首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以鄂尔多斯盆地东缘煤储层为研究对象,通过镜质体最大反射率(Rmax)测试、压汞和低温液氮吸附实验等手段,探讨分析了煤储层孔隙结构发育特征及影响因素。结果表明:研究区煤储层视孔隙度偏低,且自北向南呈明显降低趋势,煤储层的孔隙发育情况以小孔、微孔为主,煤储层的BET比表面积平均为1.26 m2/g,其中北部煤储层比表面积较大,煤储层BJH总孔容平均为0.003 41 mL/g;受惰质组相对含量、压缩程度及次生孔隙影响,随着煤变质程度的增加,煤岩的孔隙度、BJH总孔体积和BET比表面积呈现“大—小—大”的变化规律,当Rmax值为1.5%左右时,为最小值;煤储层随着所受应力的增强,微孔趋于闭合,其他各类孔数量均减小,整体上为小孔含量相对增加,煤中吸附孔隙类型由封闭型孔变为开放型孔,应力作用对煤岩的渗流孔隙的发育具有较强的控制作用,主要体现在煤岩中大孔对煤层气的贡献要优于其他孔隙。   相似文献   

2.
为研究煤岩演化程度对孔裂隙结构发育的影响,运用压汞、低温氮吸附/解吸、镜质组反射率测试和SEM、荧光显微观察等手段,分析煤岩变质程度对孔隙度、BET比表面积、BJH总孔体积、裂隙结构和密度等的影响。结果表明:随变质程度升高,煤岩孔隙度呈先增大后减小再略微增大的波动变化特征;微孔占比随煤岩镜质组反射率升高呈“U”形变化特征,小孔占比变化与之相反;煤岩BET比表面积和BJH总孔体积均随煤级升高呈“U”形变化特征;中高变质程度煤岩中B、C、D型裂隙密度随煤级的升高都呈“U”形变化,并在Ro,m=1.1%左右出现最小值,裂隙密度下降阶段中D型裂隙密度降低最快。结合镜质组反射率分析发现,煤岩孔(裂)隙的发育与煤岩演化的4次跃变有着密切关系。  相似文献   

3.
为了评价我国长焰煤储层煤层气开发前景,对全国范围内的34个长焰煤煤样(测试18个,收集16个),进行了煤岩组分、平衡水分、工业分析和物性特征分析,以及等温吸附实验和煤表面能计算。结果表明:长焰煤的平衡水分、干燥无灰基挥发分、空气干燥基水分随煤化程度的增加而减少,孔隙率随煤化程度增大而增大,且孔容分布不均,大孔最多,约占40%,孔比表面积以过渡孔和微孔占绝对优势,二者约占97%;长焰煤的朗缪尔体积随惰质组含量的增加而趋于增大,随镜质组含量的增加呈减少趋势,且煤表面能ΔγL和朗缪尔体积均随煤化程度的增加而增大,随温度的升高而减小,煤表面能对甲烷吸附控制作用明显。估算全国2 000 m以浅长焰煤煤层气资源量为4.3万亿m3,长焰煤孔隙率高,孔径结构分布连续,且连通性较好,其煤层气资源具有开发潜力。当前我国低煤级煤层气尚未取得规模性商业开发的突破,为低煤级煤层气开发提供了长焰煤储层的基础研究,指明了其物性特征及优势,梳理了不同区域的长焰煤煤层气资源,对低煤级中长焰煤煤层气开发具有一定指导意义。  相似文献   

4.
为了评价邢台含煤区煤层气开发潜力,采集不同矿井的2、8、9号煤样进行了煤岩组分、孔裂隙分布、等温吸附及水单相渗透率实验分析,采用体积法和综合排队系数法对底板标高-2 000 m以浅的煤层气资源量进行了预测和评价。结果表明:区内目的煤层厚度、煤级适中,具有较好的生储条件;煤岩的镜质组、惰质组和壳质组含量依次减少,水分随煤化程度的增加呈现先减小后增大,挥发分随煤化程度的增加而减少;孔隙度随煤化程度增大而增大,且孔径分布不均匀,微孔的孔容和比表面积所占比例最大;显微裂隙密度级别为一级,部分裂隙被脉状方解石和粒状黄铁矿充填;煤的吸附量受煤级控制,且在一定压力范围内,吸附量随压力增加而增大,吸附能力随压力增加而减小;煤层渗透率离散性较大,属中~高级渗透率。估算底板标高-2 000 m以浅潜在的煤层气资源量为427.31亿m3,优选出中等有利区块6个,其中FY区、QHY区、GZ区为煤层气勘探首选区块。  相似文献   

5.
采用扫描电镜、低温氮吸附法对鸡西盆地城子河组煤岩储集空间特征和孔隙结构进行研究,探讨煤岩吸附能力的主要影响因素。结果表明,煤岩常见孔隙类型包括残余组织孔、屑间孔、角砾孔和气孔,其中气孔的广泛发育既证实了煤岩大量生烃的过程,又为煤层气赋存富集提供优质储集空间。形式多样的张性裂隙组合,对改善渗透性具积极意义;煤岩低温氮吸附曲线呈现两种类型,反应不同特征的孔隙系统。鸡东坳陷相对梨树镇坳陷煤岩中微孔更为发育,使得比表面积和总孔体积值较高,平均孔径值降低,孔隙形态从开放性逐渐过渡为墨水瓶孔,微孔中墨水瓶孔的含量是导致滞后环形态发生变化的主要原因;煤岩的比表面积和总孔体积能够较好的反应煤岩的吸附能力。灰分、镜质组含量和成熟度通过控制鸡西盆地城子河组煤岩孔隙发育特征,从而影响煤岩的吸附能力。煤岩镜质组和演化程度升高会增强煤岩的吸附能力,而灰分含量高会减少煤岩对甲烷的吸附量。  相似文献   

6.
为系统分析煤岩孔隙度主控地质因素及对其煤层气开发的影响,统计分析了全国37个主要煤层气区块/矿区的压汞孔隙度等数据。利用相关趋势分析方法分煤级着重探讨煤级、煤体结构、镜质组、灰分等因素对煤岩孔隙度以及煤层气开发的影响。结果表明:Ro,max是储层物性评价的重要参数,低煤级区煤岩孔隙度对Ro,max的变化最为敏感,且孔隙度平均值随成熟度升高呈现出高-低-高-低的变化。低煤级区同一煤层气区块/矿区内部,孔隙度变化区间大于高煤级区同一煤层气区块/矿区内部孔隙度的变化区间。中低煤级区,复杂的煤体结构对煤储层物性具有破坏作用;高煤级区,复杂的煤体结构对物性有一定的改善作用。镜质组含量与孔隙度呈负相关关系,灰分产率与孔隙度无明显相关性,且在低煤级区镜质组含量和灰分产率与孔隙度均具有明显的负相关性,是孔隙度评价的重要参数;而在中高煤级区,二者对孔隙度的影响可以忽略。煤岩大中孔比例和储层平均渗透率随平均孔隙度的增高而增高,孔隙度大小尤其是孔隙度随煤级的变化规律对不同煤级区煤层气开发潜力评价具有重要指导意义。  相似文献   

7.
煤的孔隙与裂隙是煤层气赋存的空间也是煤层气运移和产出的通道。在新疆阜康矿区三工、建江等7对矿井巷道煤层裂隙观测统计的基础上,采用宏观煤岩分析、显微煤岩分析、压汞实验与煤的孔隙结构分析等方法,研究阜康矿区煤层孔隙与裂隙特性,评价煤层气赋存特征与渗透性。结果表明:阜康矿区煤层孔隙发育以微孔和小孔为主,孔容和比表面积较大,有利于煤层气的吸附和解吸;裂隙发育具有非均质性,矿区西部裂隙最为发育,东部次之,中部不发育;煤岩组分中镜质组的增加会使微小孔增多,有利于煤层气的吸附;中孔孔容对孔隙度具有控制作用;阜康矿区煤层的孔隙率随着镜质体反射率的增大呈增大的趋势。研究结果对新疆阜康矿区煤层气的勘探开发具有一定的理论指导意义。   相似文献   

8.
以晋中盆地西南缘石炭-二叠系煤储层为研究对象,基于高压压汞试验,分析研究了煤储层的孔隙结构及分形特征,运用Washburn方程和海绵模型计算了大孔(100nm)分形维数D_M,对比讨论了孔隙结构参数与分形维数的关系,以及煤岩工业分析、煤化程度及煤岩显微组分对分形维数的影响。研究结果表明:本区孔径分布在6~10 000nm,以"双峰型"为主,墨水瓶状孔发育。孔隙结构以微孔、小孔为主,中孔与大孔次之,其中微孔和小孔对总孔容贡献率最大,吸附孔和渗流孔比表面积贡献率相当,反映本区煤层有利于煤层气的储集、扩散及渗流。本区中变质程度煤储层渗流孔(100nm)具有分形特征,煤岩总孔容越小、总比表面积越大、分形维数D_M越大,即孔隙结构非均质性越强,分形维数D_M可以有效反映孔隙结构特征。分形维数D_M与R_(o,max)、水分、镜质组含量呈正相关,与灰分、惰质组含量呈负相关,本区中煤阶烟煤分形维数受煤岩热演化程度影响明显。  相似文献   

9.
为揭示不同变质程度煤岩纳米级孔隙特征,运用小角X射线散射方法(SAXS),采集镜质体反射率Rmax在0.31%~6.24%的15个样品,基于散射数据获取的煤岩孔隙率、孔径分布、比表面积和分形维数,讨论了煤化过程对煤岩纳米孔隙(0.3~100 nm)结构的影响,并用低温CO2和N2吸附DFT模型结果对孔径分布进行了验证。结果表明:在Rmax < 0.5 %时,煤岩孔隙率和比表面积随着变质程度的增加而增加,微孔(< 2 nm)含量增长较少,介孔(2~50 nm)和大孔(50~100 nm)含量大幅增加,煤岩表面逐渐光滑;在Rmax=0.5%~1.4%时,孔隙率和比表面积减小,各类孔隙含量均减少,煤岩表面逐渐光滑;在Rmax=1.4%~4.0%时,煤岩孔隙率和比表面积增大,微孔含量大幅增加,介孔和大孔含量近乎稳定,煤岩表面逐渐粗糙;在Rmax > 4.0%后,煤岩孔隙率和比表面积缓慢增加,微孔增长幅度变缓,煤岩表面逐渐光滑。SAXS在0.3~100 nm孔径分布(本次实验范围)中用球形形状因子与低温CO2和N2吸附结果契合度较高,煤中纳米级孔隙率及比表面积主要由微孔贡献。   相似文献   

10.
为了研究高煤级煤储层含水性对吸附能力的影响,对阳泉-寿阳区块8件代表性煤样开展了镜质体反射率、显微组分、孔隙度、压汞、核磁共振和甲烷等温吸附等实验,分析了煤储层孔径分布、核磁共振T2谱响应特征、核磁孔隙度以及煤岩吸附能力,同时对煤储层含水性和煤储层吸附能力的相互关系进行了分析。研究结果表明:高煤级煤储层孔隙以微孔发育为主,孔隙含水性以微小孔中的束缚水赋存状态为主,且其含水量随最大镜质体反射率(Ro,m)的增大而增加。在影响高煤级煤储层吸附能力的多种因素中,煤储层含水性对煤岩吸附能力起着决定性的作用,尤其体现在微小孔中的束缚水对吸附能力的影响,束缚水含量越高,煤岩吸附能力越差。  相似文献   

11.
我国2 000 m以浅的焦煤煤层气资源量约1.214 7×1012 m3,占全国煤层气总资源量的3.3%,主要分布在华北、西北和西南等三大含气区。为了评价我国焦煤煤层气资源潜力,收集和测试了全国范围内的82件焦煤煤样的煤岩、煤质、工业分析、压汞实验和等温吸附实验数据,研究结果表明:随着煤化程度的增加,焦煤碳元素质量分数增加,而挥发分、氧元素和氢元素逐渐减小,且氧元素减少的速度大于氢元素;焦煤大孔、小孔和微孔较为发育,中孔发育较差;比表面积主要集中在小孔和微孔,大孔和中孔对比表面积的贡献甚微;焦煤孔隙度和总孔容与煤阶之间显示出"U"型关系,当1.20%max<1.40%时,焦煤的孔隙度和总孔容随着煤化程度的增加而减少,在Rmax=1.40%附近孔隙度和总孔容达到最低值,当1.40%max<1.70%,孔隙度和总孔容随着煤化程度的增加而增大;焦煤饱和吸附量平均约20.79 cm3/g,Langmuir压力随着煤化程度的增加而减小,Langmuir体积随着煤化程度的增加而增加。   相似文献   

12.
为了研究中梁山矿区煤的孔隙性、吸附性特征,选取8组煤样分别进行煤镜质组反射率测试、压汞实验和高压等温吸附实验分析。研究表明:(1)大孔和微孔对煤总孔容的控制明显,过渡孔和中孔影响小,微孔对煤比表面积的贡献最大;(2)煤中孔隙以开放孔为主,并具有相当数量的半封闭孔,孔隙连通性总体较好;(3)在中低煤级阶段,一般煤的孔隙度、孔容和比表面积均随变质程度的增大而减小;(4)煤的最大吸附量与总孔容、总比表面积呈正相关性。  相似文献   

13.
华北石炭—二叠系煤的孔渗特征及主控因素   总被引:2,自引:0,他引:2  
煤的低孔、低渗问题已经成为制约我国煤层气勘探和开发的关键问题之一。选取华北河东、渭北、阳泉、晋城、大同和两淮等6个煤田,通过煤岩学特征测试、微裂隙分析和低温氮孔隙结构分析,对该区煤的孔渗发育特征及其控制机理进行了系统研究。华北地区煤的孔隙度在2%~10%之间,孔隙度的大小主要受3次煤化作用跃变所控制,在Ro,r约为1.2%附近达到最小值。矿物充填作用在一定程度上降低了煤的孔隙度。华北地区煤的渗透率一般都在5×10-3μm2以下,渗透率与孔隙度呈显著的幂指数关系。无烟煤以微孔为主,孔隙度都在6%以下,渗透率的大小主要取决于裂隙的发育程度;而中低煤级煤的渗透率不仅受裂隙影响,也受煤中各级孔隙发育的影响较大。  相似文献   

14.
选取焦作矿区无烟煤四种不同煤体结构煤作为研究煤样,通过低温液氮吸附实验,分析了不同煤体结构煤的孔隙结构分布特征,同时对所采集的煤样分别进行高温高压平衡水分条件下CH_4气体的等温吸附实验,分析了孔隙结构、平衡水分与CH_4吸附特性之间的作用关系。研究结果表明:与原生结构煤相比,构造煤的BJH总孔容、微孔比表面积、BJH总孔比表面积随着破坏程度增大而增大。高温高压平衡水分条件下,无烟煤不同煤体结构煤表现出了吸附能力新特性,即随无烟煤破坏程度增加,朗格缪尔体积V_L呈现先增大后减小的变化趋势。不同煤体结构煤的孔隙结构由于构造应力作用而发生变化,引起平衡水分含量的不同,从而导致对CH_4的吸附能力不同。分析表明,无烟煤不同煤体结构煤表现出的吸附新特性,是特有的孔隙结构和平衡水分含量差异综合作用的结果。在不同的埋藏条件下,某一因素会占主导作用,吸附增量变化取决于主控因素控制。  相似文献   

15.
从压汞试验入手,对淮南煤田煤的孔隙结构随埋藏深度的变化进行分析,根据大量实验数据得到以下认识:随采样深度的增大,煤中总比孔容积呈减小趋势,其中大孔的比孔容积在总比孔容积中所占比率逐渐减小,微孔的比孔容积在总比孔容积中所占比率显示增大趋势;随埋藏深度增加,煤的孔隙率有减小迹象,煤的真密度和视密度呈线性增加。煤内微孔的增多使煤吸附瓦斯的容量相对增多。深部煤与其顶板和底板岩石的力学性质的差异减小,使深部煤层厚度的稳定性增加。  相似文献   

16.
作为一种多孔介质,煤的孔隙性质直接影响煤层气的富集和扩散,因而对煤孔隙特征的研究至关重要。通过压汞测试和低温氮吸附测试数据,系统分析了黔西上二叠统煤的孔隙形态、孔隙类型及孔径分布特征,并从煤岩显微组分及煤级方面探讨了该区煤储层孔隙发育的控制因素。研究结果表明:黔西煤样孔隙度为1.4%~9.5%,且由北至南有减小趋势;孔隙类型以吸附孔为主,其中高煤级煤孔隙以一端封闭型孔居多,与低煤级区相比,其渗透性和连通性较差,但黔西地区整体优于沁水盆地;煤级是影响煤储层孔隙变化的主控因素,随着煤级增加,孔隙度呈现由低到高的变化趋势。   相似文献   

17.
煤层气排采过程中煤储层孔隙度和渗透率的动态变化,是煤层气开发地质研究的热点之一。本文利用晋城无烟煤样,分析了三轴应力条件下煤岩的应力-应变效应,讨论了煤样渗透率的动态变化规律。结果表明,围限压力条件下,煤岩吸附甲烷后其抗压强度明显增大;煤样最大径向吸附应变与孔隙压力的关系,可用朗格缪尔方程形式予以描述;煤岩渗透性与有效应力、煤岩吸附膨胀量均呈负指数关系,说明两者对煤岩渗透性影响的实质相同,即煤岩孔隙、裂隙受到应力作用逐渐减小或闭合。同时,在较低孔隙压力条件下,需考虑克林伯格效应对煤层渗透性的影响。经检验,S-D模型能够较为客观地预测煤岩渗透性动态变化规律。  相似文献   

18.
鸡西盆地煤炭资源丰富,其南部的梨树镇坳陷城子河组厚度大,含煤性好,是煤层气勘探开发的重点区域。为了解该区煤岩物理力学特性,选取城子河组23#煤层岩样进行实验研究。通过测定岩样的泊松比、弹性模量、内聚力以及内摩擦角等力学参数,确定该层煤岩具有低弹性模量、高泊松比和大脆性的特性。分析煤岩物性参数得出:随着应力增加,煤岩渗透率呈指数下降,不利于煤层气的开采,而温度对煤岩渗透率影响较小;煤岩的孔隙度主要集中在3.6%~6.1%,平均约4.98%,程度偏低,中孔和小孔比较发育;低阶煤和中阶煤煤样的排驱压力相差较大,中阶煤煤样压力值较小,渗透性好;结合中值半径和退汞效率的实验数据,显示该区煤储层的渗透性整体较差。  相似文献   

19.
煤岩的变质程度影响着煤层的储集空间特征,对煤岩的孔隙度,渗透率以及煤岩微裂缝的发育都有重要影响。为了研究两者的关系,选取山西沁水盆地南部不同矿区有代表性的3号煤层,对不同变质程度煤样的镜质体反射率(R0)、孔隙度、渗透率进行了测试并对煤储集空间类型和结构进行扫描电镜观察。研究结果表明:3号煤层储集空间类型主要为孔隙和微裂缝;当R0小于2.4%,孔隙度、渗透率与R0呈负相关,R0大于2.4%时,孔隙度、渗透率与R0呈正相关,R0为2.4%可能是煤岩变质程度对煤岩孔隙度、渗透率影响的关键期,在高变质程度煤岩中孔隙度与渗透率的升高是由微裂缝的发育引起的,并且随着R0的增加,微裂缝发育程度增大。  相似文献   

20.
塔里木盆地东南缘下—中侏罗统煤层沿阿尔金山前断续分布,其煤岩、煤质与典型的西北侏罗纪煤层具有明显不同。通过对和田布雅、于田普鲁、且末红柳沟等煤矿主采煤层样品进行煤岩、煤质鉴定及煤化指标等一系列综合研究分析,结果表明,主采煤层以光亮煤、半亮煤为主,其次是半暗煤、暗淡煤;煤岩组分以镜质组为主,壳质组含量少,具中-高镜惰比。因成煤沼泽的还原程度促进了无机硫分的形成,煤中全硫含量随镜质组含量的增加呈现逐渐增高的趋势,且煤层硫分与灰分整体具有明显的负相关关系。此外,煤层挥发分受不同种类硫分的影响,亦有明显差异性变化。在民丰凹陷中-高硫煤中,硫分以无机硫为主,随着硫分的升高挥发分亦有升高趋势;瓦石峡凹陷中-低硫煤受有机硫控制,对挥发分产率的影响不明显。民丰凹陷煤层的灰分指数高于瓦石峡凹陷,可见后者的成煤沼泽环境潜水面要比前者高得多。针对上述诸多因素分析,进一步揭示塔东南地区煤岩、煤质多样性变化受断陷湖盆以及局部水体较深的还原型沼泽环境控制,最终形成了中-高挥发分、中-低灰分、中-低硫分的煤质及富镜贫惰的煤岩特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号