首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Metamorphism of the Askore Amphibolite, metabasaltic and metasedimentary medium-grade hornblendebearing schists at the northernmost portion of the Ladakh Terrane and of the Shyok Suture Zone, mainly a low-grade volcano-sedimentary series, has been studied in the area between the Chogo Lungma glacier and the Indus river halfway between Skardu and Rondu.

In the Askore Amphibolite the peak assemblage in the amphibolite facies defines the regional metamorphic foliation, and is overprinted by a later static recrystallization at comparable P-T conditions. In spite of similar peak temperatures (630–650°C), geobarometry based on amphibole composition reveals a marked difference between garnet – epidote – andesine amphibolites exposed just above the Main Mantle Thrust at the head of Turmik valley, which equilibrated at high pressures (about 10 kbar) in late Miocene (Tortonian), and biotite – epidote – oligoclase amphibolites outcropping at the mouth of Turmik valley, which equilibrated at pressures of c. 6 kbar before late Eocene (Priabonian).

The Dasu Ultramafite and other smaller lens-shaped bodies of low- to medium-grade metaperidotite separate the Ladakh Terrane from the Shyok Suture Zone. They are antigorite serpentinites, often with talc and magnesite, in which relict cumulitic structures are locally recognisable. The ultramafites may represent remnants of oceanic lithosphere separating the Ladakh-Kohistan island arc from the Asian plate, or they may be deep crustal rocks stripped from the basement of the arc.

The mostly greenschist-facies Shyok Suture Zone shows the lithology of a calc-alkaline volcano-sedimentary series. It is supposed to be a remnant of a back arc basin of early Cretaceous age, separating the arc from the southern margin of Asia. Chloritoid, kyanite and biotite have been found in individual thrust sheets occurring at different structural levels and totally subordinate in volume to very low- and low-grade rocks. Such sharp differences in mineral paragenesis, together with field evidence of local shear, suggest a complex internal structure for the Shyok Suture Zone. From the head of Chogo Lungma glacier to the Basha valley, close to the contact with the Karakorum Metamorphic Complex, the rocks of the Shyok Suture Zone record a late Miocene metamorphic event at medium pressures and temperatures. Thermobarometric and geochronological evidence suggests that this event can be related to the exhumation and thrusting of the Karakorum metamorphic core over the Shyok Suture Zone.  相似文献   

2.
《地学前缘(英文版)》2020,11(4):1123-1131
Collision between the Indian and Eurasian plates formed the ~2500 km long Yarlung Zangbo Suture Zone and produced the Himalaya mountains and Tibetan plateau.Here we offer a new explanation for tectonic events leading to this collision:that the northward flight of India was caused by an Early Cretaceous episode of subduction initiation on the southern margin of Tibet.Compiled data for ophiolites along the Yarlung Zangbo Suture Zone show restricted ages between 120 Ma and 130 Ma,and their supra-subduction zone affinities are best explained by seafloor spreading in what became the forearc of a north-dipping subduction zone on the southern margin of Tibet.The subsequent evolution of this new subduction zone is revealed by integrating data for arcrelated igneous rocks of the Lhasa terrane and Xigaze forearc basin deposits.Strong slab pull from this new subduction zone triggered the rifting of India from East Gondwana in Early Cretaceous time and pulled it northward to collide with Tibet in Early Paleogene time.  相似文献   

3.
雅鲁藏布江缝合带中段构造特征及成因模式新见解   总被引:3,自引:1,他引:2  
孙东  王道永 《地质学报》2011,85(1):56-65
雅鲁藏布江缝合带中的蛇绿岩在西藏南部不同地段,表现形式并不相同.通过对缝合带中段的构造特征及蛇绿岩组合特征的深入研究,认为印度板块的大陆地壳北缘具有特殊的波状弯曲的几何边界--东西两端为向北突出的犄角,构造结之间为向南突出的弧形边界.这种特殊的边界条件,在新特提斯洋俯冲碰撞过程中,新特提斯洋首先在突出结点处完成关闭,而...  相似文献   

4.
Thermal model for the Zanskar Himalaya   总被引:8,自引:0,他引:8  
ABSTRACT Crustal thickening along the northern margin of the Indian plate, following the 50 Ma collision along the Indus Suture Zone in Ladakh, caused widespread high-temperature, medium-pressure Barrovian facies series metamorphism and anatexis. In the Zanskar Himalaya metamorphic isograds are inverted and structurally telescoped along the Main Central Thrust (MCT) Zone at the base of the High Himalayan slab. Along the Zanskar valley at the top of the slab, isograds are the right way-up and are also telescoped along northeast-dipping normal faults of the Zanskar Shear Zone (ZSZ), which are related to culmination collapse behind the Miocene Himalayan thrust front. Between the MCT and the ZSZ a metamorphic-anatectic core within sillimanite grade rocks contains abundant leucogranite-granite crustal melts of probable Himalayan age. A thermal model based on a crustal-scale cross-section across the Zanskar Himalaya suggests that M1 isograds, developed during early Himalayan Barrovian metamorphism, were overprinted during high-grade MCT-related anatexis and folded around a large-scale recumbent fold developed in the hanging wall of the MCT.  相似文献   

5.
The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is composed dominantly of harzburgite, with minor dunite, locally lherzolite and some dunite containing lenses and veins of chromitite. The latter, mafic dykes(gabbro and diabase dykes), occur mainly in the southern part. This study carried out geochemical analysis on both rocks. The results show that the mantle peridotite has Fo values in olivine from 89.92 to 91.63 and is characterized by low aluminum contents(1.5–4.66 wt%) and high Mg# values(91.06–94.53) of clinopyroxene. Most spinels in the Dangqiong peridotites have typical Mg# values ranging from 61.07 to 72.52, with corresponding Cr# values ranging from 17.67 to 31.66, and have TiO2 contents from 0 to 0.09%, indicating only a low degree of partial melting(10–15%). The olivine-spinel equilibrium and spinel chemistry of the Dangqiong peridotites suggest that they originated deeper mantle(20 kbar). The gabbro dykes show N-MORB-type patterns of REE and trace elements. The presence of amphibole in the Dangqiong gabbro suggests the late-stage alteration of subduction-derived fluids. All the lherzolites and harzburgites in Dangqiong have similar distribution patterns of REE and trace elements, the mineral chemistry in the harzburgites and lherzolites indicates compositions similar to those of abyssal and forearc peridotites, suggesting that the ophiolite in Dangqiong formed in a MOR environment and then was modified by late-stage melts and fluids in a suprasubduction zone(SSZ) setting. This formation process is consistent with that of the Luobusa ophiolite in the eastern Yarlung-Zangbo Suture Zone and Purang ophiolite in the western Yarlung-Zangbo Suture Zone.  相似文献   

6.
中国青藏高原特提斯的形成与演化   总被引:4,自引:0,他引:4  
青藏高原的形成是特提斯演化的结果。本文根据区域大地构造演化和沉积学证据,将青藏高原特提斯在时间上划分为3个阶段,即早期、中期和晚期。早期从震旦纪开始至奥陶—志留纪结束,这个阶段的大洋我们称作"原特提斯"。中期从泥盆纪开始至石炭—二叠纪结束,通常称这个大洋为"古特提斯"。晚期从二叠纪末、三叠纪初开始一直延续到第三纪早期,这个阶段的大洋通常被称作"新特提斯"。在空间上,青藏高原特提斯可以划分为3个区域相,即北区、中区和南区。上述3个阶段完全可以与空间上的3个区域相对应,原特提斯主要发育于北区,大洋消亡后的遗迹残留在青藏高原第5缝合带中,即西昆仑—阿尔金—北祁连缝合带。古特提斯主要发育于中区,大洋消亡后的遗迹残留在青藏高原第3、4缝合带中,即金沙江缝合带和昆仑南缘缝合带。新特提斯主要发育于南区,大洋主洋盆消亡后的遗迹残留在青藏高原第1缝合带中,即雅鲁藏布江缝合带,它的弧后盆地消亡后的遗迹残留在第2缝合带中,即班公湖—怒江缝合带。  相似文献   

7.
刘飞  杨经绥  连东洋  李观龙 《岩石学报》2020,36(10):2913-2945
西藏雅鲁藏布江缝合带(YZSZ)和班公湖-怒江缝合带(BNSZ)蛇绿岩代表了新特提斯洋壳和岩石圈地幔残余,是我国铬铁矿和蛇绿岩型金刚石的重要原产地,目前这两条蛇绿岩带的成因和相互关系还存在着争论。本文总结了YZSZ、BNSZ、狮泉河-纳木错蛇绿混杂岩带(SNMZ)和松多缝合带蛇绿岩的时空分布、组成和构造背景,归纳了拉萨地块晚古生以来的岩浆岩分布,获得以下主要认识:(1)Panjal地幔柱活动可能促使怒江洋和雅江西洋在早二叠世空谷期(283~272Ma)打开;(2)雅江东洋由于松多洋的南向俯冲在晚三叠世打开,与雅江西洋以萨嘎-措勤为界,并形成冈底斯东部245~200Ma岩浆热事件;(3)~140Ma班怒洋闭合以及南羌塘与北拉萨地块碰撞,导致雅江洋扩张速率加快而引发了北向拉萨地块的平板俯冲,进而导致班怒洋的再次裂解形成133~104Ma"红海型"小洋盆;(4)YZSZ缝合带西段南带蛇绿岩为北带的逆冲推覆体;(5)BNSZ和SNMZ蛇绿岩隶属于一个洋盆,后者代表了班怒洋成熟洋盆扩张脊的残余。  相似文献   

8.
李文忠 《地质论评》2005,51(3):225-233,i001
西藏雅鲁藏布江缝合带含有从砾石级到几十平方千米大小的二叠纪灰岩体,它们没有完整的地层层序,与围岩形成混杂或滑杂堆积,长期以来对其来源的解释存在争论。本文通过对灰岩体的动物群类型、古生物地理区系及其岩石学特征等方面进行研究和比较,认为雅鲁藏布江缝合线一带的二叠纪灰岩体总体上都呈现出冈瓦纳冷水型与华夏暖水型动物群混生特点,应形成于相同或类似的沉积环境。根据珊瑚、筵、腕足类等动物群大致分为与南方冈瓦纳大陆北缘内陆棚相动物群比较接近和与更靠近古赤道区的拉萨地块动物群较为接近两种类型,其时代从早二叠世晚期至长兴期不等。灰岩体主要由肉红色或灰色纯生物碎屑灰岩组成,不含或含有很少的陆源碎屑,均孤立地分散于中生代地层中,与围岩往往呈断层接触,断层带或灰岩夹层中经常有玄武岩或其他火山岩。因此,灰岩体可能为位于冈瓦纳大陆北缘外陆棚上小型碳酸盐台地或新特提斯洋最初裂解带上的海山型碳酸盐岩沉积,受后期印度-欧亚大陆板块碰撞作用而成为外来体夹于缝合带的其他海相沉积中。  相似文献   

9.
The significance of the Himalayan suture zone   总被引:4,自引:0,他引:4  
The 2500 km long Himalayan Suture Zone is discussed within the widest structural frame, with new results obtained from a study of the Landsat pictures. The platform sediments from the Tethys or Tibetan Himalaya, north of the Main Central Thrust, Change northwards into a belt of Flysch sediments beginning in the Triassic and reaching the Paleocene. The belt is mixed with oceanic crust material such as volcanics, melanges and ultrabasic slabs, and is strongly tectonized: the Suture Zone. It is followed to the north by a conspicuous belt of Kailas Molasse, of Paleogene age and transgressing the late Cretaceous Transhimalayan plutons. They consist of five bodies, predominantly tonalitic, separated by structural anomalies that also cut the Suture Zone. The plutons are structurally controlled and related to the Himalayan Suture (Subduction belt?). They are followed to the north by the south Tibetan Nyenchen Tangla belt, bordered by large fault zones and characterized by frequent Paleogene acid volcanics. The Central Tibetan Chang Thang area is structurally most complex, contains some ultrabasic rocks related to large fault zones, and exposes a large subrecent basaltic volcanism with no structural control but reminiscent of a “hot spot”. The northern Kun Lun — Astin Tagh Paleozoic erogenic belt displays 200 km of rejuvenated fault zones, some older mantle fragments and subrecent volcanism.This structural aspect of Tibet, with internal older Suture Zones, younging southwards, contrasts with the Indian plate south of the Main Himalayan Suture. This Suture Zone is the only constant structural element all along the Alpine-Himalayan belt.  相似文献   

10.
潘裕生  方爱民 《地质科学》2010,45(1):92-101
青藏高原的形成是特提斯演化的结果。本文根据区域大地构造演化和沉积学证据,将青藏高原特提斯在时间上划分为3个阶段,即早期、中期和晚期。早期从震旦纪开始至奥陶-志留纪结束,这个阶段的大洋我们称作“原特提斯”。中期从泥盆纪开始至石炭-二叠纪结束,通常称这个大洋为“古特提斯”。晚期从二叠纪末、三叠纪初开始一直延续到第三纪早期,这个阶段的大洋通常被称作“新特提斯”。在空间上,青藏高原特提斯可以划分为3个区域相,即北区、中区和南区。上述3个阶段完全可以与空间上的3个区域相对应,原特提斯主要发育于北区,大洋消亡后的遗迹残留在青藏高原第5缝合带中,即西昆仑-阿尔金-北祁连缝合带。古特提斯主要发育于中区,大洋消亡后的遗迹残留在青藏高原第3、4缝合带中,即金沙江缝合带和昆仑南缘缝合带。新特提斯主要发育于南区,大洋主洋盆消亡后的遗迹残留在青藏高原第1缝合带中,即雅鲁藏布江缝合带,它的弧后盆地消亡后的遗迹残留在第2缝合带中,即班公湖-怒江缝合带。  相似文献   

11.
在西藏阿里地区夏浦沟野外调查发现放射虫硅质岩、熔岩组合.放射虫硅质岩SiO2含量在89.47%~92.94%之间, Si/Al在43~67之间, Al/ (Al+Fe+Mn) 比值在0.68~0.74之间, MnO/TiO2平均比值为0.60, Ce/Ce*平均值为0.89, LaN/CeN平均值1.09, 指示它位于洋盆和大陆边缘过渡的环境, 总体更接近大陆边缘环境.伴生的火山熔岩以安山质为主, 具低TiO2 (0.75%~0.98%)、轻稀土弱富集和源自板片流体的易溶元素如Ba、U、Pb相对轻稀土富集, 亏损高场强元素(HFSE) Nb、Ta、Ti等, 指示形成于岛弧环境, 很可能是中生代新特提斯洋洋内俯冲系统的组分.放射虫动物群主要包括Alievium cf.regulare、Alievium cf.fatuum、Archaeospongoprunum cf.patricki、Archaeodictyimitra mitra Dumitrica等早白垩世分子, 其提供了岛弧活动时间上限的约束.   相似文献   

12.
ACCRETION OF AN EARLY CRETACEOUS INTRA- OCEANIC ISLAND ARC TO INDIA: EVIDENCE FROM THE YARLUNG ZANGBO SUTURE ZONE  相似文献   

13.
陆陆碰撞过程是板块构造缺失的链条。印度板块与亚洲板块的碰撞造就了喜马拉雅造山带和青藏高原的主体。然而,人们对印度板块在大陆碰撞过程中的行为尚不了解。如大陆碰撞及其碰撞后的大陆俯冲是如何进行的、印度板块是俯冲在青藏高原之下还是回转至板块上部(喜马拉雅造山带内)以及两者比例如何,这些仍是亟待解决的问题。印度板块低角度沿喜马拉雅主逆冲断裂(MHT)俯冲在低喜马拉雅和高喜马拉雅之下已经被反射地震图像很好地揭示。然而,关于MHT如何向北延伸,前人的研究仅获得了分辨率较低的接收函数图像。因而,MHT和雅鲁藏布江缝合带之间印度板块的俯冲行为仍是一个谜。喜马拉雅造山楔增生机制,也就是印度地壳前缘的变形机制,反映出物质被临界锥形逆冲断层作用转移到板块上部,或是以韧性管道流的样式向南溢出。在本次研究中,我们给出在喜马拉雅造山带西部地区横过雅鲁藏布江缝合带的沿东经81.5°展布的高分辨率深地震反射剖面,精细揭示了地壳尺度结构构造。剖面显示,MHT以大约20°的倾斜角度延伸至大约60 km深度,接近埋深为70~75 km的Moho面。越过雅鲁藏布江缝合带运移到北面的印度地壳厚度已经不足15 km。深地震反射剖面还显示中地壳逆冲构造反射发育。我们认为,伴随着印度板块俯冲,地壳尺度的多重构造叠置作用使物质自MHT下部的板块向其上部板块转移,这一过程使印度地壳厚度减薄了,同时加厚了喜马拉雅地壳。  相似文献   

14.
The Zedong ophiolite is the largest ophiolite massif east of Dazhuqu in the Yarlung Zangbo Suture Zone in the southern Tibetan Plateau. However, its age, geodynamic setting and relationship to the Xigaze ophiolite remain controversial. New zircon U–Pb ages, whole-rock geochemical and Nd–Pb isotopic data from ophiolitic units provide constraints on the geodynamic and tectonic evolution of the Zedong ophiolite. U–Pb zircon geochronology of dolerite lavas and late gabbro–diabase dikes yield weighted mean ages of 153.9 ± 2.5 Ma and 149.2 ± 5.1 Ma, respectively. Strong positive εNd(t) and positive Δ7/4Pb and Δ8/4Pb values indicate derivation from a highly depleted mantle source with an isotopic composition similar to that of the Indian MORB-type mantle. The geochemistry of ophiolitic lavas and early dikes are analogous to typical island arc tholeiites whereas late dikes are similar to boninites. The geochemistry of these rock types suggests multi-stage partial melting of the mantle and gradually enhanced subduction influences to the mantle source through time. Combined with the MORB-like 162.9 ± 2.8 Ma Luobusha ophiolitic lavas, we suggest that the Luobusha lavas, Zedong lavas and early dikes originated in an infant proto-arc setting whereas late dikes in the Zedong ophiolite originated in a forearc setting. Together, they represent a Neo-Tethyan subduction initiation sequence. The Late Jurassic intra-oceanic proto-arc to forearc setting of the Zedong ophiolite contrasts with the continental margin forearc setting for the Xigaze ophiolite, which suggests a laterally complex geodynamic setting for ophiolites along the Yarlung Zangbo Suture Zone.  相似文献   

15.
The Shyok Suture Zone (Northern Suture) of North Pakistan is an important Cretaceous-Tertiary suture separating the Asian continent (Karakoram) from the Cretaceous Kohistan–Ladakh oceanic arc to the south. In previously published interpretations, the Shyok Suture Zone marks either the site of subduction of a wide Tethyan ocean, or represents an Early Cretaceous intra-continental marginal basin along the southern margin of Asia. To shed light on alternative hypotheses, a sedimentological, structural and igneous geochemical study was made of a well-exposed traverse in North Pakistan, in the Skardu area (Baltistan). To the south of the Shyok Suture Zone in this area is the Ladakh Arc and its Late Cretaceous, mainly volcanogenic, sedimentary cover (Burje-La Formation). The Shyok Suture Zone extends northwards (ca. 30 km) to the late Tertiary Main Karakoram Thrust that transported Asian, mainly high-grade metamorphic rocks southwards over the suture zone.The Shyok Suture Zone is dominated by four contrasting units separated by thrusts, as follows: (1). The lowermost, Askore amphibolite, is mainly amphibolite facies meta-basites and turbiditic meta-sediments interpreted as early marginal basin rift products, or trapped Tethyan oceanic crust, metamorphosed during later arc rifting. (2). The overlying Pakora Formation is a very thick (ca. 7 km in outcrop) succession of greenschist facies volcaniclastic sandstones, redeposited limestones and subordinate basaltic–andesitic extrusives and flow breccias of at least partly Early Cretaceous age. The Pakora Formation lacks terrigenous continental detritus and is interpreted as a proximal base-of-slope apron related to rifting of the oceanic Ladakh Arc; (3). The Tectonic Melange (<300 m thick) includes serpentinised ultramafic rocks, near mid-ocean ridge-type volcanics and recrystallised radiolarian cherts, interpreted as accreted oceanic crust. (4). The Bauma–Harel Group (structurally highest) is a thick succession (several km) of Ordovician and Carboniferous to Permian–Triassic, low-grade, mixed carbonate/siliciclastic sedimentary rocks that accumulated on the south-Asian continental margin. A structurally associated turbiditic slope/basinal succession records rifting of the Karakoram continent (part of Mega–Lhasa) from Gondwana. Red clastics of inferred fluvial origin (‘molasse’) unconformably overlie the Late Palaeozoic–Triassic succession and are also intersliced with other units in the suture zone.Reconnaissance further east (north of the Shyok River) indicates the presence of redeposited volcaniclastic sediments and thick acid tuffs, derived from nearby volcanic centres, presumed to lie within the Ladakh Arc. In addition, comparison with Lower Cretaceous clastic sediments (Maium Unit) within the Northern Suture Zone, west of the Nanga Parbat syntaxis (Hunza River) reveals notable differences, including the presence of terrigenous quartz-rich conglomerates, serpentinite debris-flow deposits and a contrasting structural history.The Shyok Suture Zone in the Skardu area is interpreted to preserve the remnants of a rifted oceanic back-arc basin and components of the Asian continental margin. In the west (Hunza River), a mixed volcanogenic and terrigenous succession (Maium Unit) is interpreted to record syn-deformational infilling of a remnant back-arc basin/foreland basin prior to suturing of the Kohistan Arc with Asia (75–90 Ma).  相似文献   

16.
As the boundary thrust between India and Asia in southern Tibet, the Zhongba–Gyangze Thrust (ZGT) emplaced the Yarlung Zangbo Suture Zone (YZSZ) units in the hanging wall southward onto Tethyan Himalaya sequences (THS) of the northern Indian continental margin in the footwall. Detailed field investigation, electron backscatter diffraction (EBSD) analysis, detrital zircon U–Pb geochronology and 40Ar–39Ar thermochronology were conducted to understand the evolution of the ZGT in Sangsang area, central southern Tibet. The shear zone of ZGT is located within the sedimentary-matrix mélange of YZSZ that is mainly composed of matrix of blueschist with meta pelagic–hemipelagic siliceous and siliciclastic rocks and blocks of basalt, limestone and sandstone. Penetrative F1 foliation and kink band structure were recorded within the matrix both on outcrop and under microscope. Strong lattice preferred orientation (LPO) fabric initiated by the low-temperature (350−450 °C) (010)[001] slip system was detected by EBSD in the sodic amphiboles of the blueschist. The 40Ar–39Ar ages of the phengites from blueschist and sericites from the phyllite in the shear zone indicate that the activity of ZGT occurred between 71 and 60 Ma. In the THS, a newly documented younger unit preserving detrital zircons from the southern Asian margin lies above the Triassic–Cretaceous sequences that carries only detrital zircons from the Indian continent. This unit is dated to be ~ 61 Ma by the detrital zircon ages, similar to the Sangdanlin Formation and representing the Yarlung Zangbo Foreland Basin (YZFB) system. The ZGT had probably been active due to the initial India–Asia collision and acted as the frontal thrust controlling the development of YZFB.  相似文献   

17.
西藏白朗县白岗村蛇绿混杂岩中有一罕见的尖晶石石榴子石二辉橄榄岩小岩块,被松软的蛇纹岩化尖晶石二辉橄榄岩包裹其中。岩块中发育有碎基单斜辉石、斜方辉石中出溶单斜辉石、切过出溶单斜辉石的贯入单斜辉石和外来碎粒单斜辉石及钙质辉石+铬尖晶石→钙铁石榴子石相界反应。同时,在岩块和包壳岩石的橄榄石中出现针状硅镁石出溶物。计算这些矿物的温度压力表明,它们的温度压力都处于>800℃,>1.8GPa以上的地幔石榴子石域超高压环境,而且,经历过一个上升→俯冲→上升的"N"字形历程。  相似文献   

18.
Shelf, forereef and basin margin (slope) olistoliths (Exotic blocks of limestone) of Permian–Jurassic age are tectonically juxtaposed within the Triassic to Eocene age pre-orogenic, deep abyssal plain turbidites of the Lamayuru. The pre-collision tectonic setting and depositional environment of the limestone olistoliths can be reconstructed from within the neighbouring Zanskar range. The disorganized Ophiolitic Melange Zone, an association of different tectonic rock slivers of Jurassic–Eocene age, is tectonically underlain by the overthrusted Lamayuru Formation and tectonically overlain by the Nindam Formation. Tectonic slivers of Late Jurassic–Early Cretaceous age red radiolarian cherts represent a characteristic lithotectonic unit of the Ophiolitic Melange Zone, those occurring near the contact zone with the Lamayuru Formation, were deposited within the neo-Tethyan deep-ocean floor of the Indian passive margin below the carbonate compensation depth. These tectonic slivers accumulated along the northern margin of the Indus–Yarlung Suture Zone of the Ladakh Indian Himalaya during subduction accretion associated with the initial convergence of the Indian plate beneath the Eurasian plate.  相似文献   

19.
The rocks of the Jutogh Group in the Himachal Himalayas and their equivalents elsewhere are now considered to represent a several km thick crustal scale ductile shear zone, the so called Main Central Thrust Zone. In this article we present a summary of structural and metamorphic evolution of the Jutogh Group of rocks in the Chur half-klippe and compare our results with those of Naha and Ray (1972) who worked in the adjacent Simla klippe. The deformational history of the Jutogh Group of rocks in the area around the Chur-peak, as deduced from small-scale structures, can be segmented into: (1) an early event giving rise to two sets of very tight to isoclinal and coaxial folds with gentle dip of axial planes and easterly or westerly trend of axes, (2) an event of superimposed progressive ductile shearing during which a plethora of small-scale structures have developed which includes successive generations of strongly non-cylindrical folds, several generations of mylonitic foliation, extensional structures and late-stage small-scale thrusts, and (3) a last stage deformation during which a set of open and upright folds developed, but these are regionally unimportant. The structure in the largest scale (tens of km) can be best described in terms of stacked up thin thrust sheets. Km-scale asymmetric recumbent folds with strongly non-cylindrical hinge lines, developed as a consequence of ductile shearing, are present in one of these thrust sheets. The ductile shearing, large-scale folding and thrusting can be related to the development of the Main Central Thrust Zone. The microstructural relations show that the main phase of regional low-to medium-grade metamorphism (T ≈ 430–600°C andP ≈ 4.5–8.5 kbar) is pre-kinematic with respect to the formation of the Main Central Thrust Zone. Growth zoned garnets with typical bell-shaped Mn profiles and compensating bowl-shaped Fe profiles are compatible with this phase of metamorphism. Some of the larger garnet grains, however, show flat compositional profiles; if they represent homogenization of growth zoning, it would be a possible evidence of a relict high-grade metamorphism. The ductile shearing was accompanied by a low-greenschist facies metamorphism during which mainly chlorite and occasionally biotite porphyroblasts crystallized.  相似文献   

20.
雅鲁藏布江缝合带位于青藏高原南部,是印度板块向欧亚板块俯冲的产物,代表着新特提斯洋岩石圈的残片。文章对西藏乃东地区雅鲁藏布江缝合带中蛇绿混杂岩的变质作用及岩石学特征进行了研究。该带总体呈近东西向延伸,受变地质体主要为晚侏罗—早白垩世泽当蛇绿岩。通过野外地质调查、岩相学及岩石地球化学分析,结合岩石成因研究及构造环境判别,认为泽当蛇绿岩由地幔橄榄岩、辉长质杂岩、镁铁质杂岩、海相沉积物及伴生铬铁矿和斜长花岗岩等组成,属低绿片岩相—高绿片岩相区域变质岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号