首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Forests play an important role in regulation of the global climate; moreover, they provide human beings with a whole range of ecosystem services. Forest health and ecosystem functioning have been influenced by anthropogenic activities and their consequences, such as air pollution, surface mining, heavy metal contamination, and other biotic and abiotic stress factors, which had an especially serious effect on central Europe. Many aspects of the physiological state of trees are more or less related to the concentrations of two main groups of leaf photosynthetic pigments: chlorophylls and carotenoids. Therefore, their contents can be used as non-specific indicators of the actual tree physiological status, stress and the pre-visible tree damage. Variations in leaf biochemical composition affect foliar optical properties and can be assessed remotely using high spectral resolution data (hyperspectral data). These data were successfully used in earlier studies to detect vegetation stress and damage. However, only a few approaches have dealt with the use of hyperspectral remote sensing to assess vegetation physiological status on a regional scale. Moreover, little or no research has been done on assessing vegetation health while utilizing multi-date hyperspectral images.In this study, the method for assessing forest health conditions using optical indices retrieved from hyperspectral data was applied to the two temporal HyMap date sets acquired in 07/2009 and 08/2010 to detect stress for the Norway spruce forests in Sokolov, NW Bohemia, a region affected by long-term extensive mining. The classification results were validated by ground truth data (total chlorophyll – Cab, carotenoids – Car and carotenoid to chlorophyll ratio – Car/Cab) and were associated with the geochemical conditions of the forest stands. Both biochemical analysis of the sampled foliage and classification of 2009 and 2010 hyperspectral image identified the same sites affected by vegetation stress. In addition to higher Car/Cab, which enabled detection of the stressed trees using hyperspectral image data, these sites showed critically low pH and lower values for the macronutrient parameters in both organic horizons and, in addition, both sites exhibit critically low base cation to aluminum ratios (Bc/Al) for lower organic and top mineral (0–20 cm) soil horizons.The results of this study demonstrate (i) the potential application of hyperspectral remote sensing as a rapid method of identifying tree stress prior to symptom expression, and (ii) the added value of multi-temporal approaches for hyperspectral data and its further potential for monitoring forest ecosystems.  相似文献   

2.
The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.  相似文献   

3.
Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not available. We set out to assess Boswellia papyrifera tree bark chlorophyll content and to provide an appropriate bark chlorophyll estimation technique using hyperspectral remote sensing techniques. In contrast to the leaves, the bark of B. papyrifera has several outer layers masking the inner photosynthetic bark layer. Thus, our interest includes understanding how much light energy is transmitted to the photosynthetic inner bark and to what extent the inner photosynthetic bark chlorophyll activity could be remotely sensed during both the wet and the dry season. In this study, chlorophyll estimation using the chlorophyll absorption continuum index (CACI) yielded a higher R2 (0.87) than others indices and methods, such as the use of single band, simple ratios, normalized differences, and conventional red edge position (REP) based estimation techniques. The chlorophyll absorption continuum index approach considers the increase or widening in area of the chlorophyll absorption region, attributed to high concentrations of chlorophyll causing spectral shifts in both the yellow and the red edge. During the wet season B. papyrifera trees contain more bark layers than during the dry season. Having less bark layers during the dry season (leaf off condition) is an advantage for the plants as then their inner photosynthetic bark is more exposed to light, enabling them to trap light energy. It is concluded that B. papyrifera bark chlorophyll content can be reliably estimated using the chlorophyll absorption continuum index analysis. Further research on the use of bark signatures is recommended, in order to discriminate the deciduous B. papyrifera from other species during the dry season.  相似文献   

4.
高光谱激光雷达提取植被生化组分垂直分布   总被引:1,自引:1,他引:0  
高帅  牛铮  孙刚  覃驭楚  李旺  田海峰 《遥感学报》2018,22(5):737-744
对地高光谱激光雷达可以获得观测对象含有高光谱属性的全波形激光雷达回波,为探测植被生化特征的立体分布提供了新的遥感探测手段。基于此仪器开展室内试验,提出了植被生化组分垂直分布提取方法。首先,针对仪器的特点,提出了高光谱激光雷达全波形数据处理的方法;其次,以火炬花为例开展了室内扫描,并对获取的高光谱激光雷达数据进行了处理,获得带有高光谱属性的激光雷达点云数据;最后,根据植被指数与生化组分的关系,提取了叶绿素和胡萝卜素的生化组分垂直分布结果。研究结果表明,在植被顶部生化组分含量较低,叶绿素a普遍低于0.5 mg/g,胡萝卜素低于0.2 mg/g,而在中部叶片处,生化组分含量明显较高,与红色(顶部)和绿色叶片(中部)在植被垂直方向的分布一致,这表明基于仪器开展植被生理生化参数垂直分布遥感反演具有极大的应用潜力。  相似文献   

5.
Soil moisture estimation using microwave remote sensing faces challenges of the segregation of influences mainly from roughness and vegetation. Under static surface conditions, it was found that Radarsat C-band SAR shows reasonably good correlation and sensitivity with changing soil moisture. Dynamic surface and vegetation conditions are supposed to result in a substantial reduction in radar sensitivity to soil moisture. A C-band scatterometer system (5.2 GHz) with a multi-polarization and multi-angular configuration was used 12 times to sense the soil moisture over a tall vegetated grass field. A score of vegetation and soil parameters were recorded on every occasion of the experiment. Three radar backscattering models Viz., Integral Equation Model (IEM), an empirical model and a volume scattering model, have been used to predict the backscattering phenomena. The volume scattering model, using the Distorted Born Approximation, is found to predict the backscattering phenomena reasonably well. But the surface scattering models are expectedly found to be inadequate for the purpose. The temporal variation of soil moisture does show good empirical relationship with the observed radar backscattering. But as the vegetation biomass increases, the radar shows higher sensitivity to the vegetation parameters compared to surface characteristics. A sensitivity analysis of the volume scattering model for all the parameters also reveals that the radar is more sensitive to plant parameters under high biomass conditions, particularly vegetation water content, but the sensitivity to surface characteristics, particularly to soil moisture, is also appreciable.  相似文献   

6.
The fractional vegetation cover (FVC), crop residue cover (CRC), and bare soil (BS) are three important parameters in vegetation–soil ecosystems, and their correct and timely estimation can improve crop monitoring and environmental monitoring. The triangular space method uses one CRC index and one vegetation index to create a triangular space in which the three vertices represent pure vegetation, crop residue, and bare soil. Subsequently, the CRC, FVC, and BS of mixed remote sensing pixels can be distinguished by their spatial locations in the triangular space. However, soil moisture and crop-residue moisture (SM-CRM) significantly reduce the performance of broadband remote sensing CRC indices and can thus decrease the accuracy of the remote estimation and mapping of CRC, FVC, and BS. This study evaluated the use of broadband remote sensing, the triangular space method, and the random forest (RF) technique to estimate and map the FVC, CRC, and BS of cropland in which SM-CRM changes dramatically. A spectral dataset was obtained using: (1) from a field-based experiment with a field spectrometer; and (2) from a laboratory-based simulation that included four distinct soil types, three types of crop residue (winter-wheat, maize, and rice), one crop (winter wheat), and varying SM-CRM. We trained an RF model [designated the broadband crop-residue index from random forest (CRRF)] that can magnify spectral features of crop residue and soil by using the broadband remote sensing angle indices as input, and uses a moisture-resistant hyperspectral index as the target. The effects of moisture on crop residue and soil were minimized by using the broadband CRRF. Then, the CRRF-NDVI triangular space method was used to estimate and map CRC, FVC, and BS. Our method was validated by using both laboratory- and field-based experiments and Sentinel-2 broadband remote-sensing images. Our results indicate that the CRRF-NDVI triangular space method can reduce the effect of moisture on the broadband remote-sensing of CRC, and may also help to obtain laboratory and field CRC, FVC, and BS. Thus, the proposed method has great potential for application to croplands in which the SM-CRM content changes dramatically.  相似文献   

7.
基于连续小波分析的混合植被叶绿素反演   总被引:1,自引:0,他引:1  
利用DB4小波函数对两个尺度4个数据集混合植被高光谱数据进行连续小波分析,分析小波系数与叶绿素含量之间的相关性,建立模型并利用验证数据进行验证,将模型精度与植被指数经验模型进行比较,最后进行了不同数据集之间的交叉验证。结果表明,在叶片尺度与冠层尺度上,基于连续小波分析进行混合植被叶绿素反演,所得模型精度均高于植被指数经验模型精度;在相同尺度上,模拟与实测数据集之间有相同的小波系数特征区域,可以用来进行叶绿素含量反演。  相似文献   

8.
An unsupervised machine-learning workflow is proposed for estimating fractional landscape soils and vegetation components from remotely sensed hyperspectral imagery. The workflow is applied to EO-1 Hyperion satellite imagery collected near Ibirací, Minas Gerais, Brazil. The proposed workflow includes subset feature selection, learning, and estimation algorithms. Network training with landscape feature class realizations provide a hypersurface from which to estimate mixtures of soil (e.g. 0.5 exceedance for pixels: 75% clay-rich Nitisols, 15% iron-rich Latosols, and 1% quartz-rich Arenosols) and vegetation (e.g. 0.5 exceedance for pixels: 4% Aspen-like trees, 7% Blackberry-like trees, 0% live grass, and 2% dead grass). The process correctly maps forests and iron-rich Latosols as being coincident with existing drainages, and correctly classifies the clay-rich Nitisols and grasses on the intervening hills. These classifications are independently corroborated visually (Google Earth) and quantitatively (random soil samples and crossplots of field spectra). Some mapping challenges are the underestimation of forest fractions and overestimation of soil fractions where steep valley shadows exist, and the under representation of classified grass in some dry areas of the Hyperion image. These preliminary results provide impetus for future hyperspectral studies involving airborne and satellite sensors with higher signal-to-noise and smaller footprints.  相似文献   

9.
Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.  相似文献   

10.
基于TM数据的植被覆盖度反演   总被引:6,自引:5,他引:6  
本文首先对TM影像进行了几何纠正、辐射校正、大气校正;然后根据混合像元的结构特征,利用TM数据从植被指数(NDVI)中采用“等密度模型”和“非密度模型”提取了宜昌南部地区的植被覆盖度。在用“非密度模型”反演植被覆盖度的过程中,叶面积指数(LAI)是一个必要的参数,本文提出了一种改进的借助可见光波段和近红外波段反射值来提取叶面积指数(LAI)的方法。通过和MODIS数据反演结果比较表明:“非密度模型”的估算精度要高于“等密度模型”;利用“等密度模型”和“非密度模型”反演植被覆盖度是可行。  相似文献   

11.
12.
本文分析了高光谱反射率及红边位置与叶片绿度的相关性,建立了基于敏感波段和红边位置的叶绿素估算模型。通过对不同叶绿素含量高光谱曲线特征的分析,提出了基于高光谱曲线峰度和偏度的叶绿素估算新思路,并分别建立基于原始光谱560-760nm波段和一阶导数光谱660-760nm波段对应峰度、偏度的叶绿素反演模型。结果表明,法国梧桐、无花果和白毛杨基于敏感波段的叶绿素含量反演模型的拟合度,与传统估算模型相比,本文提出的新估算模型可以明显提高高光谱反演叶绿素含量的能力。  相似文献   

13.
Estimation of vegetation covered soil moisture with satellite images is still a challenging task. Several models are available for soil moisture retrieval in which water cloud model (WCM) is most common. But, it requires an estimation of accurate vegetation parameterization. Thus, there is a need to develop such an approach for soil moisture retrieval which minimize these limitations. Therefore, this paper deals with the soil moisture retrieval using fully polarimetric SAR data by fusing the information from different bands. Various polarimetric indices and observables were critically analysed, and found that the index; SPAN (total scattered power) gives better information of vegetation cover as compared to other indices/observables. Based on this, WCM model has been modified using SPAN as parameter and soil moisture content were retrieved.  相似文献   

14.
利用ASD便携式野外光谱仪和SPAD-502叶绿素计实测了落叶阔叶树法国梧桐叶片的高光谱反射率与叶片绿度,并对原始光谱反射率及一阶导数光谱与叶片绿度进行了相关分析;综合分析了10个常见光谱植被指数与法国梧桐叶绿素含量的相关性与预测性;最后利用主成分分析对光谱数据进行降维,将得到的主成分得分作为BP人工神经网络模型的输入变量进行了法国梧桐叶绿素含量的估算。结果表明:法国梧桐的叶片反射光谱数据与叶绿素含量的相关性在可见光区域显著,导数光谱数据在绿黄光区和红光区的部分波段与叶绿素含量的相关系数大于对应波段光谱反射率与叶绿素含量的相关关系。在所列举的10个常用植被指数中归一化植被指数与叶绿素含量的关系最密切,相关系数达到了0.7957。主成分分析的BP神经网络模型可以容纳更多的波段信息进行叶绿素含量的估算,预测值与实测值之间的线性回归的确定性系数R2为0.9883,是一种良好的植被叶绿素含量高光谱反演模式。  相似文献   

15.
Ground-reflected global positioning system signals measured by a geodetic-quality GPS system can be used to infer temporal changes in near-surface soil moisture for the area surrounding the antenna. This technique, known as GPS-interferometric reflectometry, analyzes changes in the interference pattern of the direct and reflected signals, which are recorded in signal-to-noise ratio (SNR) data, as interferograms. Temporal fluctuations in the phase of the interferogram are indicative of changes in near-surface volumetric soil moisture content. However, SNR phase is also highly sensitive to changes in overlying vegetation, and thus, the effects of seasonal vegetation changes on the ground-reflected signal must be considered. Here a method is described for determining whether SNR data are significantly corrupted by vegetation and for correcting these effects. Absolute soil moisture content must be determined for each site using ancillary data for the residual moisture content. Accounting for vegetation effects significantly improves the agreement between GPS-derived soil moisture and in situ measurements.  相似文献   

16.
Surface moisture is important to link land surface temperature (LST) to people’s thermal comfort. In urban areas, the surface roughness from buildings and urban trees impacts wind speed, and consequently surface moisture. To find the role of surface roughness in surface moisture estimation, we developed methods to estimate daily and hourly evapotranspiration (ET) and soil moisture, based on a case study of Indianapolis, Indiana, USA. In order to capture the spatial and temporal variations of LST, hourly and daily LST was produced by downscaling techniques. Given the heterogeneity in urban areas, fractions of vegetation, soil, and impervious surfaces were calculated. To describe the urban morphology, surface roughness parameters were calculated from digital elevation model (DEM), digital surface model (DSM), and Terrestrial Light Detection and Ranging (LiDAR). Two source energy balance (TSEB) model was employed to generate ET, and the temperature vegetation index (TVX) method was used to calculate soil moisture. Stable hourly soil moisture fluctuated from 15% to 20%, and daily soil moisture increased due to precipitation and decreased due to seasonal temperature change. ET over soil, vegetation, and impervious surface in the urban areas yielded different patterns in response to precipitation. The surface roughness from high-rise has bigger influence on ET in central urban areas.  相似文献   

17.
卢霞  刘少峰  郑礼全 《测绘科学》2007,32(2):111-113
研究矿区植被重金属胁迫,植被反射光谱测量必不可少。用成像光谱仪野外测试江西德兴铜矿区典型植被的冠层反射波谱曲线,利用导数光谱评价植被“红边”位置。分析得知,植被红边“蓝移”,最大“蓝移”达11nm。根据红边位置与叶绿素含量的正相关关系,并结合铜矿区地质、地貌特点以及开采情况,初步断定铜矿区植被主要受到重金属胁迫而且胁迫程度与植被冠层重金属含量也呈正相关关系。这可作为高光谱分辨率遥感技术在矿区植被修复方面的决策支持和参考依据。  相似文献   

18.
研究增强型植被指数基于Landsat-8数据反演土壤水分的可行性及适用性,分析研究区土壤水分总体分布,提高该地区应对干旱灾害的能力。基于温度植被干旱指数方法,以淮河流域上游地区作为研究区,基于2017年2月的Landsat-8影像,分别计算了地表温度、归一化植被指数、增强型植被指数,基于TVDI构建了两种土壤水分反演模型。研究比较了:1) EVI在TM数据中的应用特点;2)研究区土壤含水率的空间分布特征;3)两种模型反演结果的差异。结果表明:1)基于TM数据计算的EVI总体明显低于NDVI,但不同时间段的结果并不总是低于NDVI;2)基于EVI的模型结果精度低于基于NDVI模型结果。3)两种模型结果与植被覆盖度、地表温度的关系均为负相关,其中,基于EVI的模型结果与地表温度的负相关程度极高,即基于EVI的模型结果受植被影响较小,受温度影响程度高。  相似文献   

19.
基于梯度结构相似度的矿区土壤湿度空间分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于中国蒙、陕、晋、三省区的神东矿区2000-2015年成像光谱仪数据,双抛物线型归一化植被指数(normalized difference vegetation index,NDVI)和地表辐射温度(land surface temperature,Ts)(记为NDVI-Ts)特征空间的温度植被干旱指数法计量地表土壤湿度,采用梯度结构相似度法定量分析研究区土壤湿度的时空分布特征。结果表明:神东矿区土壤湿度变化具有明显时空分布异质性,空间上,矿区土壤湿度表现出从西北部向东南部逐渐增加的规律,干旱区域由2000年的96.03%下降到2015年的59.59%;矿区60.05%的区域的土壤湿度发生了突变,其中49.87%区域地表植被覆盖得到明显改善,土壤湿度得到明显提高;35.18%的区域的土壤湿度发生了变化,其中28.13%区域地表植被覆盖有所改善,土壤湿度有所增加;仅有4.77%的区域的土壤湿度没有发生改变。进一步分析表明,地表土壤湿度的时空分布特征受区域地貌类型和下垫面覆盖影响较大。  相似文献   

20.
The potential utility of the Harrington “desirability” function is examined in the assessment of changes in soil humus content using spectrophotometric data. The influence of external factors, such as sun angle, soil moisture content, and degree of soil cultivation, on spectral brightness coefficients is analyzed. The applicability of this method when there is only a small volume of experimental data is noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号