首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《地学前缘(英文版)》2020,11(5):1593-1608
The Gejiu-Bozushan-Laojunshan W-Sn polymetallic metallogenic belt(GBLB) in southeast Yunnan Province is an important part of the southwestern Yangtze Block in South China.Tin polymetallic mineralization in this belt includes the Niusipo,Malage,Songshujiao,Laochang and Kafang ore fields in the Gejiu area which are spatially and temporally associated with the Kafang-Laochang and Songshujiao granite plutons.These granites are characterized by variable A/CNK values(mostly 1.1,except for two samples with 1.09),high contents of SiO_2(74.38-76.84 wt.%) and Al_2 O_3(12.46-14.05 wt.%) and variable CaO/Na_2 O ratios(0.2-0.65) as well as high zircon δ~(18)O values(7.74‰-9.86‰),indicative of S-type affinities.These rocks are depleted in Rb,Th,U,Ti,LREE[(La/Yb)N=1.4-20.51],Ba,Nb,Sr,and Ti and display strong negative Eu and Ba anomalies.The rocks possess high Rb/Sr and Rb/Ba ratios,relatively low initial ~(87)Sr/~(86)Sr ratios(0.6917-0.7101),and less radiogenic εNd(t)values(-8.0 to-9.1).The zircon grains from these rocks show negative ε_(Hf)(t) values in the range of-3.7 to-9.9 with mean T_(DM2)(Nd) and T_(DM2)(Hf) values of 1.57 Ga and 1.55 Ga.They show initial ~(207)Pb/~(204)Pb ranging from15.69 to 15.71 and ~(206)Pb/~(204)Pb from 18.36 to 18.70.Monazite from Songshujiao granites exhibits higher U and lower Th/U ratios,lower δ~(18)O values and higher ε_(Hf)(t) values than those of the zircon grains in the KafangLaochang granites.The geochemical and isotopic features indicate that the Laochang-Kafang granites originated by partial melting of Mesoproterozoic crustal components including biotite-rich metapelite and metagraywacke,whereas the Songshujiao granites were derived from Mesoproterozoic muscovite-rich metapelite crustal source.Most zircon grains from the Songshujiao,Laochang and Kafang granites have high-U concentrations and their SIMS U-Pb ages show age scatter from 81.6 Ma to 88.6 Ma,80.7 Ma to 86.1 Ma and 82.3 Ma to 87.0 Ma,suggesting formation earlier than the monazite and cassiterite.Monazite SIMS U-Pb ages and Th-Pb ages of three same granite samples are consistent and show yielded 206 Pb/~(238)U ages of 83.7 ± 0.6 Ma,83.7±0.6 Ma,and 83.4±0.6 Ma,and ~(208)Pb/~(232)Th ages of 83.2 ± 0.5 Ma,83.8 ± 0.4 Ma,and 83.5±0.9 Ma,which are within the range of the SIMS zircon U-Pb ages from these rocks.The data constrain the crystallization of the granites at ca.83 Ma.In situ U-Pb dating of two cassiterite samples from the cassiterite-sulfide ore in the Songshujiao ore field and Kafang ore field,and two from the cassiterite-oxide+cassiterite bearing dolomite in the Laochang ore field yielded weighted mean 206 Pb/~(238)U ages of 83.5±0.4 Ma(MSWD=0.6),83.5 ± 0.4 Ma(MSWD=0.5),83.6 ±0.4 Ma(MSWD=0.6) and 83.2 ±0.7 Ma(MSWD=0.6),respectively.Combined with geological characteristics,the new geochronological data indicate that the formation of the granites and Sn polymetallic deposits are coeval.We correlate the magmatic and metallogenic event with lithospheric thinning and asthenosphere upwelling in continental extension setting in relation to the eastward subduction of the Neo-Tethys beneath the Sanjiang tectonic domain during Late Cretaceous.  相似文献   

2.
Correct interpretation of zircon ages from high-grade metamorphic terrains poses a major challenge because of the differential response of the U–Pb system to metamorphism, and many aspects like pressure–temperature conditions, metamorphic mineral transformations and textural properties of the zircon crystals have to be explored. A large (c. 450?km2) coherent migmatite complex was recently discovered in the Bohemian Massif, Central European Variscides. Rocks from this complex are characterized by granulite- and amphibolite-facies mineral assemblages and, based on compositional and isotopic trends, are identified as the remnants of a magma body derived from mixing between tonalite and supracrustal rocks. Zircon crystals from the migmatites are exclusively large (200–400?μm) and yield 207Pb/206Pb evaporation ages between 342–328?Ma and single-grain zircon fractions analysed by U–Pb ID-TIMS method plot along the concordia curve between 342 and 325?Ma. High-resolution U–Pb SHRIMP analyses substantiate the existence of a resolvable age variability and yield older 206Pb/238U ages (342–330?Ma, weighted mean age?=?333.6?±?3.1?Ma) for inner zone domains without relict cores and younger 206Pb/238U ages (333–320?Ma, weighted mean age?=?326.0?±?2.8?Ma) for rim domains. Pre-metamorphic cores were identified only in one sample (206Pb/238U ages at 375.0?±?3.9, 420.3?±?4.4 and 426.2?±?4.4?Ma). Most zircon ages bracket the time span between granulite-facies metamorphism in the Bohemian Massif (~345?Ma) and the late-Variscan anatectic overprint (Bavarian phase, ~325?Ma). It is argued that pre-existing zircon was variously affected by these metamorphic events and that primary magmatic growth zones were replaced by secondary textures as a result of diffusion reaction processes and replacement of zircon by dissolution and recrystallization followed by new zircon rim growth. Collectively, the results show that the zircons equilibrated during high-grade metamorphism and record partial loss of radiogenic Pb during post-peak granulite events and new growth under subsequent anatectic conditions.  相似文献   

3.
http://www.sciencedirect.com/science/article/pii/S1674987112000564   总被引:10,自引:0,他引:10  
High-pressure(HP) granulites widely occur as enclaves within tonalite-trondhjemitegranodiorite (TTG) gneisses of the Early Precambrian metamorphic basement in the Shandong Peninsula, southeast part of the North China Craton(NCC).Based on cathodoluminescence(CL),laser Raman spectroscopy and in-situ U-Pb dating,we characterize the zircons from the HP granulites and group them into three main types:inherited(magmatic) zircon,HP metamorphic zircon and retrograde zircon.The inherited zircons with clear or weakly defined magmatic zoning contain inclusions of apatites,and 207Pb/206Pb ages of 2915—2890 Ma and 2763—2510 Ma,correlating with two magmatic events in the Archaean basement. The homogeneous HP metamorphic zircons contain index minerals of high-pressure metamorphism including garnet,clinopyroxene.plagioclase,quartz,rutile and apatite,and yield 207Pb/206Pb ages between 1900 and 1850 Ma,marking the timing of peak HP granulite fades metamorphism.The retrograde zircons contain inclusions of orthopyroxene.plagioclase.quartz,apatite and amphibole.and yield the youngest 207Pb/206Pb ages of 1840—1820 Ma among the three groups,which we correlate to the medium to low-pressure granulite fades retrograde metamorphism.The data presented in this study suggest subduction of Meso- and Neoarchean magmatic protoliths to lower crust depths where they were subjected to HP granulite facies metamorphism during Palaeoproterozoic(1900—1850 Ma).Subsequently, the HP granulites were exhumated to upper crust levels,and were overprinted by medium to low-pressure granulite and amphibolite facies retrograde event at ca.1840—820 Ma.  相似文献   

4.
The Koktokay No. 3 pegmatite is the largest Li–Be–Nb–Ta–Cs pegmatitic rare‐metal deposit of the Chinese Altai orogenic belt, and is famous for its concentric ring zonation pattern (nine internal zones). However, the formation age and evolution time span have been controversial. Here, we present the results of LA‐ICP–MS zircon U–Pb dating and muscovite 40Ar–39Ar dating. Four groups of zircon U–Pb ages (~210 Ma, ~193–198 Ma, ~186–187 Ma and ~172 Ma) for Zones II, V, VI, VII, and VIII, and a weighed mean 206Pb/238U age of 965 ± 11 Ma for Zone IV are identified. Also, Zones II, IV, and VI have muscovite 40Ar–39Ar plateau ages of 179.7 ± 1.1 Ma, 182.1 ± 1.0 Ma, and 181.8 ± 1.1 Ma, respectively. Considering previous U–Pb age studies (Zones I, V, and VII), the ages of emplacement, Li mineralization peak, hydrothermal stage of the No. 3 pegmatite are in ranges of 193–198 Ma, 184–187 Ma and 172–175 Ma, with weighted mean 206Pb–238U ages of 194.8 ± 2.3 Ma, 186.6 ± 1.3 Ma and 173.1 ± 3.9 Ma, respectively. The No. 3 pegmatite formed in the early Jurassic. The results of xenocrysts suggest that there is another pegmatite forming event of around 210 Ma in the mining district and the old zircon U–Pb ages imply that Neoproterozoic crustal rocks pertain to sources of the No. 3 pegmatite. Including the previous muscovite 40Ar–39Ar age studies (Zones I and V), a cooling age range of 177–182 Ma is considered as the time of hydrothermal stage and end of formation. The evolution process of the No. 3 pegmatite lasted 16 Ma. Therein, the magmatic stage continued for 9–11 Myr and the magmatic–hydrothermal transition and hydrothermal stages were sustained at 5–7 Ma. These time spans are long because of huge scale, cupola shape, large formation depth, and complex internal zoning patterns and formation processes. Considering some pegmatite dikes in the Chinese Altai, there is an early Jurassic pegmatite forming event.  相似文献   

5.
锆石U-Pb年代学方法已经成为地质学研究必不可少的方法。本文收集整理了二十世纪八十年代以来分散在期刊论文、学位论文等多种出版载体中的锆石U-Pb年代学数据,建成中国大陆单颗粒锆石数据库中文子库。该数据子库涉及截至到2017年底的文献2331篇,有效数据154768条目,数据总量已经能够用来进行数据的初步分析和相关地球科学研究。数据子库中年龄-年龄绝对误差关系的分析表明,Age(~(206)Pb/~(238)U)、Age(~(207)Pb/~(235)U)、Age(~(207)Pb/~(206)Pb)在不同的地质年代区间误差表现有所不同。在小于1684.4Ma、1684.4~2855.2Ma、大于2855.2Ma年龄区Age(~(206)Pb/~(238)U)、Age(~(207)Pb/~(235)U)、Age(~(207)Pb/~(206)Pb)的误差最小、置信度最好,除了Age(~(207)Pb/~(235)U)测试方法的原因外,Age(~(206)Pb/~(238)U)和Age(~(207)Pb/~(206)Pb)可分别作为不同年龄段的推荐年龄。将选用的推荐年龄运用于LA-ICP-MS、SHRIMP、SIMS三种方法的比较,得出其适用于不同地质年代的范围。推荐年龄运用于年龄-频数图中并使用高斯多峰拟合,则可发现中国大陆锆石存在6个生长峰期,分别为131.71Ma、255.17Ma、442.42Ma、811.56Ma、1868.36Ma和2505.31Ma等;更小尺度下的新生代则存在七个峰期,分别为16.99Ma、27.64Ma、35.26Ma、43.44Ma、48.27Ma、52.74Ma和62.07Ma等,峰期及其对应测试点的位置可与中国大陆地壳演化重大历史事件对应。  相似文献   

6.
The newly-discovered Donglufang Moe Cu porphyry-skarn deposit is located in the southern Yidun Terrane, southeast Tibet, with more than 80 million tonnes(Mt) of reserves(grading 0.15 wt.% Mo and0.48 wt.% Cu) hosted in Triassic strata and Late Cretaceous granodiorite porphyry. Ree Os dating of molybdenum ore yielded a weighted mean age of 84.9 ± 1.0 Ma and an isochron age of 85.2 ± 0.6 Ma.LA-ICP-MS Ue Pb dating of zircons from the granodiorite porphyry yielded206 Pb/238 U ages ranging from 87.4 Ma to 84.2 Ma with a weighted mean206 Pb/238 U age of 85.1 ±0.5 Ma, indicating a temporal linkage between granitic magmatism and Moe Cu mineralization. Geochemical analyses show that the granodiorite porphyries are I-type granites with Si O_2 contents of 64.3 -66.7 wt.%. These rocks are typically metaluminous with high K_2 O/Na_2 O ratios, low Mg O(1.32 -1.56 wt.%), Cr(5.6 -12.9 ppm), Ni(3.79 -10.81 ppm), Mg#(43 -52) values, and high Sr(304 -844 ppm), Sr/Y(21.2 -50.8) and La/Yb ratios(37.0 -60.1). They are enriched in light rare-earth elements(LREE) relative to heavy rare-earth elements(HREE), with slightly negative Eu anomalies, and are enriched in Th, U and large ion lithophile elements(LILE, e.g., K and Rb), and depleted in high field strength elements(HFSE, e.g., Nb, Ta, P and Ti). They also show negative zircon εHf(t) values(-6.7 to -2.3) and negative whole rock εNd(t) values(à5.2 to-4.3), as well as old Hfe Nd model ages, indicating the magmas were derived from a thickened ancient lower crust within the garneteamphibolite facies. Considering the tectonic evolution of the Yidun Terrane, geochemical characteristics of granodiorite porphyry, and the ages of mineralization obtained in this study. We suggest that the Donglufang deposit was formed in a post-collisional setting, which has a genetic relationship with the emplacement of the granodiorite porphyry. The present study provide key information for the exploration of the Late Cretaceous metallogeny in the Yidun Terrane.  相似文献   

7.
On the basis of internal structures, laser ablation U–Pb ages and trace element compositions, the origin of zircon in jadeitite in the Nishisonogi metamorphic rocks was examined. The zircon comprises euhedral zoned cores overgrown by euhedral rims. The cores contain inclusions of muscovite, quartz, albite and possibly K‐feldspar, yield 238U–206Pb ages of 126 ± 6 Ma (±2 SD, n = 45, MSWD = 1.0), and have Th/U ratios of 0.48–1.64. The rims contain inclusions of jadeite, yield 238U–206Pb ages of 84 ± 6 Ma (±2 SD, n = 14, MSWD = 1.1), and have Th/U ratios of <0.06. The cores are richer in Y, Th, Ti and rare earth elements (REEs), but the rims are richer in Hf and U. Chondrite‐normalized REE patterns of the cores indicate higher SmN/LaN ratios, lower YbN/GdN ratios and larger positive Ce anomalies compared with those of the rims. Thus, the cores and rims have different 238U–206Pb ages and trace element compositions, suggesting two stages of zircon growth. Although the 238U–206Pb ages of the rims are consistent with the reported 40Ar/39Ar spot‐fusion ages of matrix muscovite in the jadeitite, the 238U–206Pb ages of the cores are older. The mineral inclusions and high Th/U ratios in the cores are best explained by crystallization from felsic magma. Therefore, the cores are considered relicts from igneous precursor rocks. The rims surrounding the inherited cores possibly precipitated from aqueous fluids during jadeitite formation. The elevated U concentrations in the rims suggest that infiltration of external fluids was responsible for the precipitation. This study provides an example of jadeitite formation by metasomatic replacement of a protolith.  相似文献   

8.
This paper evaluates the analytical precision, accuracy and long‐term reliability of the U‐Pb age data obtained using inductively coupled plasma–mass spectrometry (ICP‐MS) with a frequency quintupled Nd‐YAG (λ = 213nm) laser ablation system. The U‐Pb age data for seven standard zircons of various ages, from 28 Ma to 2400 Ma (FCT, SL13, 91500, AS3, FC1, QGNG and PMA7) were obtained with an ablation pit size of 30 μm diameter. For 207Pb/206Pb ratio measurement, the mean isotopic ratio obtained on National Institute of Standards and Technology (NIST) SRM610 over 4 months was 0.9105 ± 0.0014 (n = 280, 95% confidence), which agrees well with the published value of 0.9096. The time‐profile of Pb/U ratios during single spot ablation showed no significant difference in shape from NIST SRM610 and 91500 zircon standards. These results encouraged the use of the glass standard as a calibration standard for the Pb/U ratio determination for zircons with shorter wavelength (λ = 213 nm) laser ablation. But 206Pb/238U and 207Pb/235U ages obtained by this method for seven zircon standards are systematically younger than the published U‐Pb ages obtained by both isotope dilution–thermal ionization mass spectrometry (ID‐TIMS) and sensitive high‐resolution ion‐microprobe (SHRIMP). Greater discrepancies (3–4% younger ages) were found for the 206Pb/238U ages for SL13, AS3 and 91500 zircons. The origin of the differences could be heterogeneity in Pb/U ratio on SRM610 between the different disks, but a matrix effect accuracy either in the ICP ion source or in the ablation‐transport processes of the sample aerosols cannot be neglected. When the 206Pb/238U (= 0.2302) newly defined in the present study is used, the measured 206Pb/238U and 207Pb/235U ages for the seven zircon standards are in good agreement with those from ID‐TIMS and SHRIMP within ±2%. This suggests that SRM610 glass standard is suitable for ICP‐MS with laser ablation sampling (LA‐ICP‐MS) zircon analysis, but it is necessary to determine the correction factor for 206Pb/238U by measuring several zircon standards in individual laboratories.  相似文献   

9.
In this article, we document a detailed analytical characterisation of zircon M127, a homogeneous 12.7 carat gemstone from Ratnapura, Sri Lanka. Zircon M127 has TIMS‐determined mean U–Pb radiogenic isotopic ratios of 0.084743 ± 0.000027 for 206Pb/238U and 0.67676 ± 0.00023 for 207Pb/235U (weighted means, 2s uncertainties). Its 206Pb/238U age of 524.36 ± 0.16 Ma (95% confidence uncertainty) is concordant within the uncertainties of decay constants. The δ18O value (determined by laser fluorination) is 8.26 ± 0.06‰ VSMOW (2s), and the mean 176Hf/177Hf ratio (determined by solution ICP‐MS) is 0.282396 ± 0.000004 (2s). The SIMS‐determined δ7Li value is ?0.6 ± 0.9‰ (2s), with a mean mass fraction of 1.0 ± 0.1 μg g?1 Li (2s). Zircon M127 contains ~ 923 μg g?1 U. The moderate degree of radiation damage corresponds well with the time‐integrated self‐irradiation dose of 1.82 × 1018 alpha events per gram. This observation, and the (U–Th)/He age of 426 ± 7 Ma (2s), which is typical of unheated Sri Lankan zircon, enable us to exclude any thermal treatment. Zircon M127 is proposed as a reference material for the determination of zircon U–Pb ages by means of SIMS in combination with hafnium and stable isotope (oxygen and potentially also lithium) determination.  相似文献   

10.
We have developed new analytical procedures to measure precise and accurate 238U–206Pb and 235U–207Pb ages for young (~ 1 Ma) zircons using laser ablation‐ICP‐mass spectrometry. For young zircons, both careful correction for the background counts and analysis of very small Pb/U ratios (i.e., 206Pb/238U < 0.00016 and 207Pb/235U < 0.0001 for 1 Ma zircons) are highly desired. For the correction of the background, the contribution of the background signal intensities for the analytes, especially for the residual signal intensities for 206Pb and 207Pb, was defined through laser ablation of synthesised zircons (ablation blank) containing negligible Pb. The measured signal intensities for 202Hg, 206Pb and 207Pb signals obtained by the ablation blank were slightly higher than those obtained by data acquisition without laser ablation (gas blank). For the wider dynamic range measurements on Pb/U ratios, an attenuator device for the ion detection system was employed to extend the capability to monitor high‐intensity signals (i.e., > 3 Mcps). Through the attenuator device, the ion currents were reduced to 1/450 of the signal intensity without the attenuator. Because the switching time for the attenuator was shorter than 1 ms, signal intensities for only specific isotopes could be reduced. With attenuation of the 238U signal, counting statistics on 206Pb and 207Pb isotopes could be improved and counting loss on the 238U signal could be minimised. To demonstrate the reliability of this new analytical technique, 238U–206Pb and 235U–207Pb ages for three young zircon samples (collected from Osaka Group Pink Volcanic Ash, Kirigamine and Bishop Tuff) were measured. The data presented here demonstrate clearly that the present technique could become a major analytical tool for in situ U–Pb age determination of young zircons (~ 1 Ma).  相似文献   

11.
The Plutonic Well Greenstone Belt (PWGB) is located in the Marymia Inlier between the Yilgarn and Pilbara cratons in Western Australia, and hosts a series of major Au deposits. The main episode of Au mineralisation in the PWGB was previously interpreted to have either accompanied, or shortly followed, peak metamorphism in the late Archean at ca 2650 Ma with a later, minor, event associated with the Capricorn Orogeny. Here we present new Pb isotope model ages for sulfides and Rb–Sr ages for mica, as well as a new 207Pb–206Pb age for titanite for samples from the Plutonic Gold Mine (Plutonic) at the southern end of the PWGB. The majority of the sulfides record Proterozoic Pb isotope model ages (2300–2100 Ma), constraining a significant Au mineralising event at Plutonic that occurred >300 Myr later than previously thought. A Rb–Sr age of 2296 ± 99 Ma from muscovite in an Au-bearing sample records resetting or closure of the Rb–Sr system in muscovite at about the same time. A younger Rb–Sr age of 1779 ± 46 Ma from biotite from the same sample may record further cooling, or resetting during a late-stage episode of metasomatism in the PWGB. This could have been associated with the 1820–1770 Ma Capricorn Orogeny, or a late-stage hydrothermal event potentially constrained by a new 207Pb–206Pb age of 1725 ± 26 Ma for titanite in a chlorite–carbonate vein. This titanite age correlates with a pre-existing age for a metasomatic event dated at 1719 ± 14 Ma by U–Pb ages of zircon overgrowths in a sample from the Marymia Deposit. Based on the Pb-isotope data presented here, Au mineralising events in the PWGB are inferred to have occurred at ca 2630, 2300–2100 Ma, during the Glenburgh and Capricorn orogenies, and 1730–1660 Ma. The 2300–2100 Ma event, which appears to have been significant based on the amount of sulfide of this age, correlates with the inferred age for rifting of the Marymia Inlier from the northern margin of the Yilgarn Craton. The texturally-later visible Au may have been deposited during the Glenburgh and Capricorn orogenies.  相似文献   

12.
1 Introduction Since the Guilaizhuang gold deposit was discovered in the 1980s, the Tongshi magmatic complex has attracted attention since it exhibits a spatial-temporal relationship to gold mineralization. In the past ten years, a number of detailed fundamental researches have been carried out on the complex, Guilaizhuang gold deposit and their relationships (Qiu et al., 1994; Lin et al., 1996; Yan et al., 1996; Xu et al., 1999; Kong et al., 2001; Shun et al., 2001). Up to date, some res…  相似文献   

13.
苏鲁仰口超高压岩石SHRIMP锆石U/Pb定年与部分熔融时限   总被引:5,自引:4,他引:1  
在大型碰撞造山带中,在陆壳物质深俯冲或快速折返早期,在超高压-高压条件下,易熔组分可能发生水致或脱水部分熔融,形成花岗质熔体。在超高压-高压条件下,苏鲁超高压岩石发生过部分熔融作用,形成长英质多晶体包裹体和不同尺度的花岗质岩石, 导致可观的地球化学效应。为确定苏鲁超高压岩石部分熔融的时限,对山东仰口超高压副片麻岩和其中平行片麻理的同构造钾质花岗岩脉进行了SHRIMP锆石U/Pb地质年代学、全岩地球化学和锆石内矿物包裹体的研究。副片麻岩的锆石具有典型的核-幔-边结构。核部锆石为碎屑锆石,206Pb/238U年龄大于282Ma,可能反映了副片麻岩的原岩包含不同成因的物质;幔部和边部的Th/U比都小于0.1,分别给出233±3Ma和214±4Ma的206Pb/238U 年龄,分别对应于超高压变质和角闪岩相退变质年龄。同构造花岗岩脉是富钾过铝质花岗岩(A/CNK=1.2),锆石也具有核-幔-边结构;核部锆石年龄与副片麻岩的核部锆石年龄相当,反映了该花岗岩脉的源区可能是变沉积岩;除幔部锆石的一个点具有206Pb/238U年龄为234.6±3.9Ma之外,其它幔部锆石位于谐和线附近,给出206Pb/238U年龄为220.8±2.9Ma, 该年龄代表着该花岗岩脉的形成年龄。上述数据表明,在仰口地区,超高压岩石的部分熔融作用早于角闪岩相退变质作用。  相似文献   

14.
The Darongshan granitic suite (~ 10,000 km2) consists of five major units (Taima, Nadong and Jiuzhou plutons, and Pubei and Darongshan batholiths) typical of peraluminous S-type granitoids containing abundant granulite inclusions in the Cathaysia block, South China. Six samples from these plutons and batholiths have been investigated using both LA-ICPMS U–Pb age dating on zircon cores and EMP U–Th–Pb chemical age dating on monazite cores and rims. LA-ICPMS zircon results give similar major age populations ranging between 260 ± 3 and 250 ± 3 Ma for all units, with apparent older age peaks concentrated at 1020, 800, 430 and 330 Ma. On the other hand, EMP monazite results yield younger ages of 231–229 Ma for Nadong, Taima, Pubei and Darongshan and 224 Ma for Jiuzhou samples, with older age groups of 264 Ma for Taima and 256–250 Ma for Pubei units. Since the older monazite ages are similar to the majority of zircon ages, the latter are considered as inherited ages. Further because such zircon ages are similar with the emplacement time of the Emeishan large igneous province in western South China, they likely reflect the timing of metamorphism for the included fragments of granulitic crusts that had been formed by invasion of the Emeishan plume. The younger monazite ages, as present for all plutons and batholiths in the entire Darongshan area, are taken as the formation age of the host granites. Combining U–Pb zircon and EMP monazite ages known for Permo-Triassic high temperature and high pressure metamorphic rocks and granites in the Indochina block (e.g., the Kannack Complex of the Kontum massif), it is suggested that the Indosinian thermal activity had set records over both the Indochina (plus Simao) and South China blocks in two main episodes, one is 260–250 Ma and the other is 231–229 Ma. One plausible explanation is that these two blocks were one united continent before the Emeishan plume activity and an opening was triggered by this plume at ~ 260 Ma. Due to forces of the approaching Sibumasu block, both the South China and Indochina blocks were amalgamated again at ~ 230 Ma. We, therefore, advocate that double subduction of the plume-triggered oceanic crusts in opposite directions is responsible for the generation of the Darongshan granitic suite in the South China block and its counterpart in the Indochina block.  相似文献   

15.
Abstract

During the past 50 years, many geological and ore-deposit investigations have led to the discovery of the Fe–P–(Ti)-oxide deposits associated with mafic–ultramafic–carbonatite complexes in the Kuluketage block, northeastern Tarim Craton. In this paper, we discuss the genetic and ore-forming ages, tectonic setting, and the genesis of these deposits (Kawuliuke, Qieganbulake and Duosike). LA-ICP-MS zircon U–Pb dating yielded a weighted mean 206Pb/238U ages of 811?±?5?Ma, 811?±?4?Ma, and 840?±?5?Ma for Kawuliuke ore-bearing pyroxenite, Qieganbulake gabbro and Duosike ore-bearing pyroxenite, respectively. The CL images of the Kawuliuke apatite grains show core–rim structure, suggesting multi-phase crystallisation, whereas the apatite grains from Qieganbulake and Dusike deposits do not show any core–rim texture, suggesting a single-stage crystallisation. LA-ICP-MS apatite 207Pb-corrected U–Pb dating provided weighted mean 206Pb/238U ages of 814?±?21?Ma and 771?±?8?Ma for the Kawuliuke ores, and 810?±?7?Ma and 841?±?7?Ma for Qieganbulake and Duosike ores, respectively. The core–rim texture in apatite by CL imaging as well as two different ore-forming ages in the core and rim of the apatite indicate two metallogenic events for the Kawuliuke deposit. The first metallogenic period was magmatic in origin, and the second period was hydrothermal in origin. The initial ore-forming age of the Kawuliuke Fe–P–Ti mineralisation was ca 814?Ma and the second one was ca 771?Ma. On the other hand, the ore-forming ages of the Qieganbulake and Duosike deposits were ca 810?Ma and ca 841?Ma, respectively. Qieganbulake and Duosike deposits were of magmatic origin. Combined with previous geochronological data and the research on the tectonic background, we infer that the Kawuliuke, Qieganbulake and Duosike Fe–P–(Ti)-oxide deposits were formed in a subduction-related tectonic setting and were the product of subduction-related magmatism.  相似文献   

16.
The results of geochronological studies on columbite-tantalite and monazite from the rare metal pegmatites of the Kawadgaon–Challanpara area in Bastar craton, central India are presented. Columbite-tantalite yielded U-Pb concordia upper intercept age of 1978±16 Ma (MSWD = 0.18). Radiogenic 207Pb*/206Pb* (T7/6) ages on 4 out of 5 columbite-tantalite vary in a narrow range of 1903 to 2077 Ma and are similar to U-Pb age, whereas, one sample shows younger 207Pb*/206Pb*(T7/6) age of 1728 Ma. Younger Pb-Pb age of 1744 ± 250 Ma (MSWD = 150) has also been indicated by these columbite-tantalite samples. Four out of five monazite samples define Pb-Pb errorchron age of 2050±370 Ma (MSWD = 165) and radiogenic 207Pb*/206Pb* (T7/6) ages on 3 out of 5 monazites show a narrow range of 1983 to 2083 Ma. Other two samples show younger 207Pb*/206Pb*(T7/6) ages as 1254 Ma and 1592Ma. Both monazite and columbite-tantalite indicate disturbance in Pb and U isotopic systematics as revealed by high MSWD. However, selected samples from both monazite and columbite-tantalite indicate age of their formation as c. 2000 Ma. Younger ages, i.e., 1254 to 1744 Ma are indicative of later geological disturbances. Reported age of c. 2000 Ma is comparable to Rb-Sr date of pegmatitic muscovite (1850-2330 Ma) from this area and is younger to intrusive granites of c. 2500 Ma. By analogy, therefore, it may be inferred that the age of the rare element mineralization may be ~2000 Ma old, and linked with younger granitic activity that spanned over the period from 2300 to 2100 Ma in the Bastar craton.  相似文献   

17.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is used to compare the suitability of four cassiterite (SnO2) materials (SPG, Yankee, AY-4 and Jian-1), and three matrix-mismatched reference materials (NIST SRM 612, NIST SRM 614 and 91500 zircon) for normalisation of U-Pb and Pb-Pb isotope ratios in cassiterite. The excess variance of ages determined by LA-ICP-MS is estimated to be ±0.33% for 207Pb/206Pb vs. 208Pb/206Pb isochron ages and ± 1.8% and for U-Pb ages. Incorporation of this excess variance in cassiterite ages is necessary for realistic uncertainties. 207Pb-206Pb ages are advantageous for dating Precambrian cassiterite such as SPG compared with U-Pb ages as matrix effect on instrumental mass fractionation of Pb isotopes are generally considered to be minor. We note minor bias in 207Pb/206Pb vs. 208Pb/206Pb isochron ages (~ 0.6%) when using either the NIST SRM 614 or 91500 zircon reference materials and emphasise the requirement for uncertainty propagation of all sources of error and reference materials with comparable U and Pb mass fraction to the cassiterite. The 238U/206Pb isotopic ratios from normalisation to matrix-mismatched reference materials show varied results, which emphasises the need to use matrix-matched reference materials for calculating U-Pb ages. When cross-calibrated against each other, LA-ICP-MS U-Pb ages of the ca. 1535 Ma SPG, ca. 245 Ma Yankee and ca. 155 Ma Jian-1 cassiterites are all consistent with their ID-TIMS values.  相似文献   

18.
Monazite is extensively used to date crustal processes and is usually considered to be resistant to diffusive Pb loss. Nevertheless, fluid-assisted recrystallisation is known to be capable of resetting the monazite chronometer. This study focuses on chemical and isotopic disturbances in monazite grains from two microgranite intrusions in the French Central Massif (Charron and Montasset). Petrologic data and oxygen isotopes suggest that both intrusions have interacted with alkali-bearing hydrothermal-magmatic fluids. In the Charron intrusion, regardless of their textural location, monazite grains are sub-euhedral and cover a large domain of compositions. U–Pb chronometers yield a lower intercept age of 297 ± 4 Ma. An inherited component at 320 Ma is responsible for the scattering of the U–Th–Pb ages. The Montasset intrusion was later affected by an additional F-rich crustal fluid with crystallisation of Ca-REE-fluorocarbonates, fluorite, calcite and chloritisation. Pristine monazite is chemically homogeneous and displays 208Pb/232Th and 206Pb/238U concordant ages at 307 ± 2 Ma. By contrast, groundmass monazite shows dissolution-recrystallisation features associated with apatite and thorite precipitation (Th-silicate) and strong chemical reequilibration. 208Pb/232Th ages are disturbed and range between 270 and 690 Ma showing that the Th/Pb ratio is highly fractionated during the interaction with fluids. Apparent U–Pb ages are older due to common Pb incorporation yielding a lower intercept age at 312 ± 10 Ma, the age of the pristine monazite. These results show that F-rich fluids are responsible for Th mobility and incorporation of excess Pb, which thus strongly disturbed the U–Th–Pb chronometers in the monazite.  相似文献   

19.
The Cycladic blueschist belt in the central Aegean Sea has experienced high‐pressure (HP) metamorphism during collisional processes between the Apulian microplate and Eurasia. The general geological and tectonometamorphic framework is well documented, but one aspect which is yet not sufficiently explored is the importance of HP mélanges which occur within volcano‐sedimentary successions. Unresolved issues concern the range in magmatic and metamorphic ages recorded by mélange blocks and the significance of eventual pre‐Eocene HP metamorphism. These aspects are here addressed in a U‐Pb zircon study focusing on the block–matrix association exposed on the island of Syros. Two gneisses from a tectonic slab of this mélange, consisting of an interlayered felsic gneiss‐glaucophanite sequence, yielded zircon 206Pb/238U ages of 240.1 ± 4.1 and 245.3 ± 4.9 Ma, respectively, similar to Triassic ages determined on zircon in meta‐volcanic rocks from structurally coherent sequences elsewhere in the Cyclades. This strongly suggests that parts of these successions have been incorporated in the mélanges and provides the first geochronological evidence that the provenance of mélange blocks/slabs is neither restricted to a single source nor confined to fragments of oceanic lithosphere. Zircon from a jadeitite and associated alteration zones (omphacitite, glaucophanite and chlorite‐actinolite rock) all yielded identical 206Pb/238U ages of c. 80 Ma. Similar Cretaceous U‐Pb zircon ages previously reported for mélange blocks have been interpreted by different authors to reflect magmatic or metamorphic ages. The present study adds a further argument in favour of the view that zircon formed newly in some rock types at c. 80 Ma, due to hydrothermal or metasomatic processes in a subduction zone environment, and supports the interpretation that the Cycladic blueschist belt records both Cretaceous and Eocene HP episodes and not only a single Tertiary HP event.  相似文献   

20.
U–Pb isotopic analyses indicate that ores from the South Zhuguang uranium ore field, south China, have high common (non‐radiogenic) Pb contents, with variable and relatively radiogenic initial Pb contents. The U–Pb isochron method was used to date these ores, with plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb being used to identify sample suites with similar initial Pb isotopic ratios and to normalize variable initial Pb isotopic ratios. The resulting U–Pb isochrons indicate two substages of uranium mineralization at ~57 and 52 Ma, with a later hydrothermal reformation at ~49 Ma, which homogenized Pb isotopic compositions. Initial Pb isotopic systematics indicate that the ore‐forming fluid was characterized by high 206Pb/204Pb and 207Pb/204Pb ratios and low 208Pb/204Pb ratios, suggesting that the ore‐forming fluid was sourced from Cretaceous–Paleogene red‐bed basins, rather than from magma or the mantle, with consideration of mineralization ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号