首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The most voluminous eruption of natrocarbonatite lava hitherto recorded on Earth occurred at Oldoinyo Lengai in March–April 2006. The lava flows produced in this eruption range from blocky 'a'a type to smooth-surfaced inflated pahoehoe. We measured lava inflation features (i.e. one tumulus and three pressure ridges) that formed in the various pahoehoe flows emplaced in this event. The inflation features within the main crater of Oldoinyo Lengai are relatively small-scale, measuring 1-5 m in width, 2.5–24.4 m in length and with inflation clefts less than 0.4 m deep. Their small sizes are in contrast to a tumulus that formed on the northwestern slope of the volcano (situated ~1140 m below the crater floor). The tumulus is roughly circular, measures 17.5 × 16.0 m, and is cut by a 4.4 m deep axial inflation cleft exposing two separate flow units. We measured the elastic properties (i.e. shear- and bulk moduli) of natrocarbonatitic crust and find that these are similar to those reported for basaltic crust, and that there is no direct correlation between magmastatic head and pressure required to form tumuli. All inflated flows in the 2006 event were confined by lateral barriers (main crater, erosional channel or erosional gully) suggesting that the two most important factors for endogenous growth in natrocarbonatitic lava flows are (1) lateral barriers that prevent widening of the flow, and (2) influx of new material beneath the viscoelastic and brittle crust.  相似文献   

4.
Long-lived basaltic eruptions often produce structurally complex, compound `a`ā flow fields. Here we reconstruct the development of a compound flow field emplaced during the 2001 eruption of Mt. Etna (Italy). Following an initial phase of cooling-limited advance, the reactivation of stationary flows by superposition of new units caused significant channel drainage. Later, blockages in the channel and effusion rate variations resulted in breaching events that produced two new major flow branches. We also examined small-scale, late-stage ‘squeeze-up’ extrusions that were widespread in the flow field. We classified these as ‘flows’, ‘tumuli’ or ‘spines’ on the basis of their morphology, which depended on the rheology, extrusion rate and cooling history of the lava. Squeeze-up flows were produced when the lava was fluid enough to drain away from the source bocca, but fragmented to produce blade-like features that differed markedly from `a`ā clinker. As activity waned, increased cooling and degassing led to lava arriving at boccas with a higher yield strength. In many cases this was unable to flow after extrusion, and laterally extensive, near-vertical sheets of lava developed. These are considered to be exogenous forms of tumuli. In the highest yield strength cases, near-solid lava was extruded from the flow core as a result of ramping, forming spines. The morphology and location of the squeeze-ups provides insight into the flow rheology at the time of their formation. Because they represent the final stages of activity of the flow, they may also help to refine estimates of the most advanced rheological states in which lava can be considered to flow. Our observations suggest that real-time monitoring of compound flow field evolution may allow complex processes such as channel breaching and bocca formation to be forecast. In addition, documenting the occurrence and morphology of squeeze-ups may allow us to determine whether there is any risk of a stalled flow front being reactivated. This will therefore enhance our ability to track and assess hazard posed by lava flow emplacement.  相似文献   

5.
The 273 ka Poris Formation in the Bandas del Sur Group records a complex, compositionally zoned explosive eruption at Las Cañadas caldera on Tenerife, Canary Islands. The eruption produced widespread pyroclastic density currents that devastated much of the SE of Tenerife, and deposited one of the most extensive ignimbrite sheets on the island. The sheet reaches ~ 40-m thick, and includes Plinian pumice fall layers, massive and diffuse-stratified pumiceous ignimbrite, widespread lithic breccias, and co-ignimbrite ashfall deposits. Several facies are fines-rich, and contain ash pellets and accretionary lapilli. Eight brief eruptive phases are represented within its lithostratigraphy. Phase 1 comprised a fluctuating Plinian eruption, in which column height increased and then stabilized with time and dispersed tephra over much of the southeastern part of the island. Phase 2 emplaced three geographically restricted ignimbrite flow-units and associated extensive thin co-ignimbrite ashfall layers, which contain abundant accretionary lapilli from moist co-ignimbrite ash plumes. A brief Plinian phase (Phase 3), again dispersing pumice lapilli over southeastern Tenerife, marked the onset of a large sustained pyroclastic density current (Phase 4), which then waxed (Phase 5), covering increasingly larger areas of the island, as vents widened and/or migrated along opening caldera faults. The climax of the Poris eruption (Phase 6) was marked by widespread emplacement of coarse lithic breccias, thought to record caldera subsidence. This is inferred to have disturbed the magma chamber, causing mingling and eruption of tephriphonolite magma, and it changed the proximal topography diverting the pyroclastic density current(s) down the Güimar valley (Phase 7). Phase 8 involved post-eruption erosion and sedimentary reworking, accompanied by minor down-slope sliding of ignimbrite. This was followed by slope stabilization and pedogenesis. The fines-rich lithofacies with abundant ash pellets and accretionary lapilli record agglomeration of ash in moist ash plumes. They resemble phreatomagmatic deposits, but a phreatomagmatic origin is difficult to establish because shards are of bubble-wall type, and the moisture may have arisen by condensation within ascending thermal co-ignimbrite ash plumes that contained atmospheric moisture enhanced by that derived from the evaporation of seawater where the hot pyroclastic currents crossed the coast. Ash pellets formed in co-ignimbrite ash-clouds and then fell through turbulent pyroclastic density currents where they accreted rims and evolved into accretionary lapilli.Editorial Responsibility: J. Stix  相似文献   

6.
Information obtained from various parts of the two books on Montagne Pelée by Lacroix enables an estimate to be made of the size of l’Etang Sec summit crater, the volume of the 1902–1905 lava dome and its growth rate at various stages of development. During the week preceding the 8 May nuée ardente, dome growth was between 28 and 38 m3 s–1, leading to a volume of 17–23×106 m3 on the morning of the catastrophe. Considering that significant parts of the dome (~1/3?) were removed by the 8 and 20 May climactic eruptions, a high magmatic flux could have continued until at least 27 May, when the total remaining volume was estimated to 53×106 m3. After moderate activity in June–July (of order 10 m3 s–1), vigorous dome growth resumed dramatically, leading to the third climactic eruption of 30 August (a true calculation for this period being not feasible because of poor quality of the data). From November 1902 to July 1903 most of the effusive activity was concentrated in the great spine (erupted volume ~15×106 m3, magma flux 1.2 m3 s–1), which was eventually destroyed by collapse and minor nuées ardentes. The end of the eruption was characterized by a very low effusion rate, <1 m3 s–1 in average from August 1903 to October 1905.  相似文献   

7.
During long-lived basaltic eruptions, overflows from lava channels and breaching of channel levées are important processes in the development of extensive 'a'ā lava flow-fields. Short-lived breaches result in inundation of areas adjacent to the main channel. However, if a breach remains open, lava supply to the original flow front is significantly reduced, and flow-field widening is favoured over lengthening. The development of channel breaches and overflows can therefore exert strong control over the overall flow-field development, but the processes that determine their location and frequency are currently poorly understood. During the final month of the 2008–2009 eruption of Mt. Etna, Sicily, a remote time-lapse camera was deployed to monitor events in a proximal region of a small ephemeral lava flow. For over a period of ~10 h, the flow underwent changes in surface elevation and velocity, repeated overflows of varying vigour and the construction of a channel roof (a required prelude to lava tube formation). Quantitative interpretation of the image sequence was facilitated by a 3D model of the scene constructed using structure-from-motion computer vision techniques. As surface activity waned during the roofing process, overflow sites retreated up the flow towards the vent, and eventually, a new flow was initiated. Our observations and measurements indicate that flow surface stagnation and flow inflation propagated up-flow at an effective rate of ~6 m h−1, and that these processes, rather than effusion rate variations, were ultimately responsible for the most vigorous overflow events. We discuss evidence for similar controls during levée breaching and channel switching events on much larger flows on Etna, such as during the 2001 eruption.  相似文献   

8.
The Nesjahraun is a basaltic lava flow erupted from a subaerial fissure, extending NE along the Tingvellir graben from the Hengill central volcano that produced pāhoehoe lava followed by ‘a‘ā. The Nesjahraun entered Iceland’s largest lake, Tingvallavatn, along its southern shore during both phases of the eruption and exemplifies lava flowing into water in a lacustrine environment in the absence of powerful wave action. This study combines airborne light detection and ranging, sidescan sonar and Chirp seismic data with field observations to investigate the behaviour of the lava as it entered the water. Pāhoehoe sheet lava was formed during the early stages of the eruption. Along the shoreline, stacks of thin (5–20 cm thick), vesicular, flows rest upon and surround low (<5 m) piles of coarse, unconsolidated, variably oxidised spatter. Clefts within the lava run inland from the lake. These are 2–5 m wide, >2 m deep, ∼50 m long, spaced ∼50 m apart and have sub-horizontal striations on the walls. They likely represent channels or collapsed tubes along which lava was delivered into the water. A circular rootless cone, Eldborg, formed when water infiltrated a lava tube. Offshore from the pāhoehoe lavas, the gradient of the flow surface steepens, suggesting a change in flow regime and the development of a talus ramp. Later, the flow was focused into a channel of ‘a‘ā lava, ∼200–350 m wide. This split into individual flow lobes 20–50 m wide along the shore. ‘A‘ā clinker is exposed on the water’s edge, as well as glassy sand and gravel, which has been locally intruded by small (<1 m), irregularly shaped, lava bodies. The cores of the flow lobes contain coherent, but hackly fractured lava. Mounds consisting predominantly of scoria lapilli and the large paired half-cone of Grámelur were formed in phreatomagmatic explosions. The ‘a‘ā flow can be identified underwater over 1 km offshore, and the sidescan data suggest that the flow lobes remained coherent flowing down a gradient of <10°. The Nesjahraun demonstrates that, even in the absence of ocean waves, phreatomagmatic explosions are ubiquitous and that pāhoehoe flows are much more likely to break up on entering the water than ‘a‘ā flows, which, with a higher flux and shallow underlying surface gradient, can penetrate water and remain coherent over distances of at least 1 km.  相似文献   

9.
We present a model of chemical reaction within hills to explore how evolving porosity (and by inference, permeability) affects flow pathways and weathering. The model consists of hydrologic and reactive-transport equations that describe alteration of ferrous minerals and feldspar. These reactions were chosen because previous work emphasized that oxygen- and acid-driven weathering affects porosity differently in felsic and mafic rocks. A parameter controlling the order of the fronts is presented. In the absence of erosion, the two reaction fronts move at different velocities and the relative depths depend on geochemical conditions and starting composition. In turn, the fronts and associated changes in porosity drastically affect both the vertical and lateral velocities of water flow. For these cases, estimates of weathering advance rates based on simple models that posit unidirectional constant-velocity advection do not apply. In the model hills, weathering advance rates diminish with time as the Darcy velocities decrease with depth. The system can thus attain a dynamical steady state at any erosion rate where the regolith thickness is constant in time and velocities of both fronts become equal to one another and to the erosion rate. The slower the advection velocities in a system, the faster it attains a steady state. For example, a massive rock with relatively fast-dissolving minerals such as diabase – where solute transport across the reaction front mainly occurs by diffusion – can reach a steady state more quickly than granitoid rocks in which advection contributes to solute transport. The attainment of a steady state is controlled by coupling between weathering and hydrologic processes that force water to flow horizontally above reaction fronts where permeability changes rapidly with depth and acts as a partial barrier to fluid flow. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

10.
The Auckland Volcanic Field (AVF) is a young basaltic field that lies beneath the urban area of Auckland, New Zealand’s largest city. Over the past 250,000 years the AVF has produced at least 49 basaltic centers; the last eruption was only 600 years ago. In recognition of the high risk associated with a possible future eruption in Auckland, the New Zealand government ran Exercise Ruaumoko in March 2008, a test of New Zealand’s nation-wide preparedness for responding to a major disaster resulting from a volcanic eruption in Auckland City. The exercise scenario was developed in secret, and covered the period of precursory activity up until the eruption. During Exercise Ruaumoko we adapted a recently developed statistical code for eruption forecasting, namely BET_EF (Bayesian Event Tree for Eruption Forecasting), to independently track the unrest evolution and to forecast the most likely onset time, location and style of the initial phase of the simulated eruption. The code was set up before the start of the exercise by entering reliable information on the past history of the AVF as well as the monitoring signals expected in the event of magmatic unrest and an impending eruption. The average probabilities calculated by BET_EF during Exercise Ruaumoko corresponded well to the probabilities subjectively (and independently) estimated by the advising scientists (differences of few percentage units), and provided a sound forecast of the timing (before the event, the eruption probability reached 90%) and location of the eruption. This application of BET_EF to a volcanic field that has experienced no historical activity and for which otherwise limited prior information is available shows its versatility and potential usefulness as a tool to aid decision-making for a wide range of volcano types. Our near real-time application of BET_EF during Exercise Ruaumoko highlighted its potential to clarify and possibly optimize decision-making procedures in a future AVF eruption crisis, and as a rational starting point for discussions in a scientific advisory group. It also stimulated valuable scientific discussion around how a future AVF eruption might progress, and highlighted areas of future volcanological research that would reduce epistemic uncertainties through the development of better input models.  相似文献   

11.
12.
Significant changes in the helium and carbon isotopic composition of shallow thermal waters vs. gas and a crater fumarolic gas have been recorded at Stromboli prior and during the 2002–2003 eruption. The3He/4He ratios corrected for air contamination (Rc/Ra), and δ13C of fumarolic gases gradually increased from May to November 2002 before the eruption onset. These variations imply early degassing of a gas-rich magma at depth that likely fed both the intense Strombolian activity and small lava overflows recorded during that period. The lava effusion of late December 2002 was shortly preceded by a marked Rc/Ra decrease both in water and fumarolic gases. Comparison of He/CO2 and CH4/CO2 ratios in dissolved gas and with values rules out the Rc/Ra decrease due to an increasing input of radiogenic4He. The Rc/Ra decrease is attributed to the He isotope fractionation during rapid magma ascent and degassing. A new uprising of 3He-rich magma probably occurred in January to February 2003, when Rc/Ra ratios displayed the highest values in dissolved gases ever measured before (4.56 Rc/Ra). The increase in He/CO2 and CH4/CO2 ratios and decrease in δ13C of dissolved CO2 was recorded after the 5 April 2003 explosive paroxysm, likely caused by enhanced gas-water interaction inducing CO2 dissolution. No anomalous Rc/Ra values were recorded in the same period, when usual Strombolian activity gradually resumed.Editorial responsibility: H Shinohara  相似文献   

13.
We describe the mineralogy, geochemistry, and mesomicrostructure of fresh subvolcanic blocks erupted during the 5 April 2003 paroxysm of Stromboli (Aeolian Islands, Italy). These blocks represent ∼50 vol.% of the total erupted ejecta and consist of fine- to medium-grained basaltic lithotypes ranging from relatively homogeneous dolerites to strongly or poorly welded magmatic breccias. The breccia components are represented by angular fragments of dolerites entrapped in a matrix of vesiculated (lava-like to scoriae) crystal-rich (CR) basalt. All of the studied blocks are cognates with the CR basalt of the normal Strombolian activity or lavas and they are often coated by a few-centimeter thick layer of crystal-poor (CP) basaltic pumice erupted during the paroxysm. We suggest that they result from the rapid increase of pressure and related subvolcanic rock failure that occurred shortly before the 5 April 2003 explosion, when the uppermost portion of the edifice inflated and suffered brecciation as the result of the sudden rise of the gas-rich CP basalt that triggered the eruption. Dolerites and magmatic matrix of the breccias show major and trace element compositions that match those of the CR basalts erupted during normal Strombolian activity and effusive events at Stromboli volcano. Dolerites consist of (a) phenocrysts normally found in the CR basalts and (b) late-stage magmatic minerals such as sanidine, An60-28 plagioclase, Fe–Mn-rich olivines (Fo68-48), phlogopite, apatite, and opaque mineral pairs (magnetite and ilmenite), most of which are never found both in lava flows and scoriae erupted during the persistent explosive activity that characterizes typical Strombolian behavior. Subvolcanic crystallization of the Stromboli CR magma, leading to slowly cooled equivalents of basalts, could result from transient drainage of the magma from the summit craters to lower levels. Fingering and engulfing of the material that collapsed from the summit crater floor into the shallow basaltic system during the late evening of 28 December 2002 coupled with the short break in the summit persistent explosions between December 2002 and March 2003 permitted the CR magma pockets to solidify as dolerites, which were confined to the uppermost portion of the system and thus not involved in the ongoing flank effusive activity. Crystal size distribution of the basaltic blocks and crystallization of the finer-grained (<0.1 mm) mafic minerals of the dolerites over a time interval of ∼100 days closely agrees with the above interpretation. Vesicle filling (miarolitic cavities) locally found in some dolerites, with minerals deposited as vapor-phase crystallization is a result of continuous gas percolation through the rocks of the uppermost portion of the volcanic system. Poorly welded magmatic breccias formed during syn-eruptive processes of 5 April 2003, when the paroxysm strongly shattered the shallow subvolcanic system and many dolerite fragments were entrapped in the CR magma. In contrast, the high degree of welding between the dolerite clasts and the CR basaltic matrix in the strongly welded magmatic breccias provides a snapshot of subvolcanic intrusions of the CR basalt into the dolerite when, after a 2-month break in activity, CR magmas started to rise again to the summit craters. Blocks similar to these subvolcanic ejecta of 5 April 2003 were also erupted during previous paroxysms (e.g., 1930) suggesting that changes in the usual Strombolian activity (e.g., short breaks in the persistent mild explosions and/or flank effusive activity) lead to transient crystallization of dolerites in the shallow plumbing system.  相似文献   

14.
15.
16.
This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time-lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6-km long longitudinal ER surveys during summer and winter. The time-lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel-scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.  相似文献   

17.
Heavy rainfall and dense vegetation on tropical volcanoes produce abundant carbonized wood in pyroclastic deposits, in addition to easy contamination of this wood by root systems and soluble humic material. Because the physical nature of the charcoal varies, some samples are more prone to contamination. Two independent studies of the same volcano, Mt Liamuiga on St Kitts in the Lesser Antilles, sometimes using samples from the same carbonized tree, yielded a systematic difference in radiocarbon ages. An exchange of samples and a re-investigation of three physically distinct types of charcoal yielded the following results. Rare, hard, dense charcoal, lacking contamination, which had yielded a spurious age of 2860 years bp, was redated at 1845±58 years bp. Common soft, friable charcoal with good cellular structure proved to be susceptible to contamination. A field decontamination technique utilized by one group seems significant as it yields older ages than when only routine laboratory pre-treatment was used, indicating that the latter technique only partly removes the dried and hard residue produced by the decomposition of modern plant rootlets. A previous date of 24870 years bp obtained from powdery charcoal in a horizon beneath the Mansion Series contradicted ages older than 41000 years bp from common friable charcoal in the lower Mansion Series. The soft powdery charcoal was re-investigated using a sample collected a few centimeters from the original, although field decontamination of this sample was not possible, more extensive laboratory treatment yielded an age of ca. 43000 years bp, again proving that routine laboratory pretreatments are inadequate. A revised geochronology for the Mansion Series is described and a cautionary discussion is presented for the benefit of investigators using radiocarbon ages to date volcanic deposits.  相似文献   

18.
The Southeast Crater (SEC) of Mt. Etna, Italy, is renowned for its high activity, mainly long-lived eruptions consisting of sequences of individual paroxysmal episodes which have produced more than 150 eruptive events since 1998. Each episode typically forms eruption columns followed by tephra fallout over distances of up to about 100 km from the vent. One of the last sequences consisted of 25 lava fountaining events, which took place between January 2011 and April 2012 from a pit-vent on the eastern flank of the SEC and built a new scoria cone renamed New Southeast Crater. The first episode on 12–13 January 2011 produced tephra fallout which was unusually dispersed toward to the South extending out over the Mediterranean Sea. The southerly deposition of tephra permitted an extensive survey at distances between ~1 and ~100 km, providing an excellent characterization of the tephra deposit. Here, we document the stratigraphy of the 12–13 January fallout deposit, draw its dispersal, and reconstruct its isopleth map. These data are then used to estimate the main eruption source parameters. The total erupted mass (TEM) was calculated by using four different methodologies which give a mean value of 1.5?±?0.4?×?108 kg. The mass eruption rate (MER) is 2.5?±?0.7?×?104 kg/s using eruption duration of 100 min. The total grain-size (TGS) distribution, peaked at ?3 phi, ranges between ?5 and 5 phi and has a median value of ?1.4 phi. Further, for the eruption column height, we obtained respective values of 6.8–13.8 km by using the method of Carey and Sparks (1986) and 3.4?±?0.3 km by using the methods of Wilson and Walker (1987), Mastin et al. (2009), and Pistolesi et al. (2011) and considering the mean value of MER from the deposit. We also evaluated the uncertainty and reliability of TEM and TGS for scenarios where the proximal and distal samples are not obtainable. This is achieved by only using a sector spanning the downwind distances between 6 and 23 km. This scenario is typical for Etna when the tephra plume is dispersed eastward, i.e., in the prevailing wind direction. Our results show that, if the analyzed deposit has poorer sample coverage than presented in this study, the TEM (3.4?×?107 kg) is 22 % than the TEM obtained from the whole deposit. The lack of the proximal (<6 km) deposit may cause more significant differences in the TGS estimations.  相似文献   

19.
The variation of chemical element compositions in two pyroclastic sequences (Astroni 6 and Averno 2, Phlegrean Fields, Italy) is studied. Both sequences are compositionally zoned indicating a variability of melt compositions in the magma chamber prior to eruption. A clear dichotomy between the behaviour of major vs. trace elements is also observed in both sequences, with major elements displaying nearly linear inter-elemental trends and trace elements showing a variable scattered behaviour. Together with previous petrological investigations these observations are consistent with the hypothesis that magma mixing processes played a key role in the evolution of these two magmatic systems. Recently it has been suggested that mixing processes in igneous systems may strongly influence the mobility of trace elements inducing a ‘diffusive fractionation’ phenomenon, whose extent depends on the mixing time-scale. Here we merge information from 1) numerical simulations of magma mixing, and 2) magma mixing experiments (using as end-members natural compositions from Phlegrean Fields) to derive a relationship relating the degree of ‘diffusive fractionation’ to the mixing time-scales. Application of the ‘diffusive fractionation’ model to the two studied pyroclastic sequences allowed us to apply the relationship derived by numerical simulations and experiments to estimate the mixing time-scales for these two magmatic systems. Results indicate that mixing processes in Astroni 6 and Averno 2 systems lasted for approximately 2 and 9 days, respectively, prior to eruption.  相似文献   

20.
Mt. Etna, in Sicily (Italy) is well known for frequent effusive and explosive eruptions from both its summit and flanks. South-East Crater (SE Crater), one of the four summit craters, has been the most active in the last 20 years and often produces episodic lava fountains over periods lasting from a few weeks to months. The most striking of such eruptive phases was in 2000. Sixty four lava fountains, separated by quiescent intervals and sometimes associated with lava overflows, occurred that year between January and June, a time period during which we consider the volcano to have been in episodic eruption. This paper presents mainly results of petrochemical investigations carried out on both tephra and lavas collected during a number of the lava fountain episodes in 2000. The new data have been integrated with volcanological and seismic information in order to correlate the features of the eruptive activity with magma-gas dynamics in the plumbing system of SE Crater. The main findings allow us to characterise the 2000 episodic eruption in the framework of the recent SE Crater activity. In particular, we infer that the onset of the 2000 eruption was triggered by the ascent of new, more primitive and volatile-rich magma that progressively intruded into the SE Crater reservoir, where it mixed with the resident, more evolved magma. Furthermore, we argue that the 2000 SE Crater lava fountains largely resulted from the instability of a foam layer accumulated at the top of the underlying reservoir and rebuilt prior to each episode, in agreement with the collapsing foam model for lava fountains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号