal deformation, associated with surface tangential stress, when there are two to five layers between the core–mantle boundary and Earth's surface. The multilayered models can include lithosphere, asthenosphere, upper and lower mantles and even low-viscosity ductile layer in the lithosphere. The analytical approach is self-consistent in that the Heaviside isostatic solution agrees with fluid limit. The analytical solution can be used for high-precision simulation of the toroidal relaxation in five-layer earths and the results can also be considered as a benchmark for numerical methods. Analytical solution gives only stable decaying modes—unstable mode, conjugate complex mode and modes of relevant poles with orders larger than 1, are all excluded, and the total number of modes is found to be just the number of viscoelastic layers between the core–mantle boundary and Earth's surface—however, any elastic layer between two viscoelastic layers is also counted. This confirms previous finding where numerical method (i.e. propagator matrix method) is used. We have studied the relaxation times of a lot of models and found the propagator matrix method to agree very well with those from analytical results. In addition, the asthenosphere and lithospheric ductile layer are found to have large effects on the amplitude of post-seismic deformation. This also confirms the findings of previous works.  相似文献   

5.
We report the results of an analytical investigation into the deformation behaviour of rate-dependent granular material as a refinement of previous studies on seepage phenomena during shear. The rheology has two components—a compliant part of the constitutive law associated with grain contacts as deformation takes place (dilatancy), and a rate-dependent viscous force transmitted by the melt phase. This formulation allows intermediate, time-dependent behaviour to be assessed for the dilatant porous medium. A key result is that during shear, the magnitude of the excess pore pressure first decreases then increases back to its initial value. Two characteristic timescales are identified that control the rate-dependent dilatancy of the mixture, τ1, the time constant that rules the increase of the magnitude of the excess pore pressure, and τ0 that controls its decline. We consider the dilatant effect to be an internal constraint in deforming magmas in the lithosphere and other porous (partially molten) regions in the solid earth. When such regions are exposed to external loading, secular pressure changes should drive fluid flow independent of local buoyancy forces, for the duration of the governing rate-dependent timescales. The accumulated heave of the process is also estimated.  相似文献   

6.
The degree-one deformation of the Earth (and the induced discrepancy between the figure centre and the mass centre of the Earth) is computed using a theoretical approach (Love numbers formalism) at short timescales (where the Earth has an elastic behaviour) as well as at long timescales (where the Earth has a viscoelastic or quasi-fluid behaviour). For a Maxwell model of rheology, the degree-one relaxation modes associated with the viscoelastic Love numbers have been investigated: the Mo mode does not exist and there is only one transition mode (instead of two) generated by a viscosity discontinuity.
The translations at each interface of the incompressible layers of the earth model [surface, 670 km depth discontinuity, core-mantle boundary (CMB) and inner-core boundary (ICB)] are computed. They are elastic with an order of magnitude of about 1 mm when the excitation source is the atmospheric continental loading or a magnetic pressure acting at the CMB. They are viscoelastic when the earth is submitted to Pleistocene deglaciation, with an order of magnitude of about 1 m. In a quasi-fluid approximation (Newtonian fluid) because of the mantle density heterogeneity their order of magnitude is about 100 m (except for the ICB, which is in quasi-hydrostatic equilibrium at this timescale).  相似文献   

7.
The 2004 M = 9.2 Sumatra–Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ∼1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress–strain relation; an aspherical perturbation in viscoelastic structure; a 'static' mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra–Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation.  相似文献   

8.
The post-seismic response of a viscoelastic Earth to a seismic dislocation can be computed analytically within the framework of normal-modes, based on the application of propagator methods. This technique, widely documented in the literature, suffers from several shortcomings; the main drawback is related to the numerical solution of the secular equation, whose degree increases linearly with the number of viscoelastic layers so that only coarse-layered models are practically solvable. Recently, a viable alternative to the standard normal-mode approach, based on the Post–Widder Laplace inversion formula, has been proposed in the realm of postglacial rebound models. The main advantage of this method is to bypass the explicit solution of the secular equation, while retaining the analytical structure of the propagator formalism. At the same time, the numerical computation is much simplified so that additional features such as linear non-Maxwell rheologies can be simply implemented. In this work, for the first time, we apply the Post–Widder Laplace inversion formula to a post-seismic rebound model. We test the method against the standard normal-mode solution and we perform various benchmarks aimed to tune the algorithm and to optimize computation performance while ensuring the stability of the solution. As an application, we address the issue of finding the minimum number of layers with distinct elastic properties needed to accurately describe the post-seismic relaxation of a realistic Earth model. Finally, we demonstrate the potentialities of our code by modelling the post-seismic relaxation after the 2004 Sumatra–Andaman earthquake comparing results based upon Maxwell and Burgers rheologies.  相似文献   

9.
Summary. We give the analytical formulation for calculating the transient displacement of fields produced by earthquakes in a stratified, selfgravitating, incompressible, viscoelastic earth. We have evaluated the potential of viscous creep in the asthenosphere in exciting the Chandler wobble by a four-layer model consisting of an elastic lithosphere, a two-layer Maxwell viscoelastic mantle, and an inviscid core. The seismic source is modelled as an inhomogeneous boundary condition, which involves a jump condition of the displacement fields across the fault in the lithosphere. The response fields are derived from the solution of a two-point boundary value problem, using analytical propagator matrices in the Laplace-transformed domain. Transient flows produced by post-seismic rebound are found to be confined within the asthenosphere for local viscosity values less than 1020P. The viscosity of the mantle below the low-viscosity channel is kept at 1022P. For low-viscosity zones with widths greater than about 100 km and asthenospheric viscosities less than 1018P, we find that viscoelasticity can amplify the perturbations in the moment of inertia by a factor of 4–5 above the elastic contribution within the time span of the wobble period. We have carried out a comparative study on the changes of the inertia tensor from forcings due to surface loading and to faulting. In general the global responses from faulting are found to be much more sensitive to the viscosity structure of the asthenosphere than those produced from surface loading.  相似文献   

10.
Viscous and viscoelastic models for a subduction zone with a faulted lithosphere and internal buoyancy can self-consistently and simultaneously predict long-wavelength geoid highs over slabs, short-wavelength gravity lows over trenches, trench-forebulge morphology, and explain the high apparent strength of oceanic lithosphere in trench environments. The models use two different free-surface formulations of buoyancy-driven flows (see, for example, Part I): Lagrangian viscoelastic and pseudo-free-surface viscous formulations. The lower mantle must be stronger than the upper in order to obtain geoid highs at long wavelengths. Trenches are a simple consequence of the negative buoyancy of slabs and a large thrust fault, decoupling the overriding from underthrusting plates. The lower oceanic lithosphere must have a viscosity of less than to24 Pa s in order to be consistent with the flexural wavelength of forebulges. Forebulges are dynamically maintained by viscous flow in the lower lithosphere and mantle, and give rise to apparently stiffer oceanic lithosphere at trenches. With purely viscous models using a pseudo-free-surface formulation, we find that viscous relaxation of oceanic lithosphere, in the presence of rapid trench rollback, leads to wider and shallower back-arc basins when compared to cases without viscous relaxation. Moreover, in agreement with earlier studies, the stresses necessary to generate forebulges are small (∼ 100 bars) compared to the unrealistically high stresses needed in classic thin elastic plate models.  相似文献   

11.
The response of a viscoelastic Earth to the melting of the Late Pleistocene ice sheets has been the subject of a number of investigations employing PREM. In PREM, a non-adiabatic density gradient (NADG) exists in the upper mantle, and to understand the implications of this model it is thus important to examine the effects of this NADG on the Earth's response to surface loads. This paper is based on the assumption that the contribution to the depth dependence of the density that is not due to self-compression is due to compositional change. This contribution is referred to as 'non-adiabatic'. We evaluate the effects of a non-adiabatic density jump (NADJ) for the 670  km discontinuity and the NADG in the upper mantle by adopting a compressible earth model with both a compositional density gradient and a density jump. Numerical calculations based on these models indicate that the magnitude of the Earth's response associated with the NADG is much smaller than that associated with the NADJ at 670  km depth. It is also confirmed that the higher modes associated with the NADJ and the NADG are much more sensitive to the existence of an elastic lithosphere than the fundamental modes associated with the density jumps at the surface and core–mantle boundary.  相似文献   

12.
Summary. The symmetry of the differential system for elastic waves, previously noted for plane geometry, is extended to any linear differential system and, in particular, the elastic-gravitational vibrations in a spherical earth. The result remains valid in a linearly viscoelastic medium. The symmetry allows the inverse of the propagator matrix to be obtained by simply 'transposing' the elements of the propagator. With this result, it is shown how the source excitation using a particular integral can be put in a more instructive form, comparable with the result for the excitation of normal modes.  相似文献   

13.
Polar motion is modelled for the large 2004 Sumatra earthquake via dislocation theory for an incompressible elastic earth model, where inertia perturbations are due to earthquake-triggered topography of density–contrast interfaces, and for a compressible model, where inertia perturbation due to compression-dilatation of Earth's material is included; density and elastic parameters are based on a multilayered reference Earth. Both models are based on analytical Green's functions, propagated from the centre to the Earth's surface. Preliminary and updated seismological solutions are considered in elucidating the effects of improving earthquake parameters on polar motion. The large Sumatra thrust earthquake was particularly efficient in driving polar motion since it was responsible for large material displacements occurring orthogonally to the strike of the earthquake and to the Earth's surface, as imaged by GRACE gravity anomalies over the earthquake area. The effects of earthquake-induced topography are four times larger than the effects of Earth's compressibility, for l = 2 geopotential components. For varying compressional Earth properties and seismic solution, modelled polar motion ranges from 8.6 to 9.4 cm in amplitude and between 117° and 130° east longitude in direction. The close relationship between polar motion direction, earthquake longitude and thrust nature of the event, are established in terms of basic physical concepts.  相似文献   

14.
Internal oscillations in the Earth's fluid core   总被引:4,自引:0,他引:4  
  相似文献   

15.
Using the viscoelastic correspondence principle, we utilize the surface coseismic spheroidal deformation fields (i.e. vertical displacements, potential perturbations and gravity changes) of SNREI earth models caused by four typical types of point dislocation, derived by Sun & Okubo (1993 ), to deduce the fundamental formulas for spheroidal fields relevant to viscoelastic earth models. In computations, we employ a strike-slip dislocation on a vertical plane buried at the bottom of the lithosphere to estimate the maximal viscous relaxation responses to this kind of source that possibly exist on the surface of the earth. We take the seismic moment as 1022  N  m, which is characteristic of an average large earthquake. The numerical results demonstrate that, if we take the viscosity as 1019  Pa  s in the asthenosphere, and 1021  Pa  s in the other mantle layers, the rates of surface vertical displacements and gravity changes within about 2.5° for the 10 postseismic years are respectively 1.5–8.1  cm  yr−1 and 4.0–14.9  μgal  yr−1 : the viscous relaxation for this mantle viscosity profile proceeds much faster than for a constant mantle viscosity of 1021  Pa  s.  相似文献   

16.
We use GPS displacements collected in the 15 months after the 1999 Chi-Chi, Taiwan earthquake  ( M w 7.6)  to evaluate whether post-seismic deformation is better explained by afterslip or viscoelastic relaxation of the lower crust and upper mantle. We find that all viscoelastic models tested fail to fit the general features in the post-seismic GPS displacements, in contrast to the satisfactory fit obtained with afterslip models. We conclude that afterslip is the dominant mechanism in the 15-month period, and invert for the space–time distribution of afterslip, using the Extended Network Inversion Filter. Our results show high slip rates surrounding the region of greatest coseismic slip. The slip-rate distribution remains roughly stationary over the 15-month period. In contrast to the limited coseismic slip on the décollement, afterslip is prominent there. Maximum afterslip of 0.57 m occurs downdip and to the east of the hypocentral region. Afterslip at hypocentral depths is limited to the southern part of the main shock rupture, with little or no slip on the northern section where coseismic slip was greatest. Whether this results from along strike variations in frictional properties or dynamic conditions that locally favour stable sliding is not clear. In general, afterslip surrounds the area of greatest coseismic slip, consistent with post-seismic slip driven by the main shock stress change. The total accumulated geodetic afterslip moment is  3.8 × 1019 N m  , significantly more than the seismic moment released by aftershocks,  6.6 × 1018 N m  . Afterslip and aftershocks appear to have different temporal evolutions and some spatial correlations, suggesting that aftershock rates may not be completely controlled by the rate of afterslip.  相似文献   

17.
In order to approximate the free-surface motion of an Earth-sized planet subjected to a giant impact, we have described the excitation of body and surface waves in a spherical compressible fluid planet without gravity or intrinsic material attenuation for a buried explosion source. Using the mode summation method, we obtained an analytical solution for the surface motion of the fluid planet in terms of an infinite series involving the products of spherical Bessel functions and Legendre polynomials. We established a closed form expression for the mode summation excitation coefficient for a spherical buried explosion source, and then calculated the surface motion for different spherical explosion source radii a (for cases of   a / R = 0.001  to 0.035, R is the radius of the Earth) We also studied the effect of placing the explosion source at different radii r 0 (for cases of   r 0/ R = 0.90  to 0.96) from the centre of the planet. The amplitude of the quasi-surface waves depends substantially on a / R , and slightly on   r 0/ R   . For example, in our base-line case,   a / R = 0.03, r 0/ R = 0.96  , the free-surface velocity above the source is 0.26 c , whereas antipodal to the source, the peak free surface velocity is 0.19 c . Here c is the acoustic velocity of the fluid planet. These results can then be applied to studies of atmosphere erosion via blow-off caused by asteroid impacts.  相似文献   

18.
We present a semi-analytical solution to the 2-D forward modelling of viscoelastic relaxation in a heterogeneous model consisting of eccentrically nested spheres. Several numerical methods for 2-D and 3-D viscoelastic relaxation modelling have been applied recently, including finite-element and spectral-finite-difference schemes. The present semi-analytical approach provides a model response against which more general numerical algorithms can be validated. The eccentrically nested sphere solution has been tested by comparing it with the analytical solutions for viscoelastic relaxation in a homogeneous sphere and in two concentrically nested spheres, and good agreement was obtained.  相似文献   

19.
This paper investigates possible long-period oscillations of the earth's fluid outer core. Equations describing free oscillations in a stratified, self-gravitating, rotating fluid sphere are developed using a regular perturbation on the equations of hydrodynamics. The resulting system is reduced to a finite set of ordinary differential equations by ignoring the local horizontal component of the earth's angular velocity vector, Ω, and retaining only the vertical component. The angular dependence of the eigensolutions is described by Hough functions, which are solutions to Laplace's tidal equation.
The model considered here consists of a uniform solid elastic mantle and inner core surrounding a stratified, rotating, inviscid fluid outer core. The quantity which describes the core's stratification is the Brunt—Väisälä frequency N , and for particular distributions of this parameter, analytical solutions are presented. The interaction of buoyancy, and rotation results in two types of wave motion, the amplitudes of which are confined predominantly to the outer core: (1) internal gravity waves which exist when N 2 > 0, and (2) inertial oscillations which exist when N 2<4Ω2. For a model with a stable density stratification similar to that proposed by Higgins & Kennedy (1971), the resulting internal gravity wave eigenperiods are all at least 8 hr, and the fundamental modes have periods of at least 13 hr. A model with an unstable density stratification admits no internal gravity waves but does admit inertial oscillations whose eigenperiods have a lower bound of 12hr.  相似文献   

20.
Summary. A simple normal approximation is given for the joint probability density function of the polar coordinates (θ, φ) of a random vector following the Fisher distribution with arbitrary mean direction (θ0, φ0). Two important applications of this approximation are discussed, and conditions for the validity of the approximation are investigated and summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号