首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
High-resolution measurements by the double probe electric field instrument on the Freja satellite are presented. The observations show that extremely intense (up to 1 V m−1) and fine-structured (<1 km) electric fields exist at auroral latitudes within the altitude regime explored by Freja (up to 1700 km). The intense field events typically occur within the early morning sector of the auroral oval (01-07 MLT) during times of geomagnetic activity. In contrast to the observations within the auroral acceleration region characterized by intense converging electric fields associated with electron precipitation, upward ion beams and upward field-aligned currents, the intense electric fields observed by Freja are often found to be diverging and located within regions of downward field-aligned currents outside the electron aurora. Moreover, the intense fields are observed in conjunction with precipitating and transversely energized ions of energies 0.5-1 keV and may play an important role in the ion heating. The observations suggest that the intense electric field events are associated with small-scale low-conductivity ionospheric regions void of auroral emissions such as east-west aligned dark filaments or vortex streets of black auroral curls located between or adjacent to auroral arcs within the morningside diffuse auroral region. We suggest that these intense fields also exist at ionospheric altitudes although no such observations have yet been made. This is possible since the height-integrated conductivity associated with the dark filaments may be as low as 0.1 S or less. In addition, Freja electric field data collected outside the auroral region are discussed with particular emphasis on subauroral electric fields which are observed within the 19–01 MLT sector between the equatorward edge of the auroral oval and the inner edge of the ring current.  相似文献   

2.
For a low-level geomagnetic satellite survey, for which the motion of the satellite converts spatial variation into temporal variation, the limit on accuracy may well be background temporal fluctuations. The sources of the temporal fluctuations are current systems external to the Earth and include currents induced in the Earth due to these sources. The internal sources consist primarily of two components, the main geomagnetic field with sources in the Earth's core and a crustal geomagnetic field.Power spectra of the vertical geomagnetic field internal component that would be observed by a spacecraft in circular orbit at various altitudes, due to satellite motion through the spatially varying geomagnetic field, are compared to power spectra of the natural temporal fluctuations of the geomagnetic field vertical component (natural noise) and to the power spectrum for typical fluxgate magnetometer instrument noise. The natural noise is shown to be greater than this typical instrument noise over the entire frequency range for which useful measurements of the geomagnetic field may be made, for all geomagnetic latitudes and all times. Thus there would be little benefit in reducing the instrument noise below the typical value of 10?4 gamma2 Hz?1 plus a 1/f component of 10 milligamma rms decade?1.For a given satellite altitude, there is a maximum frequency above which the natural noise is greater than the power spectrum of the crustal geomagnetic field vertical component. Below this maximum frequency, the situation is reversed. This maximum frequency depends on geomagnetic latitude (and to a lesser extent on time of day and season of year), being lower in the auroral zone than at lower latitudes. The maximum frequency is also lower at higher satellite altitudes. The maximum frequency determines the spatial resolution obtainable on a magnetic field map. The spatial resolution (for impulses) obtainable at low latitudes for a 100-km satellite altitude (possibly achievable by tethering a small satellite at this altitude to a space vehicle at a higher altitude) is 60 km, while at the auroral zone the obtainable spatial resolution is 100 km. At the higher satellite altitude of 300 km the obtainable spatial resolution is 230 km at low latitudes and 530 km at the auroral zone. At 500-km satellite altitude, the obtainable spatial resolution is 500 km at low latitudes, while maps cannot be made at all for the auroral zone unless the data are selected for “quiet” days.For the lower satellite altitudes, greater spatial resolution can be obtained than at higher altitudes. Furthermore since the crustal geomagnetic field power spectrum is larger at lower altitudes, the relative error due to the natural noise is less than for higher altitudes.  相似文献   

3.
Summary The possibility of atmospheric electrical effects due to the aurora has been considered by investigators since 1875. An unsatisfactory theoretical basis for an explanation of observed effects and the measurements of only a few of the related parameters for short periods of time has led to uncertainty in the matter. Nevertheless, since the IGY2), new discoveries related to the aurora portray an unusual complexity, and a wide range of energy input. When considered with recent discussions on atmospheric electrification some interesting interpretations of the observed effects are suggested. On the ground, large negative excursions of the atmospheric electric field (E) during fair weather, and above 100 mb3) peculiar increases in negative ion densities and variations in air-earth current density (I) all appear to be related to auroral activity. A difference in (I) measured simultaneously at geomagnetic latitudes 55° and 68°N which is greater than what one would expect from a difference in conductivity due to cosmic rays may also be due to the aurora. Several models of the observed effects will be considered: (1) the high influx of negative space charge, i.e. a precipitation of around 1014 elementary charges m–2 s–1; (2) the auroral bremsstrahlung flux acts as an atmospheric current generator; (3) plasma instability in the auroral electrojet; (4) a combination of (2) and (3). The infrequent observation of the auroral effects on atmospheric electricity is probably due to limitations in detecting an extreme local fluctuation in such a large-scale complex phenomenon.  相似文献   

4.
Ionospheric heating experiments were done by the EISCAT Heater in Tromsø on 15–19 November, 1993. A low-light TV camera was installed at the VLF receiving station at Porojärvi about 100 km to the south-east of Tromsø. The spectral analysis of the auroral luminosity variations showed that the brightness of the aurora varied at the modulation frequency of the heating wave. The results of this analysis and the numerical simulations of the auroral luminosity variations caused by the HF heating are shown. The variations of the optical emission intensity at the heating frequency occur during the auroral ionosphere modification. The observed intensity variation of the auroral green line during the interval of enhanced electron temperature is explained by a decreasing rate of the O2+ ion dissociative recombination when the electron temperature increases. The brightness variation depends on the characteristic energy and the intensity of the auroral electron flux and the heating wave parameters. The artificial luminosity pulsations caused by HF heating are estimated.  相似文献   

5.
Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHP radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirk-wood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal-to-noise ratios (SNRs) for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF) should observe the highest SNR, but only for rather high plasma frequencies. The VHP radars (EISCAT VHP and Svalbard) will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.  相似文献   

6.
A previous study, based on incoherent and coherent radar measurements, suggested that during auroral E-region electron heating conditions, the electron flow in the auroral electrojet undergoes a systematic counterclockwise rotation of several degrees relative to the E×B direction. The observational evidence is re-examined here in the light of theoretical predictions concerning E-region electron demagnetization caused by enhanced anomalous cross-field diffusion during strongly-driven Farley-Buneman instability. It is shown that the observations are in good agreement with this theory. This apparently endorses the concept of wave-induced diffusion and anomalous electron collision frequency, and consequently electron demagnetization, under circumstances of strong heating of the electron gas in the auroral electrojet plasma. We recognize, however, that the evidence for electron demagnetization presented in this report cannot be regarded as definitive because it is based on a limited set of data. More experimental research in this direction is thus needed.  相似文献   

7.
The response of a horizontal conducting cylinder embedded in a uniform conducting earth is studied using mathematical models of uniform and line current source excitation for the period range 10 to 104 s. The line current source is located at heights ranging from 100–750 km above the surface of the earth. From the calculated results, it is shown that for periods greater than 103 s the ratioE x /H y at the surface of the earth for localized fields, such as the auroral and equatorial electrojet normally situated at heights of about 100 km, is considerably different from that for a uniform source. The results presented also show that the magneto-telluric method of geophysical prospecting for ore bodies in regions of the electrojet may not be very practicable for periods exceeding 103 s.  相似文献   

8.
Atmospheric gravity waves, detected over Kiruna (67.8°N, 20.4°E) during geomagnetic storms, are presented and analysed. The data include direct measurements of the OI 630.0 nm emission line intensity, the x-component of the local geomagnetic field and thermospheric (meridional and zonal) wind velocities derived from the OI 630.0 nm Doppler shift observed with an imaging Fabry-Perot interferometer (IFPI). A low pass band filter technique was used to determine short-period variations in the thermospheric meridional wind velocities observed during geomagnetic storms. These short-period variations in the meridional wind velocities, which are identified as due to gravity waves, are compared to the corresponding variations observed in the OI 630.0 nm emission line intensity, x-component of the local geomagnetic field and the location of the auroral electrojet. A cross-correlation analysis was used to calculate the propagation velocities of the observed gravity waves.  相似文献   

9.
The energy of precipitating particles that cause auroras can be characterized by the ratio of different atom and molecule emissions in the upper atmospheric layers. It is known that the spectrum of precipitating electrons becomes harder when substorms develop. The ratio of the I 6300 red line to the I 5577 green line was used to determine the precipitating-electron spectrum hardness. The I 6300/I 5577 parameter was used to roughly estimate the electron energy in auroral arcs observed in different zones of the auroral bulge at the bulge poleward edge and within this bulge. The variations in the emission red and green lines in auroral arcs during substorms that occurred in the winter season 2007–2008 and in January 2006 were analyzed based on the zenith photometer and all-sky camera data at the Barentsburg and Longyearbyen (LYR) high-latitude observatories. It has been indicated that the average value of the I 6300/I 5577 emission ratio for arcs within the auroral bulge is larger than this value at the bulge poleward edge. This means that the highest-energy electron precipitation is observed in arcs at the poleward edge of the substorm auroral bulge.  相似文献   

10.
An abrupt decrease in the solar wind pressure and its effect on the magnetosphere and ionosphere during the event occurring on April 4, 1971, are studied. This event differs fundamentally from a typical sudden commencement (SC) of a geomagnetic storm or from a positive sudden impulse (SI+) and is determined as a negative sudden impulse (SI). The geomagnetic variations at different latitudes and the cosmic radio emission in the auroral zone are analyzed. From the data of low-latitude geomagnetic observatories, several subsequent negative impulses observed with a periodicity of ~45 min were found. At the same time, a sudden decrease in the absorption of cosmic radio emission in the auroral zone was revealed. Possible physical explanations of the observed changes are discussed.  相似文献   

11.
Auroral electron transport calculations are a critical part of auroral models. We evaluate a numerical solution to the transport and energy degradation problem. The numerical solution is verified by reproducing simplified problems to which analytic solutions exist, internal self-consistency tests, comparison with laboratory experiments of electron beams penetrating a collision chamber, and by comparison with auroral observations, particularly the emission ratio of the N2 second positive to N+ 2 first negative emissions. Our numerical solutions agree with range measurements in collision chambers. The calculated N22P to N+ 21N emission ratio is independent of the spectral characteristics of the incident electrons, and agrees with the value observed in aurora. Using different sets of energy loss cross sections and different functions to describe the energy distribution of secondary electrons that emerge from ionization collisions, we discuss the uncertainties of the solutions to the electron transport equation resulting from the uncertainties of these input parameters.  相似文献   

12.
Possible effects of signal reception from different electrojet heights in a skewness of auroral coherent spectra are studied assuming that the “inherent” spectral line due to plasma turbulence is of type-2 and symmetrical. For reasonable ionospheric parameters, the altitude integrated spectra are expected to be skewed negatively for positive mean Doppler shift, in agreement with radar observations at small aspect angles. However, the spectra could be skewed positively if the turbulent layer or the electron density profile is shifted to high altitudes of \sim120 km. This change of spectral shape will not be observed experimentally if, at the same time, either the electron collision frequency is enhanced or the “inherent” spectral width is increased. Observational results are discussed in view of the predictions given.  相似文献   

13.
On August 21st 1998, a sharp southward turning of the IMF, following on from a 20 h period of northward directed magnetic field, resulted in an isolated substorm over northern Scandinavia and Svalbard. A combination of high time resolution and large spatial scale measurements from an array of coherent scatter and incoherent scatter ionospheric radars, ground magnetometers and the Polar UVI imager has allowed the electrodynamics of the impulsive substorm electrojet region during its first few minutes of evolution at the expansion phase onset to be studied in great detail. At the expansion phase onset the substorm onset region is characterised by a strong enhancement of the electron temperature and UV aurora. This poleward expanding auroral structure moves initially at 0.9 km s-1 poleward, finally reaching a latitude of 72.5°. The optical signature expands rapidly westwards at ~6 km s-1, whilst the eastward edge also expands eastward at ~0.6 km s-1. Typical flows of 600 m s-1 and conductances of 2 S were measured before the auroral activation, which rapidly changed to ~100 m s-1 and 10–20 S respectively at activation. The initial flow response to the substorm expansion phase onset is a flow suppression, observed up to some 300 km poleward of the initial region of auroral luminosity, imposed over a time scale of less than 10 s. The high conductivity region of the electrojet acts as an obstacle to the flow, resulting in a region of low-electric field, but also low conductivity poleward of the high-conductivity region. Rapid flows are observed at the edge of the high-conductivity region, and subsequently the high flow region develops, flowing around the expanding auroral feature in a direction determined by the flow pattern prevailing before the substorm intensification. The enhanced electron temperatures associated with the substorm-disturbed region extended some 2° further poleward than the UV auroral signature associated with it.  相似文献   

14.
We have examined the spatial and temporal correlation of high-latitude Pi1B and Pi2 pulsations, mid-latitude Pi2 pulsations, and auroral substorm onsets identified in the IMAGE far ultraviolet imager (FUV) data. Numerous search coil and fluxgate magnetometers at high latitudes (65–80° in Antarctica and Greenland) and mid-latitude fluxgate magnetometers are used. We find that Pi1B onset times agree well with onset times of intense isolated auroral substorms identified by the IMAGE FUV instrument: Pi1B onsets occurred within the 2 min cadence of the imager. For any given event, we find that Pi1B are localized to approximately 4 h of local time and 7° of magnetic latitude relative to the initial auroral brightening location as observed by IMAGE FUV. Not surprisingly, we also find that Pi1B pulsations occur typically between 2100 and 0200 MLT. Comparison to Pi2 records from these and other lower-latitude stations shows that in almost all cases Pi1B activity coincides within ±2 min with Pi2 activity. Power law fits showed that Pi1B amplitude fell off with distance−2.9 for two strong events (i.e., similar to the r−3 falloff of the signal from a dipolar source), and only slightly more rapidly than the falloff of Pi2 activity (d−2.8). Given the global nature of Pi2 pulsations versus the localized nature of Pi1B events in this study, we conclude that the mechanism that drives Pi1B pulsations is likely different from that responsible for Pi2 pulsations.  相似文献   

15.
The azimuthal propagation of luminosity inhomogeneities (of the bead type) within auroral arcs extended from east (E) to west (W) during the substorm growth phase is studied with high-precision groundbased optical observations at PGI observatories and THEMIS Canadian ground stations. The propagation velocities and directions are compared with the predictions of the known theories that were proposed in order to interpret this phenomenon. It is concluded that there is no unified theory capable of explaining the disturbance propagation peculiarities observed in different events.  相似文献   

16.
We present two case studies in the night and evening sides of the auroral oval, based on plasma and field measurements made at low altitudes by the AUREOL-3 satellite, during a long period of stationary magnetospheric convection (SMC) on November 24, 1981. The basic feature of both oval crossings was an evident double oval pattern, including (1) a weak arc-type structure at the equatorial edge of the oval/polar edge of the diffuse auroral band, collocated with an upward field-aligned current (FAC) sheet of ≈1.0 μA m−2, (2) an intermediate region of weaker precipitation within the oval, (3) a more intense auroral band at the polar oval boundary, and (4) polar diffuse auroral zone near the polar cap boundary. These measurements are compared with the published magnetospheric data during this SMC period, accumulated by Yahnin et al. and Sergeev et al., including a semi-empirical radial magnetic field profile BZ in the near-Earth neutral sheet, with a minimum at about 10–14 RE. Such a radial BZ profile appears to be very similar to that assumed in the “minimum B/cross-tail line current” model by Galperin et al. (GVZ92) as the “root of the arc”, or the arc generic region. This model considers a FAC generator mechanism by Grad-Vasyliunas-Boström-Tverskoy operating in the region of a narrow magnetic field minimum in the near-Earth neutral sheet, together with the concept of ion non-adiabatic scattering in the “wall region”. The generated upward FAC branch of the double sheet current structure feeds the steady auroral arc/inverted-V at the equatorial border of the oval. When the semi-empirical BZ profile is introduced in the GVZ92 model, a good agreement is found between the modelled current and the measured characteristics of the FACs associated with the equatorial arc. Thus the main predictions of the GVZ92 model concerning the “minimum-B” region are consistent with these data, while some small-scale features are not reproduced. Implications of the GVZ92 model are discussed, particularly concerning the necessary conditions for a substorm onset that were not fulfilled during the SMC period.  相似文献   

17.
全天空极光成像仪是地基极光观测研究的重要仪器设备,从其拍摄的全天空图像数据中能获得极光形态、尺度、激发强度等重要物理参数,因而精确标定全天空图像,对准确获取极光相关物理参数极为重要.本文提出了一种基于星点位置信息对全天空图像进行标定的方法,通过该方法可以确定全天空图像参数(天顶在全天空图像中的像素点位置,地理方位以及视野范围内成像半径与天顶角的关系).利用电离层卫星探测到的极光沉降电子能谱中的"倒V"结构与极光弧之间的对应关系,对星点标定方法获取的全天空图像参数进行了验证.结果显示卫星穿越的"倒V"结构宽度(60±6km、102±6km)与同时全天空极光成像仪观测到的卫星穿越的极光弧宽度(64.7±7km、111.6±7km)几乎一致,这表明本文提出的全天空极光图像参数的星点标定方法是有效和准确的.  相似文献   

18.
Recent observations have quantified the auroral wind O+ outflow in response to magnetospheric inputs to the ionosphere, notably Poynting energy flux and precipitating electron density. For moderate to high activity periods, ionospheric O+ is observed to become a significant or dominant component of plasma pressure in the inner plasma sheet and ring current regions. Using a global circulation model of magnetospheric fields and its imposed ionospheric boundary conditions, we evaluate the global ionospheric plasma response to local magnetospheric conditions imposed by the simulation and evaluate magnetospheric circulation of solar wind H+, polar wind H+, and auroral wind O+. We launch and track the motions of millions of test particles in the global fields, launched at randomly distributed positions and times. Each particle is launched with a flux weighting and perpendicular and parallel energies randomly selected from defined thermal ranges appropriate to the launch point. One sequence is driven by a two-hour period of southward interplanetary magnetic field for average solar wind intensity. A second is driven by a 2-h period of enhanced solar wind dynamic pressure for average interplanetary field. We find that the simulated ionospheric O+ becomes a significant plasma pressure component in the inner plasma sheet and outer ring current region, particularly when the solar wind is intense or its magnetic field is southward directed. We infer that the reported empirical scalings of auroral wind O+ outflows are consistent with a substantial pressure contribution to the inner plasma sheet and plasma source surrounding the ring current. This result violates the common assumption that the ionospheric load is entirely confined to the F layer, and shows that the ionosphere is often an important dynamic element throughout the magnetosphere during moderate to large solar wind disturbances.  相似文献   

19.
A case is described in which complex auroral forms varied slightly at Lovozero Observatory over the course of more than an hour in the morning hours during the auroral recovery phase. Pc3 and Pc5 auroral and geomagnetic pulsations were observed during the event. The phenomenon is compared with recurrent pulsating auroras, which are described in the literature.  相似文献   

20.
Using the method of characteristics to invert ground-based data of the ground magnetic field disturbance and of the ionospheric electric field, we obtain spatial distributions of ionospheric conductances, currents, and field-aligned currents (FACs) associated with a north-south auroral form that drifts westwards over northern Scandinavia around 2200 UT on December 2, 1977. This auroral form is one in a sequence of such north-south structures observed by all-sky cameras, and appears 14 min after the last of several breakups during that extremely disturbed night. Our analysis shows that the ionospheric Hall conductance reaches values above 200 S in the center of the form, and upward flowing FACs of up to 25 μA/m2 are concentrated near its westward and equatorward edge. The strong upward flowing FACs are fed by an area of more distributed, but still very strong downward-flowing FACs northeastward of the auroral form. In contrast to the conductances, the electric field is only slightly affected by the passage of the form. We point out similarities and differences of our observations and results to previously reported observations and models of ‘auroral fingers’, ‘north-south aurora’, and ‘auroral streamers’ which are suggested to be ionospheric manifestations of bursty bulk flows in the plasma sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号