共查询到20条相似文献,搜索用时 15 毫秒
1.
Zircon U-Pb and Lu-Hf isotope constraints on Archean crustal evolution in Southeastern Guyana Shield
The southeastern Guyana Shield,northeast Amazonian Craton,in the north of Brazil,is part of a widespread orogenic belt developed during the Transamazonian orogenic cycle(2.26-1.95 Ga)that includes a large Archean continental landmass strongly reworked during the Transamazonian orogeny,named Amapa Block.It consists mainly of a high-grade metamorphic granulitic-migmatitic-gneiss complex,of Meso-to Neoarchean age and Rhyacian granitoids and supracrustal sequences.For the first time,coupled U-Pb and Lu-Hf isotope data were obtained on zircon by LA-ICP-MS from five tectono-stratigraphic units of the Archean basement and one Paleoproterozoic intrusive rock,in order to investigate the main episodes of crustal growth and reworking.Whole-rock Sm-Nd isotope data were compared to the zircon Lu-Hf data.Three main magmatic episodes were defined by U-Pb zircon dating,two in the Mesoarchean(~3.19 Ga and 2.85 Ga)and one in the Neoarchean(~2.69-2.65 Ga).SubchondriticεHf(t)values obtained for almost all investigated units indicate that crustal reworking processes were predominant during the formation of rocks that today make up the Amapa Block.Hf-TDMC model ages,ranging from2.99 Ga to 3.97 Ga,indicate that at least two important periods of mantle extraction and continental crust formation occurred during the Archean in southeastern Guyana Shield,an older one in the Eoarchean(~4.0 Ga)and a younger one in the Mesoarchean(~3.0-3.1 Ga).The latter is recognized as an important period of crustal accretion worldwide.The recognition of an Eoarchean episode to the southeastern most part of the Guyana Shield is unprecedented and was not recorded by whole-rock Sm-Nd data,which were restricted to the Meso-Paleoarchean(2.83 Ga to 3.51 Ga).This finding reveals t hat continental crust generation in the Amazonian Craton began at least 500 Ma earlier than previously suggested by the SmNd systematics. 相似文献
2.
Lúcia T. da Rosa-Costa Jean-Michel Lafon Alain Cocherie Claude Delor 《Journal of South American Earth Sciences》2008,26(4):445-462
The Amapá Block, southeastern Guiana Shield, represents an Archean block involved in a large Paleoproterozoic belt, with evolution related to the Transamazonian orogenic cycle (2.26 to 1.95 Ga). High spatial resolution dating using an electron-probe microanalyzer (EPMA) was employed to obtain U–Th–Pb chemical ages in monazite of seven rock samples of the Archean basement from that tectonic block, which underwent granulite- and amphibolite-facies metamorphism. Pb–Pb zircon dating was also performed on one sample.Monazite and zircon ages demonstrate that the metamorphic overprinting of the Archean basement occurred during the Transamazonian orogenesis, and two main tectono-thermal events were recorded. The first one is revealed by monazite ages of 2096 ± 6, 2093 ± 8, 2088 ± 8, 2087 ± 3 and 2086 ± 8 Ma, and by the zircon age of 2091 ± 5 Ma, obtained in granulitic rocks. These concordant ages provided a reliable estimate of the time of the granulite-facies metamorphism in the southwest of the Amapá Block and, coupled with petro-structural data, suggest that it was contemporaneous to the development of a thrusting system associated to the collisional stage of the Transamazonian orogenesis, at about 2.10–2.08 Ga.The later event, under amphibolite-facies conditions, is recorded by monazite ages of 2056 ± 7 and 2038 ± 6 Ma, and is consistent with a post-collisional stage, marked by granite emplacement and coeval migmatization of the Archean basement along strike-slip shear zones. 相似文献
3.
H. Thveniaut C. Delor J.M. Lafon P. Moni P. Rossi D. Lahondre 《Precambrian Research》2006,150(3-4):221-256
We present a comprehensive paleomagnetic study on Paleoproterozoic (2173–2060 Ma) plutonic and metamorphic rocks from French Guiana, representative of the full range of the main Transamazonian tectonothermal steps. Twenty-seven groups of directions and poles were obtained from combination of 102 sites (613 samples) based on age constraint, similar lithology and/or geographical proximity. Paleomagnetic results show variations between rocks of different ages which are supposed to be characteristic of magnetizations acquired during uplift and cooling of successive plutonic pulses and metamorphic phases. This is also reinforced by positive field tests (baked contact and reversal tests). Recent U/Pb and Pb/Pb on zircon and complementary 40Ar/39Ar on amphibole and biotite allow questioning the problem of magnetic ages relative to rock formation ages. Estimated magnetic ages, based on amphibole dating as a proxy, enable us to construct a Guiana Shield apparent polar wander path for the 2155–1970 Ma period. It is also possible to present paleolatidudinal evolution and continental drift rates related to specific Transamazonian tectonic regimes.French Guiana and probably the Guiana Shield were located at the Equator from ca. 2155 to 2130 Ma during the Meso-Rhyacian D1 magmatic accretion phase, related to subduction of Eorhyacian oceanic crust. After closure of the Eorhyacian Ocean and collision of West African and Amazonian plates, the Guiana Shield moved. The first evolution towards 60° latitude, occurs after 2080 Ma, during the Neorhyacian D2a post collisional sinistral transcurrent phase. During the Late Rhyacian D2b phase, up to 2050 Ma, the Guiana Shield reaches the pole and starts to move to lower latitudes on an opposite meridian. By the Orosirian D2c phase, from ca. 2050 to 1970 Ma, the Guiana Shield reaches the Equator.Based on the amphibole 40Ar/39Ar dates, we estimate the continental drift between 12 and 16 cm/y for the Meso to Late Rhyacian period followed by a lower rate between 9 and 14 cm/y up to Orosirian time. This study highlights rock ages and magnetic ages are prerequisite to any continental reconstruction especially when it is shown continental drift is important for a 100–200 Ma time period. Our results confirm the possibility of APWP construction on Paleoproterozoic plutonic rocks but suggest improvement will rely on the combination with multidisciplinary approaches such as structural geology and multi-method radiometric dating. 相似文献
4.
Cludia Lima Queiroz Hardy Jost Luiz Carlos da Silva Neal J. McNaughton 《Journal of South American Earth Sciences》2008,26(1):100-124
The paper is a first attempt to unravel the Archean multi-stage metaplutonic assemblage of the Meso/Neoarchean terrane of the State of Goiás, Central Brazil, by means of the U–Pb SHRIMP zircon and Sm–Nd techniques. Two stages of granitic plutonism, spanning ca. 140 m.y., were precisely established for the accretion of the gneiss protoliths. The earliest stage embraces tonalitic to granodioritic and minor granitic orthogneisses with Nd juvenile signature, emplaced from ca. 2845 to ca. 2785 Ma, interpreted as the roots of an early arc. Inherited zircon xenocrysts and Nd isotopic data indicate that the juvenile magmas underwent contamination from a sialic crust as old as 3.3 Ga, from which there are, so far, no recognizable exposures. The second stage comprises granodioritic to granitic gneisses and lasted from ca. 2711 to 2707 Ma. Based on their Nd isotopic signatures and on inherited zircon crystals, their protoliths are interpreted as dominantly crustal-derived. The SHRIMP data from zircon crystals did not depict a Paleoproterozoic overprinting on the Archean gneisses, which is due to geological processes with prevailing temperatures below the isotopic stability of the U/Pb/Th system in the mineral. These processes comprise crustal extension and intrusion of a mafic dike swarm at ca. 2.3 Ga, followed by low grade events mostly related to shear zones between ca. 2.15 and 2.0 Ga. The study also revealed the extent of the Pan- African tectono-thermal overprinting on the Archean orthogneisses. Most of the zircon populations show morphological evidence of metamorphic peripheral recrystallization dated between ca. 750 and 550 Ma. One of the banded gneisses with a crystallization age of ca. 2700 Ma (2σ) has a more complex zircon population including magmatic new grains, which yielded a precise 206Pb/238U crystallization age of 590 ± 10 Ma (2σ). These new grains are interpreted to have grown in anatectic veins injected within strongly sheared gneiss.The data characterize a widespread Pan-African-aged metamorphic overprinting, culminating with localized anatexis of the Archean orthogneisses. 相似文献
5.
Roberto Dall'Agnol Nilson P. Teixeira O. Tapani Rm Candido A.V. Moura Moacir J.B. Macambira Davis C. de Oliveira 《Lithos》2005,80(1-4):101-129
Three Paleoproterozoic A-type rapakivi granite suites (Jamon, Serra dos Carajás, and Velho Guilherme) are found in the Carajás metallogenic province, eastern Amazonian craton. Liquidus temperatures in the 900–870 °C range characterize the Jamon suite, those for Serra dos Carajás and Velho Guilherme are somewhat lower. Pressures of emplacement decrease from Jamon (3.2±0.7 kbar) through Serra dos Carajás (2.0±1.0 kbar) to Velho Guilherme (1.0±0.5 kbar). Oxidizing conditions (NNO+0.5) characterized the crystallization of the Jamon magma, the Velho Guilherme magmas were reducing (marginally below FMQ), and the Serra dos Carajás magmas were intermediate between the two in this respect. The three granite suites have Archean TDM model ages and strongly negative Nd values (−12 to −8 at 1880 Ma), and they were derived from Archean crust. The Jamon granite suite may have been derived from a quartz dioritic source, and the Velho Guilherme granites from K-feldspar-bearing granitoid rocks with some sedimentary input. The Serra dos Carajás granites either had a somewhat more mafic source than Velho Guilherme or were derived by a larger degree of melting. Underplating of mafic magma was probably the heat source for the melting. The petrological and geochemical characteristics of the Carajás granite suites imply considerable compositional variation in the Archean of the eastern Amazonian craton. The oxidized Jamon suite granites are similar to the Mesoproterozoic magnetite-series granites of Laurentia, and they were derived from Archean igneous sources that were more oxidized than the sources of the Fennoscandian rapakivi granites. The Serra dos Carajás and Velho Guilherme granites approach the classic reduced rapakivi series of Fennoscandia and Laurentia. No counterparts of the Mesoproterozoic two-mica granites of Laurentia have been found, however. Following the model of Hoffman [Hoffman, P., 1989. Speculations on Laurentia's first gigayear (2.0 to 1.0 Ga). Geology 17, 135–138], the origin of the 1.88 Ga Carajás granites is related to a mantle superswell beneath the Trans-Amazonian supercontinent. This caused breakup of the continent and was associated with magmatic underplating and resultant crustal melting and generation of A-type granite magmas. The Paleoproterozoic continent that included the Archean and Trans-Amazonian domains of the Amazonian craton was assembled at 2.0 Ga; its disruption was initiated at 1.88 Ga, at least 200 Ma earlier than in Laurentia and Fennoscandia. The Carajás granites were related to the breakup of the supercontinent, not to subduction processes. 相似文献
6.
《地学前缘(英文版)》2022,13(4):101402
The Archean Eon was a time of geodynamic changes. Direct evidence of these transitions come from igneous/metaigneous rocks, which dominate cratonic segments worldwide. New data for granitoids from an Archean basement inlier related to the Southern São Francisco Craton (SSFC), are integrated with geochronological, isotopic and geochemical data on Archean granitoids from the SSFC. The rocks are divided into three main geochemical groups with different ages: (1) TTG (3.02–2.77 Ga); (2) medium- to high-K granitoids (2.85–2.72 Ga); and (3) A-type granites (2.7–2.6 Ga). The juvenile to chondritic (Hf-Nd isotopes) TTG were divided into two sub-groups, TTG 1 (low-HREE) and 2 (high-HREE), derived from partial melting of metamafic rocks similar to those from adjacent greenstone belts. The compositional diversity within the TTG is attributed to different pressures during partial melting, supported by a positive correlation of Dy/Yb and Sr/Zr, and batch melting calculations. The proposed TTG sources are geochemically similar to basaltic rocks from modern island-arcs, indicating the presence of subduction processes concomitant with TTG emplacement. From ~2.85 Ga to 2.70 Ga, the dominant rocks were K-rich granitoids. These are modeled as crustal melts of TTG, during regional metamorphism indicative of crustal thickening. Their compositional diversity is linked to: (i) differences in source composition; (ii) distinct melt fractions during partial melting; and (iii) different residual mineralogies reflecting varying P–T conditions. Post-collisional (~2.7–2.6 Ga) A-type granites reflect rifting in that they were closely followed by extension-related dyke swarms, and they are interpreted as differentiation or partial melting products of magmas derived from subduction-modified mantle. The sequence of granitoid emplacement indicates subduction-related magmatism was followed by crustal thickening, regional metamorphism and crustal melting, and post-collisional extension, similar to that seen in younger Wilson Cycles. It is compelling evidence that plate tectonics was active in this segment of Brazil from ~3 Ga. 相似文献
7.
Luiz Jos Homem D'el-Rey Silva Elton Luiz Dantas Joo Batista Guimares Teixeira Jorge Henrique Laux Maria da Glria da Silva 《Gondwana Research》2007,12(4):454-467
The Curaçá terrane is part of the Itabuna–Salvador–Curaçá (I–S–C) Paleoproterozoic orogen in the São Francisco craton, northeastern Brazil, and comprises supracrustal rocks, gneisses of their probable basement, amphibolites, and mafic-ultramafic Cu-bearing bodies (including the Caraíba Cu-Mine), all affected by D1-D3 deformation events associated to M1-M3 metamorphism under high-T granulite and amphibolite facies, and assisted by G1-G3 tonalitic-granodioritic-granitic intrusions. U–Pb and Sm–Nd Thermal Ionization Mass Spectrometry (TIMS) isotopic data from amphibolite, tonalite, and granite, sampled in a well-known outcrop, indicate partial reset and heterogeneous modification of the original isotopic systems, attributable to deformation and metamorphism. The ages obtained from these systems agree with each other, and also with other previously published U–Pb data, and imply that 2.6 Ga is the crystallization age of the protolith of the amphibolite. Together with key structural relationships, they also indicate a 2.08–2.05 Ga interval for M3 metamorphism, and make even a less precise age (2.2–2.3 Ga) acceptable, as it suggests contamination in the amphibolite with material in a syn-D2 tonalite crystallized 2248 ± 36 Ma ago. The new data demonstrate the existence of Neoarchean fragments of both oceanic and continental crusts and constrain the Archean-Paleoproterozoic development of the Curaçá belt, the I–S–C orogen, and the São Francisco craton. 相似文献
8.
塔里木克拉通太古宙岩石主要出露在库鲁克塔格、北阿尔金、铁克里克和敦煌等四个边缘基底隆起带。库鲁克塔格地块位于塔里木克拉通东北缘,其中有可靠年代学报道的太古宙岩石主要出露在库尔勒、辛格尔、兴地和帕尔岗塔格四个地区。库鲁克塔格地块的太古宙岩石主要由长英质正片麻岩(含TTG片麻岩)和少量以包体产出的斜长角闪岩组成,真正的太古宙表壳岩较少见。本次研究在库尔勒地区对长英质正片麻岩和石英岩开展锆石SHRIMP U- Pb测年分析,2个长英质正片麻岩样品的年龄分别为2695±9 Ma和2705±8 Ma;石英岩样品中的碎屑锆石核最小年龄峰为2513 Ma,石英岩有可能是太古宙沉积岩;上述岩石样品都经历了古元古代早期 (1. 9~1. 8 Ga)高级变质作用。地球化学分析发现,库鲁克塔格地块新太古代长英质片麻岩的原岩有多种岩石类型,这些长英质岩石都形成于与俯冲作用有关的岛弧构造背景。基性的斜长角闪岩和变质辉长岩可能产出于不同的背景,一部分来源于岛弧地幔楔的部分熔融,另一部分则可能来自于大洋板内,以洋脊玄武岩为主。库鲁克塔格地块太古宙岩石具有2. 7 Ga和2. 5 Ga两个年龄峰值,2. 7 Ga岩浆事件主要发生在库鲁克塔格西部地区,锆石的εHf(t)值既有正值也有负值,表明这一时期地壳生长和改造同时并存;~2. 5 Ga的岩浆活动分布范围较为广泛,全岩εNd(t)和锆石εHf(t)值以正值为主,暗示这一时期可能存在显著的大陆地壳生长。 相似文献
9.
太古宙约占地球已有演化历史的三分之一强,这一时期涉及到大陆地壳起源、陆壳的巨量生长和稳定以及板块构造作用的启动、建立等诸多最根本的全球性重大地质事件。太古宙岩石在华北克拉通南部的涑水、登封、太华、霍邱和五河等杂岩中广泛出露,这为解析上述重大科学问题提供难得的素材。近十年来,在华北克拉通南部古生代-中生代火山岩或早前寒武纪变沉积岩中陆续发现冥古宙-古太古代的捕获/碎屑锆石,暗示南部地块依然尚存地球形成最初期的陆壳物质。根据华北克拉通南部太古宙岩石年龄统计结果显示有2850~2700Ma和2580~2480Ma两个突出年龄区间,对应的峰值年龄分别为~2.76Ga和~2.52Ga。其中~2.76Ga的岩石主要出露于南部的鲁山、霍邱、五河和中条山地区。此外,在华北克拉通诸多地区,诸如怀安、阜平、五台、中条等地区的花岗质片麻岩和变质沉积岩中也均发现年龄为~2.76Ga的碎屑锆石或者继承锆石,暗示华北克拉通2.85~2.70Ga岩石的分布似乎比现今出露范围更为广泛。与整个华北克拉通类似,2.58~2.48Ga岩石亦在克拉通南部广泛分布,尤其是嵩箕地区的登封杂岩几乎全部是由新太古代晚期的岩石组成。~2.52Ga是华北克拉通南部,乃至整个克拉通太古宙地壳演化最突出、最重要的岩浆-构造事件,明显有别于全球其它诸多典型克拉通。已有的同位素资料研究表明华北克拉通南部,乃至整个克拉通在太古宙经历了两期明显的地壳生长事件:一期发生在2.85~2.70Ga左右,以形成于此时期的涑水杂岩中花岗质岩石和鲁山太华片麻岩系中深成侵入岩和斜长角闪岩为代表;另一期发生在2.58~2.48Ga,以登封杂岩、涑水杂岩以及小秦岭地区太华杂岩中~2.52Ga各类花岗质岩石和变基性岩为代表。华北克拉通正是经过这两期陆壳巨量生长事件之后完成初始的克拉通化。我们在登封杂岩中识别出形成于俯冲汇聚环境的TTG质片麻岩、类似于赞岐岩的变闪长岩和具有N-MORB地球化学特征的变基性火山岩,提出其构成"新太古代构造混杂岩",标志着新太古代末期具有现代体制的板块构造在华北克拉通南部已经开始启动。最近,在登封杂岩中识别出的新太古代双变质带也支持上述观点。 相似文献
10.
Zircon U–Pb ages and trace elements were determined for granulites and gneiss at Huangtuling, which are hosted by ultrahigh-pressure metamorphic rocks in the Dabie Orogen, east-central China. CL images reveal core–rim structure for most zircons in the granulites. The cores show oscillatory zoning, relatively high Th/U ratios, and HREE enriched patterns, consistent with a magmatic origin. They gave a weighted mean 207Pb/206Pb age of 2766 ± 9 Ma, interpreted as dating magma emplacement of the protolith. The rims are characterized by sector or planar zoning, low Th/U ratios, negative Eu anomalies and flat HREE patterns, consistent with their formation under granulite-facies metamorphic conditions. Zircon U–Pb dating yields a weighted mean 207Pb/206Pb age of 2029 ± 13 Ma, which is interpreted to record a metamorphic event, possibly during assembly of the supercontinent Columbia. The gneiss has a protolith age of 1982 ± 14 Ma, which is younger than the zircon age of the granulite-facies metamorphism, suggesting a generally delay between HT metamorphism and the intrusion of post-collisional granites. A few inherited cores with igneous characteristics have 207Pb/206Pb ages of 2.90, 3.28 and 3.53 Ga, suggesting the presence of Mesoarchean to Paleoarchean crustal remnants in the Yangtze Craton. A few Cretaceous metamorphic ages were also obtained, suggesting the influence of post-collisional collapse in response to Cretaceous extension of the Dabie Orogen. It is inferred that the recently discovered Archean basement of the Yangtze Craton occurs as far north as the Dabie Orogen. 相似文献
11.
The São Luís Craton, northern Brazil, is composed of a few granitoid suites and a metavolcano-sedimentary succession. New single zircon Pb evaporation ages and Nd isotope data, combined with other available information, show that the metavolcano-sedimentary succession developed from 2240 Ma to approximately 2200-2180 Ma from juvenile protoliths. The subduction-related calc-alkaline suites of granitoids, spatially associated with the metavolcano-sedimentary sequence, formed in an oceanic island arc setting between 2168-2147 Ma. Most of these granitoids are tonalitic and formed from juvenile, mantle- or oceanic plate-derived protoliths, whereas minor true granites are the product of the reworking of the juvenile island arc material. These arc-related successions represent an accretionary event around 2.20±0.05 Ga, which is coincident with one of the main periods of crustal growth in the South American Platform. This accretionary orogen has subsequently been involved in a collision episode, at ca. 2100-2080 Ma, which is mainly recorded in the nearby Gurupi Belt. The rock associations, inferred geological settings, and the crustal evolution detected in the São Luís Craton are similar to what is described in Paleoproterozoic domains of major geotectonic units of the South American Platform, such as part of the São Francisco Craton, southeastern Guyana Shield, and of the West African Craton. 相似文献
12.
Andr Weissheimer de Borba Ana Maria Pimentel Mizusaki Diogo Rodrigues Andrade da Silva Edinei Koester Fabio de Lima Noronha Júnia Casagrande 《Gondwana Research》2006,9(4):464-474
This paper reports the integrated application of petrographic and Sm–Nd isotopic analyses for studying the provenance of the Neoproterozoic Maricá Formation, southern Brazil. This unit encompasses sedimentary rocks of fluvial and marine affiliations. In the lower fluvial succession, sandstones plot in the “craton interior” and “transitional continental” fields of the QFL diagram. Chemical weathering probably caused the decrease of the 147Sm/144Nd ratios to 0.0826 and 0.0960, consequently lowering originally > 2.0 Ga TDM ages to 1.76 and 1.81 Ga. 143Nd/144Nd ratios are also low (0.511521 to 0.511633), corresponding to negative εNd present-day values (− 21.8 and − 19.6). In the intermediate marine succession, sandstones plot in the “dissected arc” field, reflecting the input of andesitic clasts. Siltstones and shales reveal low 143Nd/144Nd ratios (0.511429 to 0.511710), εNd values of − 18.1 and − 23.6, and TDM ages of 2.16 and 2.37 Ga. Sandstones of the upper fluvial succession have “dissected arc” and “recycled orogen” provenance. 143Nd/144Nd isotopic ratios are also relatively low, from 0.511487 to 0.511560, corresponding to εNd values of − 22.4 and − 21.0 and TDM of 2.07 Ga. A uniform granite–gneissic basement block of Paleoproterozoic age, with subordinate volcanic rocks, is suggested as the main sediment source of the Maricá Formation. 相似文献
13.
This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the Huoqiu Group and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton. The Huoqiu Group is similar in rock association and metamorphism to the khondalite series, apart from it containing considerable amounts of banded iron formation. All detrital zircons from the Huoqiu Group meta-sedimentary rocks are 3.0 Ga and 2.75 Ga, without any 2.5 Ga and younger ones, as is commonly found in Paleoproterozoic khondalite series in other areas of the North China Craton. In the Huoqiu area, 2.75 Ga and 2.56 Ga granitoids have also been identified. This basement assemblage underwent strong metamorphism during the late Paleoproterozoic (~1.84 Ga) tectonothermal event that is widely developed in the North China Craton. Thus the formation time of the Huoqiu Group can be constrained between 2.75 and 1.84 Ga in terms of detrital and metamorphic zircon ages. It is considered, combined with regional data, that there may be a Paleoproterozoic collision orogen extending in a NWW–SEE direction to the southern margin of the North China Craton. 相似文献
14.
华北克拉通桑干地区高压麻粒岩的锆石SHRIMP U-Pb年龄及其地质含义 总被引:14,自引:0,他引:14
为了揭示华北克拉通桑干地区古元古代高压麻粒岩变质峰期时限,对选自该区的两个高压麻粒岩样品(DST02,XYS01)进行了锆石SHRIMP U-Pb测年。锆石样品的阴极发光图像显示为球形和无内部结构,Th/U比值变化为0.01~0.93。这些特征表明两样品的锆石应属于变质成因锆石。两样品的SHRIMP测年结果分别给出(1 792±12)Ma和(1 891±46)Ma。根据前人的年代学方面的研究成果,特别是未变质强过铝花岗岩中获得的1 900~1 850 Ma的锆石U-Pb年龄(郭敬辉等,2002)结果来看,本区高压麻粒岩峰期变质时代不会晚于此。因此本文获得的1 850~1 800 Ma的锆石SHRIMP U-Pb年龄应代表退变年龄。而(1 891±46)Ma的年龄限定了峰期高压变质年龄上限。 相似文献
15.
K. E. Howard M. Hand K. M. Barovich E. Belousova 《Australian Journal of Earth Sciences》2013,60(5):475-500
Provenance data from Paleoproterozoic and possible Archean sedimentary units in the central eastern Gawler Craton in southern Australia form part of a growing dataset suggesting that the Gawler Craton shares important basin formation and tectonic time lines with the adjacent Curnamona Province and the Isan Inlier in northern Australia. U–Pb dating of detrital zircons from the Eba Formation, previously mapped as the Paleoproterozoic Tarcoola Formation, yields exclusively Archean ages (ca 3300–2530 Ma), which are consistent with evolved whole-rock Nd and zircon Hf isotopic data. The absence of Paleoproterozoic detrital grains in a number of sequences (including the Eba Formation), despite the proximity of voluminous Paleoproterozoic rock units, suggests that the Eba Formation may be part of a Neoarchean or early Paleoproterozoic cover sequence derived from erosion of a multi-aged Archean source region. The ca 1715 Ma Labyrinth Formation, unconformably overlying the Eba Formation, shares similar depositional timing with other basin systems in the Gawler Craton and the adjacent Curnamona Province. Detrital zircon ages in the Labyrinth Formation range from Neoarchean to Paleoproterozoic, and are consistent with derivation from >1715 Ma components of the Gawler Craton. Zircon Hf and whole-rock Nd isotopic data also suggest a source region with a mixed crustal evolution (εNd –6 to –4.5), consistent with what is known about the Gawler Craton. Compared with the lower Willyama Supergroup in the adjacent Curnamona Province, the Labyrinth Formation has a source more obviously reconcilable with the Gawler Craton. Stratigraphically overlying the Eba and Labyrinth Formations is the 1656 Ma Tarcoola Formation. Zircon Hf and whole-rock Nd isotopic data indicate that the Tarcoola Formation was sourced from comparatively juvenile rocks (εNd –4.1 to + 0.5). The timing of Tarcoola Formation deposition is similar to the juvenile upper Willyama Supergroup, further strengthening the stratigraphic links between the Gawler and Curnamona domains. Additionally, the Tarcoola Formation is similar in age to extensive units in the Mt Isa and Georgetown regions in northern Australia, also shown to be isotopically juvenile. These juvenile sedimentary rocks contrast with the evolved underlying sequences and hint at the existence of a large-scale ca 1650 Ma juvenile basin system in eastern Proterozoic Australia. 相似文献
16.
Lêda Maria Fraga Moacir Jose Buenano Macambira Roberto DallAgnol Joo Batista Sena Costa 《Journal of South American Earth Sciences》2009,27(4):247-257
Age and origin of the charnockitic rocks of the central part of the Guyana Shield have been a matter of discussion. These rocks have been interpreted either as Transamazonian granulites metamorphosed around 2.02 Ga or as 1.56 Ga old igneous charnockites. Recently, most of the Roraima charnockitic rocks have been recognized as igneous rocks and included into the Serra da Prata Suite (SPS). Five Pb–Pb single-zircon evaporation ages were obtained for samples representative of different facies of the SPS and these constrained the age of the charnockitic magmatism between 1943 ± 5 Ma and 1933 ± 2 Ma. This charnockitic magmatism may be related to a post-collisional setting after the evolution of the Cauarane-Coeroeni Belt (~2.00 Ga), or may represent a post-collisional (or intracontinental?) magmatism related to orogenic activities along the plate margins around 1.95–1.94 Ga. 相似文献
17.
华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述 总被引:3,自引:12,他引:3
华北克拉通具有3.8Ga以上的演化历史,TTG是其地质记录的最重要载体。华北克拉通太古宙(特别是中太古代以前)地质演化在很大程度上与TTG岩石密切相关。在华北克拉通,始太古代(3.6~4.0Ga)TTG岩石仅在鞍本地区被发现,但冀东地区已在多种变质碎屑沉积岩中发现大量3.6~3.88Ga碎屑锆石;古太古代(3.2~3.6Ga)TTG岩石在鞍本、冀东、信阳地区被识别出来;中太古代(2.8~3.2Ga)TTG岩石在鞍本、冀东、胶东、鲁山等地存在;可把新太古代(2.5~2.8Ga)进一步划分为早期和晚期两个阶段:新太古代早期(2.6~2.8Ga)TTG岩石已在10余个地区被发现,新太古代晚期(2.5~2.6Ga)TTG岩石几乎在每一个太古宙基底岩石出露区都存在。野外地质、锆石定年、元素地球化学和Nd-Hf同位素组成研究表明,中太古代以前TTG岩石局部存在,主要分布于Wan et al.(2015)所划分的三个古陆块中;新太古代TTG岩石广泛分布,是陆壳增生最重要时期岩浆作用的产物。TTG岩石类型随时代变化,3.1~3.8Ga和2.7~2.9Ga TTG岩石分别主要为奥长花岗岩和英云闪长岩;2.5~2.6Ga期间花岗闪长岩大规模出现,并有壳源花岗岩广泛分布,表明这时陆壳已有相当的成熟度。奥长花岗岩轻重稀土分异程度从弱到强的时间出现在~3.3Ga;2.5~3.3Ga的TTG岩石轻重稀土分异程度变化很大,表明其形成条件存在很大差异。TTG岩石主要为新生地壳,但也有相当部分为壳内再循环产物或形成过程中受到陆壳物质影响。华北克拉通中太古代以前的主要构造机制是板底垫托或地幔翻转作用,新太古代晚期板块构造体制可能已起作用。 相似文献
18.
19.
Maria Helena Bezerra Maia de Hollanda Mrcio Martins Pimentel Emanuel Ferraz Jardim de S 《Journal of South American Earth Sciences》2003,15(8):885-900
Late Neoproterozoic (ca. 580 Ma), high-K, mafic-intermediate rocks represent voluminous bimodal magmatism in the Borborema Province, northeast Brazil. These rocks show the following chemical signatures that reflect derivation from a subduction-modified lithospheric mantle source: (1) enrichment in large ion lithophile elements (Rb, Ba, K, Th) and light rare-earth elements (REE) (La/YbCN=11–70), (2) pronounced negative Nb anomalies, and (3) radiogenic Sr (0.71202–0.7059) and unradiogenic Nd (Nd from −9.3–−20.1) isotopic compositions. TDM model ages suggest that modification of the lithospheric mantle source (metasomatised garnet lherzolite) may have occurred in the Paleoproterozoic during the Transamazonian/Eburnean tectonics that affected the region. Interaction with asthenospheric fluids is believed to have partially melted this enriched source in the Neoproterozoic, probably as a result of asthenosphere-derived fluid percolation in the Brasiliano/Pan-African shear zones that controlled the emplacement of these mafic-intermediate magmas. The involvement of this asthenospheric component is supported by the nonradiogenic Pb isotopic ratios (206Pb/204Pb=16–17.3, 207Pb/204Pb=15.1–15.6, 208Pb/204Pb=36–37.5), which contrast with the enriched Sr and Nd compositions and thereby suggest the decoupling of Rb–Sr, Sm–Nd, and U–Pb systems at the time of intrusion of the mafic-intermediate magmas in the crust. 相似文献
20.
The use of in situ geochronological techniques allows for direct age constraints to be placed on fabric development and the metamorphic evolution of polydeformed and reworked terranes. The Shoal Point region of the southern Gawler Craton consists of a series of reworked granulite facies metapelitic and metaigneous units which belong to the Late Archean Sleaford Complex. Structural evidence indicates three phases of fabric development with D1 retained within boudins, D2 consisting of a series of upright open to isoclinal folds producing an axial planar fabric and D3 composed of a highly planar vertical high‐strain fabric which overprints the D2 fabric. Th–U–total Pb EPMA monazite and garnet Sm–Nd geochronology constrain the D1 event to the c. 2450 Ma Sleaford Orogeny, whereas the D2 and D3 events are constrained to the 1730–1690 Ma Kimban Orogeny. P–T pseudosections constrain the metamorphic conditions for the Sleafordian Orogeny to between 4.5 and 6 kbar and between 750 and 780 °C. Subsequent Kimban‐aged reworking reached peak metamorphic conditions of 8–9 kbar at 820–850 °C during the D2 event, followed by high‐temperature decompression to metamorphic conditions <6 kbar and 790–850 °C associated with the development of the D3 high‐strain fabric. The P–T–t evolution of the Shoal Point rocks reflects the transpressional exhumation of lower crustal rocks during the Kimban Orogeny and the development of a regional ‘flower structure’. 相似文献