首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
2.
Rainfall infiltration can cause a dramatic decrease of suction in unsaturated soils and, consequently, of shear strength, triggering various instability phenomena, such as the slip of steep surface soil layers. Swelling of cracked soils and capillary barrier effects, induced by fine-grained soils overlying a more permeable material, can also affect water flow through this type of soil systems. In the past, few studies on infiltration and rainfall-induced landslides considered the simultaneous effects of surface cracks, swelling materials, and/or the capillary barrier phenomenon. To this purpose, this paper presents the results obtained by a dual-permeability model, which simulates water flow through a fractured swelling soil overlying a more permeable soil and focusing on the influence of these phenomena on triggering of landslides. Numerical results show that for high-intensity precipitations, flow through fractures quickly reaches significant depths and the capillary barrier is broken, while soil swelling leads to a uniform narrowing of cracks. On the other hand, for low-intensity precipitations, fracture flow and swelling are limited only to the first 30–50 cm of the topsoil, while cracks almost completely closed. Evaluations of the slope stability show that prolonged low-intensity rainfalls might be more dangerous than short high-intensity rains in triggering surface landslides.  相似文献   

3.
张帆  周辉  吕涛  胡大伟  盛谦  肖本林 《岩土力学》2014,35(10):2888-2893
第I部分[1]提出了一个两相流-岩层流固耦合模型,为了应用该模型对超临界二氧化碳注入过程中岩层力学响应和流体运移进行评估,采用Comsol商业程序,提出了相应的数值分析方法。给出了模型参数的确定方法,并采用室内试验数据对模型进行了验证;通过现场的温度和压力条件以及岩层的Van Genuchten参数,确定了二氧化碳的密度和黏度。基于三轴压缩试验、有效应力系数试验和渗透性试验,对力学模型及耦合关系中的参数进行了验证。最后给出一个应用实例,该岩层位于地下680700 m深度,宽度为100 m,分析了不同二氧化碳注入速率下注入压力的演化规律,得到了岩层中孔隙压力、竖向应变和损伤变量的分布,并对二氧化碳的运移规律也进行了分析。研究结果为超临界二氧化碳注入过程中岩层力学响应和流体运移的评估提供了理论基础。  相似文献   

4.
张帆  周辉  吕涛  胡大伟  盛谦  胡其志 《岩土力学》2014,35(9):2549-2554
目前国内关于CO2咸水层封存尚处于先导性和试验性研究阶段,对超临界CO2注入过程中岩层力学响应和流体运移的理论与技术方面的认识还不完善。为研究CO2注入下岩层变形和流体运移,基于两相流动数学模型,给出了超临界CO2和咸水质量守恒方程;采用毛细压力和有效饱和度的关系式,将质量守恒方程变换成以毛细压力为变量的表达式,以便于考虑流体压力对岩层的影响。提出了无流体压力影响下的岩层力学本构模型,该模型能够同时考虑岩层的塑性变形和损伤。分析了两相流体-岩层相互作用机制:一方面,采用有效应力原理,考虑流体压力对岩层的力学影响;另一方面,通过岩层固有渗透率变化考虑岩层变形对流体运移的影响。  相似文献   

5.
赛盛勋  邱昆峰 《岩石学报》2020,36(5):1547-1566

位于胶东东部苏鲁地体内的乳山金矿曾是我国单脉金储量最大的矿床,其主矿脉为一具有复杂内部结构的富金石英脉,形成于包含周期性流体活动的增量增长过程。该矿床成矿流体演化、精细成矿过程和金沉淀机制仍缺乏有效制约。本研究在详细结构构造观察基础上,在代表单次成矿流体活动的同一石英层内识别出分别代表三个连续成矿阶段的三类黄铁矿,开展激光剥蚀-电感耦合等离子质谱原位微量元素测试。结果显示不同阶段黄铁矿微量元素成分基本一致,Co、Ni、As等元素因成矿流体间歇性压力波动而周期性地以不同含量进入黄铁矿,形成这些元素的韵律成分环带。Au等其他微量元素在不同阶段黄铁矿内均匀分布,其分布行为受压力波动影响较小。间歇性压力波动和由此引发的周期性流体不混溶使乳白色粗粒石英和黄铁矿、烟灰色中细粒他形石英和黄铁矿依次大规模沉淀,金银碲化物、银金矿、自然金和方铅矿、闪锌矿、黄铜矿等硫化物随后在愈加富Au、Ag、Te、Pb、Zn和Cu等的流体中近于同时沉淀。在此过程中成矿流体虽整体表现为还原性,但其还原性随着压力波动而不断递减氧化性持续增加;流体碲逸度早期保持稳定,后期则大幅上升。金以可见金形式充填先成黄铁矿裂隙或沿黄铁矿边缘分布,周期性流体压力波动引发的间歇性流体不混溶导致H2S、CO2和CH4等气体大规模逸出,金硫络合物失稳分解,金被吸附至黄铁矿内水力致裂形成的裂隙面发生沉淀。排除了先成黄铁矿内不可见金再活化为可见金的可能性,认为周期性流体压力波动引起的流体不混溶是引发乳山金矿床可见金高效沉淀的关键机制。

  相似文献   

6.
Injecting fluid into subsurface reservoirs is a hydromechanical coupling process that can induce heaving of the ground surface. The presence of clayey interbeds in the reservoir can have considerable influence on the surface uplift. We used a numerical method to investigate this process. We found that different locations have different impacts on the surface uplift. We applied the orthogonal experimental design using the Taguchi method for extensive parametric analysis and determined the most influential factor. Finally, we analyzed the low-permeable effect of the interbed due to its low permeability, compared to the reservoir.  相似文献   

7.
A dynamic effective stress analysis with the finite element method has long been recommended to predict the liquefaction phenomena of sandy soil by authors and Zienkiewicz et al. as well as the similar approaches by the others. Our approach of the analysis is summarized in the first.

Until recently, however, these approaches has not commonly been used as the means of design, although its capability of prediction is appreciated by geotechnicians. This method has been neglected because of the lack of verification studies of soil models of sand and mathematical formulation for boundary problems of liquefaction phenomena. Therefore the verification of the numerical method to evaluate liquefaction potential are urgent requirement of the recent engineering practice. To respond this requirement, extensive numerical studies on the liquefation simulations are performed by DIANA program for shaking table tests which have been conducted by the authors. The test models are soil-structure type models with combination of homogenous ground and partially improved ground by compaction.

The good performance of our approach is proved by the results of numerical simulation showing good agreement with experimental data in terms of response acceleration, excess pore pressure, and deformation profile. It is also demonstrated that the numerical results can provide substantial information to understand the mechanisms of soil ground behavior which is not easily obtained by experiments.

The procedure to identify soil constants for the reflecting surface model is also reported in details.  相似文献   


8.
《Comptes Rendus Geoscience》2018,350(8):464-475
Seismicity induced by fluid perturbations became an important societal concern since felt earthquakes (Mw up to 6) occurred after anthropogenic activities. In order to mitigate the risks associated with undesired seismicity, as well as to be able to use the micro-seismicity as a probe for in-depth investigation of fluid-driven processes, it is of crucial importance to understand the links between seismicity, fluid pressure and flow. We have developed a series of in-situ, decameter-scale experiments of fault zone reactivation by controlled fluid injection, in order to improve the near-source geophysical and hydromechanical observations. The deployed geophysical monitoring close to the injection allows one to cover the full frequency range of the fault responses from the static deformation to the very high-frequency seismic emissions (up to 4 kHz). Here, we focus on the microseismicity (Mw  –4 to –3) recorded during two fluid injection experiments in low-permeable shale and highly-fractured limestone formations. In both experiments, the spatio-temporal distribution of the seismic events, the energy balance, and the seismic velocity changes of the fractured medium show that most of the deformation does not actually emit seismic signals. The induced deformation is mainly aseismic. Based on these high-resolution multiparametric observations in the near-field, we therefore proposed a new model for injection-induced seismicity: the seismicity is not directly induced by the increasing fluid pressure, but it is rather triggered by the stress perturbations transferred from the aseismic motion caused by the injection.  相似文献   

9.
An important part of our global wealth depends on the extraction of fluids from porous media. More recently, sequestration of carbon dioxide (rmCO2) into deep geological layers as a possible measure to mitigate climate change has increased interest in fluid injection into porous media. Sophisticated numerical models play an important role in managing the uncertainties related to the subsurface, and finite element methods are the most versatile tool allowing the coupling of fluid flow, geomechanics and other physical processes. This paper gives insight into two important aspects of fluid injection/extraction in porous media: the correct modeling of the bore hole through specification of initial stresses, which together with a fully coupled strategy allows simulation of nonlinear poromechanics, and the imposition of appropriate boundary conditions that allow the controlled injection/extraction of a total specified amount of fluid in an anisotropic porous medium, without exceeding a safe operating pressure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
An experimental sedimentary system comprising a tank of 4 m3 capacity equipped for monitoring chemical, mineralogical, and biological changes has been used to investigate the mechanisms by which Pb and Zn may be removed from solution in sulphide-deficient brines and concentrated in sediments. In the experimental system, Pb and Zn together with ferric hydroxides (probably lepidocrosite), organic matter, and a variety of calcium and magnesium carbonate phases, were deposited from an aerobic, highly saline, Pb and Zn-rich brine supporting a vigorous growth of the green alga Chlorococcus sp. The resultant organic and Febearing carbonate sediments contained Pb up to 0.5% and Zn up to 1.0%. Overall concentration factors compared with the overlying brine were in the range 200 to 300. Pb was removed from solution mainly by coprecipitation with carbonate phases; the Pb content of the two major carbonate phases decreasing in the order aragonite to monohydrocalcite. Zn was deposited in association with the Fe-bearing minerals. Complexing of Pb and Zn by organic matter, and the direct precipitation of Pb and Zn carbonates and/or hydroxides made, at most, a secondary contribution to the overall concentration process.  相似文献   

11.
Simulation of a slope failure induced by rainfall infiltration   总被引:3,自引:0,他引:3  
On 1 November 2000, Typhoon Xangsane brought heavy rainfall that caused serious disasters in many areas of northern Taiwan. A slope located at the upstream of the Shanher Stream in Taipei County failed and induced a debris flow. To investigate the environmental influencing factors that caused the slope failure and the debris flow disaster, laboratory tests and slope stability analysis were performed. A series of tests were conducted to obtain the mechanical and hydraulic properties of the soil under unsaturated and saturated conditions. Then, limit equilibrium method and numerical analysis simulating the process of infiltration were utilized to explore the slope stability, the stress variation, and the pore-water pressure in the soil during rainwater infiltration. The results of the stability analysis show that the rainfall intensity–time history is the most significant influence factor, and the analyzed failure zone and the predicted time when the slope failed are comparable to the field observation.  相似文献   

12.
This paper investigates rapid channelized debris flow related to rainfalls in small alpine basins. Its goal is to evaluate and correlate different geological and technical aspects with predisposing and triggering factors that can control these phenomena. The study area is the upper part of the Susa Valley where 12 small basins were selected. For each of them, lithological, geomorphological, climatic and technical information were mapped and analysed. Debris-flow triggering conditions, flow and depositional processes were related to physical characteristics of the basin that can be easily measured and quantified. At least three different groups of basins were found: G1) basins with one event each 4–6 years, characterised by massive or blocky calcareous rocks, G2) basins with more than one event per year that show an abundance of layered or sheared fine-grained rocks and G3) basins with recurrence levels exceeding 10 years, activated only by heavy and prolonged rainfalls, marked by massive or blocky coarse-grained igneous rocks. Furthermore, important morphometric differences were found. These considerations are useful in terms of hazard zonation and risk mitigation.  相似文献   

13.
The injection of fluid into a rock mass results in variations of effective stresses that sometimes generate induced seismicity. These effective stress field variations depend on the diffusion process, which depends, in turn, on the magnitude of the pore pressure variation relative to the total stress. Four diffusion mechanisms are distinguished: diffusion through a poroelastic rock mass, and diffusion in preferential directions controlled either by slip along preexisting fractures, or by the development of fresh shear zones, or by hydraulic fracturing. More importantly, in some instances, this diffusion process also generates non-seismic motions that, in turn, influence the seismic activity, in particular when injection stops.  相似文献   

14.
页岩致密且结构复杂,对其孔隙结构进行定量表征一直是页岩储层研究的重点和难点,因其能够为页岩油气储层评价和甜点确定提供重要信息。通过系统梳理已有研究成果,介绍了以压汞法和气体吸附法为代表的流体注入法,简述了能够影响测试结果的因素,指出了目前页岩全孔径孔隙结构表征的问题及发展方向。分析表明,颗粒样气体吸附法和块(柱)压汞法表征结果的数据匹配性差,整合难度大;同时由上述两种方法联合所获得的表征结果也无法被其他独立测试所验证。进一步指出采用颗粒样代替传统块(柱)样进行页岩压汞测试可以提高数据质量,也是未来方法联用的发展方向,其中样品颗粒堆积孔进汞量校正、颗粒样粒径选择、多方法数据匹配是实现页岩全孔径孔隙结构定量表征的关键。   相似文献   

15.
16.
Apatite is a versatile mineral crystallizing at different stages of silicic magma evolution. Its composition may record that of magma, but could also be affected by interaction with fluids. The focus of this study is the well-recognized magma mingling process that was previously detected using plagioclase composition and in this study complementary record is sought in apatite. The apatite was analysed in two dioritic enclaves (primitive and hybrid) and host quartz monzonite, which is an igneous rock emplaced at ca. 340 Ma in mylonitized Góry Sowie gneisses (NE Bohemian Massif). The apatite was analysed in-situ by microprobe that allowed for chemical characterization of different apatite populations in quartz monzonite and analyses of thin acicular apatite in the enclaves. Apatite population in the quartz monzonite was chemically distinct from that in both enclave types and characterized by higher Y and lower Ce contents, such values are usually typical for peraluminous magmas. As such, the apatite transfer from felsic to mafic magma should be well recorded in apatite composition, which was not the case. Monzonite apatite composition was not commonly observed in the hybrid enclave despite massive plagioclase transfer and only rare resorbed cores with low Ce and Y contents were present. However, such low Ce and Y cores crystalized at the latest stage of apatite crystallization in the quartz monzonite, whereas the plagioclase transfer was an early episode. Therefore, we conclude that apatite transfer was limited during mingling and the apatite composition in the quartz monzonite is best explained by an early Cl-Ce-rich fluid removal and then fractional crystallization, while apatite in the primitive enclave is affected only by fractional crystallization. Altogether, Ce and Y composition of apatite is a valuable tool to record diverse magmatic processes such as fluid removal and precipitation from fluid in addition to fractionation of different REE phases and should be further explored.  相似文献   

17.
The Bismark deposit (8.5 Mt at 8% Zn, 0.5% Pb, 0.2% Cu, and 50 g/t Ag) located in northern Mexico is an example of a stock-contact skarn end member of a continuum of deposit types collectively called high-temperature, carbonate-replacement deposits. The deposit is hosted by massive sulfide within altered limestone adjacent to the Bismark quartz monzonite stock (~42 Ma) and the Bismark fault. Alteration concurrently developed in both the intrusion and limestone. The former contains early potassic alteration comprising K-feldspar and biotite, which was overprinted by kaolinite-rich veins and alteration and later quartz, sericite, and pyrite with minor sphalerite and chalcopyrite. Prograde exoskarn alteration in the limestone consists of green andradite and diopside, and transitional skarn comprising red-brown andradite, green hedenbergite and minor vesuvinite, calcite, fluorite, and quartz. The main ore stage post-dates calc-silicate minerals and comprises sphalerite and galena with gangue pyrite, pyrrhotite, calcite, fluorite, and quartz. The entire hydrothermal system developed synchronously with faulting. Fluid inclusion studies reveal several distinct temporal, compositional, and thermal populations in pre-, syn- and post-ore quartz, fluorite, and calcite. The earliest primary fluid inclusions are coexisting vapor-rich (type 2A) and halite-bearing (type 3A; type 3B contain sylvite) brine inclusions (32 to >60 total wt% salts) that occur in pre-ore fluorite. Trapping temperatures are estimated to have been in excess of 400 °C under lithostatic pressures of ~450 bar (~1.5 km depth). Primary fluid inclusions trapped in syn-ore quartz display critical to near critical behavior (type 1C), have moderate salinity (8.4 to 10.9 wt% NaCl equiv.) and homogenization temperatures (Th) ranging from 351 to 438 °C. Liquid-rich type 1A and 1B (calcite-bearing) inclusions occur as primary to secondary inclusions predominantly in fluorite and show a range in Th (104–336 °C) and salinity (2.7–11.8 wt% NaCl equiv.), which at the higher Th and salinity ranges overlap with type 1C inclusions. Oxygen isotope analysis was carried out on garnet, quartz, and calcite (plus carbon isotopes) in pre-, syn-, post-ore, and peripheral veins. Pre-ore skarn related garnets have a δ18Omineral range between 3.9 and 8.4‰. Quartz from the main ore stage range between 13.6 and 16.0‰. Calcite from the main ore stage has δ13C values of –2.9 to –5.1‰ and δ18O values of 12.3 to 14.1‰, which are clearly distinct from post-ore veins and peripheral prospects that have much higher δ18O (16.6–27.3‰) and δ13C (1.3–3.1‰) values. Despite the numerous fluid inclusion types, only two fluid sources can be inferred, namely a magmatic fluid and an external fluid that equilibrated with limestone. Furthermore, isotopic data does not indicate any significant mixing between the two fluids, although fluid inclusion data may be interpreted otherwise. Thus, the various fluid types were likely to have formed from varying pressure–temperature conditions through faulting during exsolution of magmatic fluids. Late-stage hydrothermal fluid activity was dominated by the non-magmatic fluids and was post-ore.  相似文献   

18.
岩石中的渗透率、流体流动及热液成矿作用   总被引:4,自引:0,他引:4  
热液成因的固体金属矿床形成过程中都曾拥有一段流动的历史。成矿物质以溶液的形式从矿源地穿过孔隙或断裂达到了现在的栖身之所,在此过程中流体通过的路径决定了它们的走向,而溶液本身也改变了路径的特征。因此,对于此类矿床的研究不能仅仅囿于眼之所见,而应将古流体流动的观念融入其中,并考察它们的跋涉之路。文中总结了近年来国内外在岩石孔隙、断裂介质及与其相关渗透率对热液成矿作用的控制等领域的研究成果和最新进展,对岩石渗透率、渗透率的影响因素、岩石中流体流动的特征等问题进行了阐述,讨论了渗透率对于热液成矿作用深度、成矿规模、矿质沉淀机制等方面的重要影响,藉此在固体金属矿床研究中强化流"体运动"的观念,并促进构造地质学和成矿作用地球化学间一个新研究方向的发展。  相似文献   

19.
20.
In the Schwarzwald area, southwest Germany, more than 400 hydrothermal veins hosting different gangue and ore mineral assemblages cross-cut the crystalline basement rocks. Many of the post-Variscan fluorite-barite-quartz veins are considered to have precipitated through mixing of a deep saline brine with meteoric, low salinity waters. This hypothesis was tested using carbon, sulfur, and oxygen isotope data of sulfides, sulfates and calcite, coupled with fluid inclusion studies. Primary hydrothermal calcites from the deposits show a positive correlation of their δ13C (V-PDB) and δ18O (V-SMOW) values, which range from −12 to −3‰ and from 12 to 18.5‰, respectively. Carbon and oxygen isotope compositions of paragenetically young, remobilized calcite types are shifted towards higher values and range from −12 to −1‰ and from 20 to 25‰, respectively. We developed an improved calculation procedure for modeling the covariation of carbon and oxygen isotopes in calcite resulting from mixing of two fluids with different isotopic compositions and total carbon concentrations. In our model, the carbon speciation in the two model fluid end-members and the fluid mixtures are calculated using a speciation and reaction path code. The carbon and oxygen isotope covariation of primary Schwarzwald calcites can effectively be modeled by a mixing trend of a deep saline brine and a meteoric, low salinity water. Sulfur isotope data of barites from 44 hydrothermal fluorite-barite-quartz veins vary from 9 to 18‰ (CDT), sulfide ore minerals show δ34S values between −14.4 and 2.9‰. Calculated sulfide-sulfate equilibrium temperatures are in the range between 300 and 350 °C. These temperatures differ significantly from the formation temperatures of 150 to 200 °C of most of the deposits as estimated from fluid inclusions, and are interpreted as preserved paleotemperatures of the deep aquifer. This assumption has been carefully checked against possible contamination of an equilibrated sulfide-sulfate system from the deep aquifer with sulfate from surface-derived sources, considering also the kinetics of the sulfide-sulfate isotope exchange. A combination of the S isotopic results with microthermometric fluid inclusion data and constraints on the temperature of the meteoric water was used to calculate mixing ratios of the two fluid end-members. The results indicate that mass fractions of the deep saline brine in the mixed fluid were between 0.5 and 0.75. Considering all geologic, geochemical and isotopic information, we propose that the majority of the post-Variscan hydrothermal veins in the Schwarzwald area were precipitated by district-scale mixing of a homogeneous deep saline brine with meteoric waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号