首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
吴秀兰  李霞  卢山 《气象研究与应用》2011,32(3):5-7,83,121
使用美国国家环境预报中心(NCEP/NCAR)的再分析资料、日本GSM产品、广东省遥测站资料、卫星云图以及MICAPS资料,通过合成分析方法,研究0904号热带风暴“浪卡”结构和异常暴雨落区原因。结果表明:(1)“浪卡”结构的强不对称性主要是由于流场分布不均匀这一动力因素造成,“浪卡”大风区分布在南侧和东侧地区.其北侧...  相似文献   

2.
利用常规气象资料、NCEP格点资料及FY2G卫星资料,采用天气学诊断和卫星云图解译分析方法,对2020年第16号台风"浪卡"(Nangka)暴雨发生特点及卫星云图特征进行分析。结果表明,"浪卡"在副高南侧偏东气流引导下,持续向西偏北方向移动进入北部湾,造成广西南部强风暴雨;暴雨发生第一阶段由台风本体倒槽云系产生,第二阶段由台风后部偏南气流与冷空气互相作用增强的动力强迫引发,台风东北侧东南急流加强与冷空气携带的东北气流在广西南部强烈辐合,加上海岸带地形作用,使该地区低层水汽辐合和上升运动强烈,为暴雨增幅提供有利动力条件;"浪卡"云系不对称结构明显,在登陆海南岛前,范围宽广而且发展旺盛的积云对流主要位于台风南侧,与辐合带的西南季风相连密切相关,进入北部湾后,受北侧副高加强影响,东南风急流加强导致北侧积云对流发展更旺盛。OLR场的配置对于台风路径预报有较好的指示意义。  相似文献   

3.
台风“达维”不对称结构特征分析   总被引:1,自引:0,他引:1  
利用地面加密观测资料、FY-2E卫星TBB和水汽图像资料、NCEP1°×1°再分析资料综合分析了2012 年第10 号台风“达维”的不对称结构特征及成因。结果表明:台风“达维”登陆后在云系结构、降水落区、高低层风场等都表现出不对称分布,其中暴雨主要分布在台风中心北到东北侧;通过FY-2E水汽图像分析清晰地揭示了这种不对称结构的演变,台风西侧干下沉暗区切断了西南侧水汽输送,使得台风中心西侧和南侧对流云系减弱消失,而东南侧一直存在一水汽羽伸入台风环流为其提供水汽和能量。同时,强高空辐散、弱垂直风切变以及明显的上升运动,有利于台风“达维”北到东北侧对流云系的发展维持,引发强降水;高空槽带来的冷空气侵入台风环流内部,破坏了它的暖心结构,使得台风“达维”在渤海海面填塞消失。  相似文献   

4.
利用NCEP再分析资料、FY-2E卫星资料和常规观测资料等,采用天气学分析、物理量诊断等方法,对1312号台风"潭美"空心结构特征及成因以及其造成的暴雨天气过程进行了初步分析。结果表明,台风"潭美"深对流云系一块位于台风中心北侧,一块位于南侧,且后期北侧减弱,几乎完全偏向台风的南侧,台风中心周围仅有浅薄稀疏的低云云线。"潭美"动力、热力结构均存在明显空心和不对称性特征,其与中高层气旋性环流偏离、高层辐散不对称、水汽输送不对称等有关;强降水分布与台风不对称性结构及地形等有关。WRF中尺度模式能较好地模拟出不对称性结构以及降水强度和分布。  相似文献   

5.
通过对1306台风“温比亚”(强热带风暴级)登陆后造成广西风灾雨灾的物理量场分析得出:“温比亚”登陆后,水汽辐合中心在“温比亚”移动路径南侧,为强降水提供了充足水汽条件;“温比亚”移动路径南侧出现强烈上升运动的正涡度中心,为区域强降水创造条件;从卫星云图看,本次强降水落区与“温比亚”呈现出的非对称性的偏心结构是分不开的,同时,出现大风与“温比亚”路径、本身强度、移速和副高引导气流等有密切相关.  相似文献   

6.
利用NCEP1°×1°再分析资料,对2015年7月西太平洋洋面上台风"莲花""灿鸿""浪卡"三者共存期间的路径特征、强度变化及相互作用进行了分析。结果表明:1)台风"莲花"与"灿鸿"发生互旋,导致强度较弱的"莲花"路径发生逆时针转向;"灿鸿"与"浪卡"发生明显的相互作用。2)"莲花"的低层水汽通道在互旋过程中被"灿鸿"夺走,后者产生反馈气流补充前者;"浪卡"与"灿鸿"在对流层高层通过水汽"连体"通道进行水汽交换。3)与"莲花"互旋过程中"灿鸿"产生的反馈气流远比相互作用过程中"浪卡"对"灿鸿"的补充气流强,因此相互作用过程结束后"莲花"暖心与涡度继续维持,而"灿鸿"迅速衰弱。4)两个台风相互作用过程的水汽"连体"通道高度不同,台风"莲花"与"灿鸿"相互作用位于对流层低层,而台风"灿鸿"与"浪卡"相互作用发生在对流层高层。  相似文献   

7.
利用常规气象观测资料、NCEP1°×1°逐6h全球格点资料以及区域自动站降水资料、FY-2E卫星云图与多普勒天气雷达拼图资料,分析2013年第6号热带气旋(TC)"温比亚"在广西造成的非对称降水的环境场特征。结果表明,受副热带高压西南侧稳定而深厚的东南气流引导,"温比亚"西北行深入到广西中部,有利于广西出现较大范围暴雨。200hPa上TC流出气流的中心偏于其中心的南侧,为降水不对称分布提供了动力背景;TC风场分布明显不对称,导致涡度、散度动力场结构呈不对称分布;低层辐合区主要分布在TC中心南侧,整层水汽通量辐合中心位于TC中心南侧,从而使暴雨集中在TC中心南侧。环境风垂直切变矢量指向TC移动路径的左侧,有利于TC移动路径左侧出现强的对流及降水,结合水汽辐合条件,可将其作为TC暴雨落区预报的一个判据。相对湿度(RH)呈均匀分布,假相当位温(θse)呈准对称分布,表明TC降水的非对称分布主要由动力因子而非热力因子引起。  相似文献   

8.
利用多普勒天气雷达产品、NCEP1°×1°再分析资料、FY-2E卫星TBB资料、实时探测资料,对2013年发生在湘中一次大暴雨过程进行分析,结果表明:此次暴雨过程是典型的西南低涡东移产生的暴雨.暴雨就发生在低涡东移过程中暖式切变的南侧,充沛的水汽输送和强的整层大气可降水量均为这次大暴雨提供有利的水汽条件.同时卫星云图上典型的U型缺口,与暴雨区有很好的对应关系.  相似文献   

9.
利用NCEP再分析资料,应用WRF模式对2014年6月20—22日江西省北部低涡暴雨过程进行模拟,分析暴雨过程的环流形势、低涡的热力、动力作用和水汽输送特征。结果表明:低层中尺度低涡是此次暴雨过程形成的主要系统,暴雨区位于低涡中心附近和南侧的西南急流出口区,低涡中心上空假相当位温高能舌对应较强降水中心。低涡南侧急流出口区强偏南气流加强,为低涡发展提供了必要的能量和水汽条件,水汽的强辐合中心位于低涡中心的右前方。暴雨过程中整层水汽通量梯度大值区位于低涡东南侧。湿位涡"上正下负"的垂直分布结构有利于强降水的发生,强的负湿位涡度柱与暴雨中心有较好的对应关系。  相似文献   

10.
利用NCEP/NCAR 1°×1°再分析资料、卫星云图等资料,研究了"彩虹"的特点及其原因。结果表明,受西太平洋副热带高压南侧稳定且强劲的东南气流引导,"彩虹"快速向西北方向移动,路径十分稳定;南海西北部较高的海温、南亚高压西退、高层辐散低层辐合增强、强的西南水汽和东南(偏东)水汽输送以及低层弱冷空气卷入导致"彩虹"出现近海加强现象;东南(偏东)风急流不断增强,"彩虹"北侧的水汽条件好、位势不稳定度大、高层辐散低层辐合配置较好,加上其云系分布的不对称以及地形影响,导致"彩虹"中心移动路径北侧的降水远比南侧多。  相似文献   

11.
本文数值模拟研究揭示了台风外区热力不稳定非对称结构对其异常路径的影响问题,提出了台风运动非对称结构的影响,不仅表现在台风涡旋动力结构特征上,而且反映在台风外区三维非对称热力结构特点方面,即包括温、湿不稳定层结分布特征及其强弱程度因素。台风外区不同热力非对称分布特征将导致台风移动轨迹的显著差异,且构成各类“旋转”、“打转”、“转向”等复杂异常路径。  相似文献   

12.
非绝热加热对热带气旋非对称结构影响的数值试验   总被引:4,自引:4,他引:4  
利用含非绝热加热强迫的正压涡度方程。将非绝热加热作适当的参数化处理。对初始对称 热带气旋作了一系列数值试验,结果表明:不仅β项、平流项在热带气旋非对称结构的形成中有重要作用,而且非绝热加热对热带气旋的非对称结构亦有重要影响,从而验证了非绝热加热是热带气旋非对称结构形成的一种可能机制的结论。  相似文献   

13.
利用2009年6月18 ~22日的1°×1°NCEP(美国环境预报中心)再分析资料和TBB(相当黑体亮温)资料等,分析“莲花”的环境场和结构对路径的影响.结果表明:19日11:00 ~20日14:00,“莲花”移动方向与引导气流方向有一定的偏离,这段时间里,“莲花”向偏北方向移动的主要原因是,“莲花”的低层风场存在较明...  相似文献   

14.
山东省远距离热带气旋暴雨研究   总被引:22,自引:2,他引:20  
应用1971-2003年的山东降水资料、常规天气图资料、台风年签和NCEP资料,对在华南沿海登陆和活动的热带气旋在山东造成远距离暴雨的气候特征进行统计分析,对环流形势场进行合成分析.建立了山东省远距离热带气旋暴雨的天气学模型.分别计算分析了山东有和无远距离热带气旋暴雨合成的水汽和温湿能的收支.结果表明:在华南沿海登陆和活动的热带气旋与西风带环流系统和副热带高压相互作用在山东造成的远距离热带气旋暴雨年均2.5次.暴雨的范围广、强度大.出现暴雨的时间比热带气旋登陆时间滞后.在山东造成远距离暴雨的热带气旋在华南沿海登陆时,中心东部有一股东南风或偏南风低空急流指向内陆.中高纬度中低层西风带环流弱,位置偏北.500 hPa西风带中的偏北气流与副高边缘的偏南气流在山东境内汇合.低层850-700 hPa伴有低值系统影响,山东为气旋性环流控制.热带气旋登陆后其中心附近的中低层偏南风急流向北伸展,绕过副高脊线直达山东.在台风中心附近至山东之间建立起水汽和温湿能的输送通道,把高温高湿的暖湿空气源源不断地向山东输送.在台风登陆后12-48小时内,山东暴雨区上空有大量的水汽和温湿能的净流入.暖湿气流与西风带气流相汇合,产生辐合上升,造成暴雨.  相似文献   

15.
热带气旋强度变化研究进展   总被引:78,自引:10,他引:68  
端义宏  余晖  伍荣生 《气象学报》2005,63(5):636-645
自20世纪90年代后期以来,热带气旋强度变化研究越来越受到人们的重视,随着研究的不断深入,热带气旋强度变化研究取得了可喜的进展,文中总结近年来热带气旋强度变化的主要研究成果,主要包括(1)热带气旋的发生、发展和最大可能强度的研究;(2)行星涡度梯度、环境均匀流、环境流场垂直切变以及热带气旋外流与环境流的相互作用对热带气旋强度的影响及物理机制;(3)热带气旋结构与强度的变化关系,着重总结环境流场导致的非对称结构变化而引起的热带气旋强度变化以及对涡旋倾斜发展理论验证,分析了涡旋Rossby波的最新研究;(4)海洋热状况变化以及海洋飞沫对热带气旋强度的影响研究成果。分析指出,今后进一步开展用现代化卫星探测资料研究热带气旋强度变化外,还应加强热带气旋外流与环境流场的相互作用,海-气交界面的参数化问题,热带气旋结构变化与TC强度变化关系以及这种关系的物理本质的研究,通过深入研究,认识热带气旋强度变化的物理机制,提高热带气旋强度变化的预报能力。  相似文献   

16.
The dynamics of tropical cyclone is investigated in a nondivergent barotropic model with no basic flow. The effect of nonlinear term on the movement and development of tropical cyclone is emphatically demonstrated. The advection of asymmetric vorticity by the symmetric flow(AAVS) produces the small-scale gyres(SSGs). The SSGs counterclockwise rotate around the tropical cyclone center. The interaction of SSGs with the large-scale beta gyres(LSBGs) leads to the oscillation in translation speed and vacillation in translation direction for tropical cyclone. The advection of symmetric vorticity by the asymmetric flow(ASVA) steers the symmetric circulation of tropical cyclone. The ventilation flow vector determined by the asymmetric flow is close correlated with the motion vector of tropical cyclone. The nonlinear advection of relative vorticity is an order of magnitude greater than the linear advection of planetary vorticity, However, the asymmetric circulation created by the planetary vorticity advection provides a background condition for anomalous motions of the tropical cyclone. The combination of the linear and nonlinear effects results in accelerated, decelerated, changing direction and/or counterclockwise looping motions of the tropical cyclone.  相似文献   

17.
The dynamics of tropical cyclone is investigated in a nondivergent barotropic model with nobasic flow. The effect of nonlinear term on the movement and development of tropical cyclone isemphatically demonstrated. The advection of asymmetric vorticity by the symmetric flow (AAVS)produces the small-scale gyres (SSGs). The SSGs counterclockwise rotate around the tropicalcyclone center. The interaction of SSGs with the large-scale beta gyres (LSBGs) leads to theoscillation in translation speed and vacillation in translation direction for tropical cyclone. Theadvection of symmetric vorticity by the asymmetric flow (ASVA) steers the symmetric circulationof tropical cyclone. The ventilation flow vector determined by the asymmetric flow is closecorrelated with the motion vector of tropical cyclone. The nonlinear advection of relative vorticityis an order of magnitude greater than the linear advection of planetary vorticity, However, theasymmetric circulation created by the planetary vorticity advection provides a background conditionfor anomalous motions of the tropical cyclone. The combination of the linear and nonlinear effectsresults in accelerated, decelerated, changing direction and/or counterclockwise looping motions ofthe tropical cyclone.  相似文献   

18.
邹力  王云峰  姜勇强  吕梅  邹勋 《气象科学》2016,36(3):366-373
本文利用三维变分同化系统(WRFDA),设计了4个同化试验方案,将ATOVS卫星亮温资料直接同化到中尺度数值模式(WRF)中,研究同化ATOVS不同卫星亮温资料对2009年04号热带风暴“浪卡”数值模拟的影响。结果表明,直接同化卫星亮温资料能够改善初始场结构(大气流场、温度场),尤其是对西太平洋反气旋系统,进而提高对热带气旋路径的模拟精度。同化不同类型的ATOVS卫星亮温资料对于热带气旋的移动路径有着不同程度的改善,其中以HIRS3和HIRS4资料同化对热带气旋移动路径改善效果最好。  相似文献   

19.
Chaba (0417) 台风变性前后热力结构特征   总被引:4,自引:0,他引:4       下载免费PDF全文
运用美国NOAA-15极轨气象卫星高分辨率的AMSU探测资料, 结合NCEP/NCAR再分析资料和GMS-5气象卫星红外云顶亮温(TBB)资料, 对2004年Chaba(0417)台风(TC)变性前后的热力结构特征进行分析。发现变性前TC暖核结构呈对称分布, 在高空存在一强暖心; 变性后原TC对称暖心结构消失, 存在于温带气旋上空的相对暖区呈现出倾斜的非对称分布, 在高、低层各形成一弱的暖区中心, 锋面的斜压特性显著。通过热力结构对比, 进一步揭示出TC在向高纬度方向移动时, 与中纬度系统相互作用发生变性, 实质上是两个相继过程, 即热带气旋的消亡和温带气旋的生成发展。TC西侧高空干冷空气的入侵下沉, 破坏了其发展所需的水汽条件, 造成TC对称暖核结构的削弱和损毁。与此同时, 在TC残留区域, 由于空气较暖且存在气旋式环流, 暖空气在东侧呈气旋式上升, 与西侧高空入侵下沉的干冷空气形成偶极, TC暖气团与冷空气相交发展形成斜压的结果, 则为温带气旋的生成和发展创造了有利条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号