共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种基于数值模式预报产品的气温预报集成学习误差订正方法,通过人工神经网络、长短期记忆网络和线性回归模型组合出新的集成学习模型(ALS模型),采用2013—2017年的欧洲中期天气预报中心数值天气预报模式2 m气温预报产品和中国部分气象站点数据,利用气象站点气温、风速、气压、相对湿度4个观测要素,挖掘观测数据的时序特征并结合模式2 m气温预报结果训练机器学习模型,对2018年模式2 m气温6~168 h格点预报产品插值到站点后的预报结果进行偏差订正。结果表明:ALS模型可将站点气温预报整体均方根误差由3.11℃降至2.50℃,降幅达0.61℃(19.6%),而传统的线性回归模型降幅为0.23℃(8.4%)。ALS模型对站点气温预报误差较大的区域和气温峰值预报的订正效果尤为显著,因此,集成学习方法在数值模式预报结果订正中具有较大的应用潜力。 相似文献
2.
在遗传算法和粒子群算法的基础上,采用权重分配方法开展基于混合演化算法的多模式气温集成预报方法研究。利用2012年5—10月中国气象局GRAPES模式、北京市气象局BJ-RUC模式、中国气象局T639模式、天津市气象局TJWRF模式24 h预报时效的逐6 h地面2 m高度气温和35个天津区域自动气象站点资料,通过逐日滚动建立集成预报模型,对混合演化算法的多模式气温集成预报方法进行了绝对误差在2℃以内的分级、分类及分站检验分析。结果表明:使用该方法建立的气温集成预报模型具有比较可靠的预报能力,预报误差明显小于任一成员,预报准确率高。按绝对误差不大于2℃的检验标准,2012年35个站逐6 h气温、最低气温、最高气温的集成预报平均准确率分别为76.34%,77.88%,78.00%。 相似文献
3.
辽宁地区ECMWF模式气温预报检验及误差订正研究 总被引:1,自引:0,他引:1
利用2016—2018年ECMWF细网格模式12—36 h内2 m温度预报产品,选取辽宁地区65个城镇站点观测资料,评估预报产品在不同季节的预报准确率,并按季节分析固定误差订正方法和最优滑动周期订正方法对提高准确率的作用。结果表明:ECMWF模式预报产品对辽宁地区气温预报的准确率表现为,ECMWF模式最高气温冬季预报最优(城镇站点预报准确率为81.5%),最低气温夏季预报最好(城镇站点预报准确率为84.3%);采用最优滑动周期订正后,2016—2018年辽宁地区的最高气温和最低气温准确率较ECMWF模式自身分别提高了19.7%和20.5%,最低气温的预报准确率提高程度优于最高气温;在整个空间分布中,ECMWF模式对辽宁中部平原地区最高(低)气温预报准确率高于东、西部地区,辽宁东北部和西南部以及东南部的长白山余脉影响区域准确率明显低于其他区域。同时,在各季中,最高气温和夏季最低气温的订正预报能力优于其他季节;在地面晴、雨两种特征下,对辽宁地区24 h气温预报进行订正检验表明,该检验结果对辽宁地区最高(低)气温订正有一定补充作用,尤其是冬季降水出现时,最高气温预报补充订正效果最为显著。 相似文献
4.
数值模式直接输出和经模式后处理得到的预报误差比较,是延伸期逐日要素预报应用基础。针对中国2 583个站点在2020年春季11~30天的日最高温度预报,根据欧洲数值中心的集合预报输出,首先,使用BP-SM(Back-Propagation-Self memory)法和回归法,进行确定性预报订正效果比较;结果表明BP-SM法和回归法都明显降低了预报绝对误差;在11~14天预报中,BP-SM法得到的平均绝对误差为3.3~3.6oC,预报准确率超过35%,订正效果更优。其次,基于模式直接输出和BP-SM法获得的概率预报,使用CRPSS (continuous ranked probability skill score)进行了可预报性分析。结果表明,在地形复杂地区,经过订正,预报准确率明显改善。对于延伸期逐日要素预报,合理的模式后处理方法是降低预报误差和提高预报能力的重要环节。 相似文献
5.
基于德国天气在线T7online(简称T7)、ECMWF细网格(简称EC)及T639三种数值模式的气温预报产品,结合本溪站气象观测资料,对三种数值模式2014年1月至2015年12月本溪市气温预报的准确率及预报误差进行了检验和分析,根据误差分析结果利用BP神经网络模型建立了本溪市数值模式气温预报误差客观化订正模型。结果表明:对于气温预报的年检验,T7、EC和T639三种数值模式的最低气温预报准确率均高于最高气温的预报准确率;对于气温预报的月检验,三种数值模式对夏季、秋季最低气温的预报效果明显优于冬季和春季,而对于最高气温的预报,T7的气温预报准确率明显优于EC和T639模式;当气温波动较大时,三种数值模式气温的预报准确率均明显下降。三种数值模式对最低气温预报的平均误差均为2.00℃以内,对最高气温的预报准确率存较大差别,T7模式最高气温的预报误差最小,T639模式气温预报的系统偏差最明显,最低气温系统偏差为-1.34℃,最高气温系统偏差为-2.87℃。根据三种数值模式气温预报误差的特征,结合BP神经网络建立本溪市气温误差预报模型对数值模式气温预报结果进行订正,订正后气温平均绝对误差由2.40℃左右降至1.40℃左右,系统偏差和均方根误差均明显缩小,气温预报准确率由50%左右提高至80%以上,数值模式气温预报准确率明显提高,具有较好的应用价值。 相似文献
6.
模式预报的订正是决定局地天气预报结果的一个重要步骤,基于机器学习的后处理模型近年来开始崭露头角。本文发展了基于岭回归(Ridge)、随机森林(Random Forest,RF)和深度学习(Deep Learning,DL)的3种后处理模型,基于中国气象局(CMA)的BABJ模式、欧洲中期天气预报中心(ECMWF)的ECMF模式、日本气象厅(JMA)的RJTD模式和NCEP的KWBC模式这4个数值天气预报模式2014年2月至2016年9月(训练期)近地面2 m气温预报和实况资料确定各模型参数,进而对2016年10月至2017年9月(预报期)华北地区(38°N~43°N,113°E~119°E)的逐日地面2 m气温预报进行了多模式集合预报分析。采用均方根误差对预报效果进行评估,这3种后处理模型的预报效果和4个数值天气预报模式以及通常的多模式集合平均(Ensemble Mean,EMN)的预报效果的对比表明:1)随着预报时长增加,4个数值预报模式及各种后处理模型的均方根误差均呈上升趋势;但区域平均而言,Ridge、RF和DL的预报效果在任何预报时长上都明显优于EMN和单个天气预报模式;特别是前几天的短期预报DL的预报效果更好,中后期预报Ridge的预报效果略好。2)华北地区的东南部均方根误差较小,其余格点上均方根误差较高,从空间分布而言,DL的订正预报效果最好,3种机器学习模型的误差在1.24~1.26℃之间,而EMN的误差达1.69℃。3)夏季各种方法的预报效果都较好,冬季预报效果都较差;但是Ridge、RF和DL的预报效果明显优于EMN,这3种模型预报的平均均方根误差在2.15~2.18℃之间,而EMN的平均均方根误差达2.45℃。 相似文献
7.
ECMWF模式地面气温预报的四种误差订正方法的比较研究 总被引:11,自引:5,他引:11
采用均方根误差对欧洲中期天气预报中心(ECWMF)确定性预报模式2007年1月至2010年12月的地面气温预报结果进行评估,并分别利用一元线性回归、多元线性回归、单时效消除偏差和多时效消除偏差平均的订正方法,对ECMWF模式地面气温预报结果进行订正。结果表明,4种订正方法都能有效地减小地面气温多个时效预报的误差,改进幅度约为1℃。在短期预报中仅考虑最新预报结果的一元线性回归订正方法要优于考虑多个预报结果的多元集成预报订正方法。在中期预报中考虑多个预报结果的多元集成预报订正方法更优,更稳定。在模式预报误差较大的情况下,多时效集成的订正方法能更稳定地减小误差。 相似文献
8.
9.
基于TIGGE资料集下欧洲中期天气预报中心(ECMWF)、日本气象厅(JMA)、英国气象局(UKMO)、美国国家环境预报中心(NCEP)和中国气象局(CMA)5个气象预报中心2016年5月1日—8月31日中国地区逐日起报预报时效为24~168 h的24 h累积降水量集合预报的结果,对各个集合预报成员进行了频率匹配法的订正,并对订正前后的多模式集成预报效果进行评估。结果表明:采用频率匹配法订正后的降水预报,有效改善了集合平均预报中强降水(日降水量25 mm以上)预报由平滑作用产生的量级偏小现象,使预报的降水量级更接近实况,但对降水落区预报改进不明显。基于卡尔曼滤波技术的集成预报效果优于基于线性回归的超级集合预报和消除偏差集合平均预报,对强降水落区的预报较单模式更优。基于集合成员订正的降水多模式集成预报在强降水的落区预报和降水中心的量级预报更接近实况,效果优于原始多模式集成预报与单模式结果。 相似文献
10.
采用欧洲中期天气预报中心(ECMWF)全球确定性预报模式地面气温和国家地面站点观测资料,对模式初值场误差、历史误差以及卡尔曼滤波预测误差与实况误差之间的相关性进行分析,设计了4种回归方案订正日最高、最低气温预报偏差,并与ECMWF、中央气象台和全国城镇的预报产品进行了检验对比。结果表明:采用了模式近1~3 d最高(最低)气温和模式最高(最低)气温历史平均误差、初值场误差以及卡尔曼滤波反演误差作为预报因子的改进方案效果最优,经对其2017年日最高和最低气温的预报检验,预报准确率较ECMWF原始模式预报有较明显提高,也明显优于中央气象台指导预报。在空间分布方面,其对地形较为复杂地区的改进效果更好。同时,与当前业务中质量最好的全国城镇预报相比,最高气温预报平均绝对偏差(Mean Absolute Error,MAE)较全国城镇预报低8.24%~13.97%,预报准确率提高1.24%~3.57%,日最低气温平均绝对偏差较城镇预报低9.43%~17.69%,预报准确率提高1.77%~2.72%。在3 d的预报中,对24 h时效内预报相对于48 h和72 h的改进幅度更大,订正效果更加明显。 相似文献
11.
12.
基于ECMWF、JMA、T639、WRF四个数值模式2012年6月1日—9月30日地面气温3—60 h预报资料和郑州加密自动站资料,利用多模式集合平均(EMN)、消除偏差集合平均(BREM)、加权消除偏差集合(WBREM)及多模式超级集合(SUP)4种方法,对2012年8月29日—9月27日郑州城区11个站点地面逐3 h气温进行多模式集成预报试验,采用绝对误差对预报结果进行检验评估,结果表明:在30天的预报期内,BREM、WBREM及SUP对于大多数站气温预报效果有明显改善,而EMN方案对11个站预报效果改善则不太明显;4种方案中,BREM和WBREM预报效果相对较好且稳定,各个站上3—60 h预报的绝对误差均在2℃附近或以下;SUP方案虽然对个别站预报误差较低,但是其预报效果并不稳定,一些站点的个别预报时效误差大于2℃。对于郑州观测站的气温预报而言,4种集成方案20时起报的气温误差明显小于08时起报的误差,并且20时起报的SUP集成方案绝对误差明显小于其他方案的绝对误差。总体而言,BREM、WBREM及SUP三种集成方案能够给郑州精细化预报业务提供较好的参考。 相似文献
13.
使用欧洲中期天气预报中心(ECMWF)的20年集合预报回算数据,检验分析了延伸期第16天至第30天预报时效其对我国日最高气温的预报性能。结果表明,西部地区预报误差明显大于中东部地区。全国平均而言,模式预报较实况偏低1.1℃~1.39℃,均方根误差为4.6℃~4.9℃。进一步分析指出,第16天均方根误差最小、且随着时效的延长其略有增大。夏季模式预报效果最好,春季和秋季的部分时段预报效果较差。基于历史偏差订方法,本文还对2018年6月至2019年6月的日最高气温预报进行了误差订正试验。结果显示,订正后的预报准确率提升了15.2%~19.2%。聚焦2018年7月的一次中东部地区大范围高温过程,模式原始预报明显低估了高温强度,订正预报更接近实况,显示其具有一定的订正效果。 相似文献
14.
15.
《干旱气象》2020,(3)
为探究最高气温预报准确率偏低这一现象,采用2013—2018年SCMOC精细化指导预报资料及气象站观测资料,对贵州省85站24~72 h最高气温预报开展研究。通过建立横向预报模型(F1)、纵向预报模型(F2)以及横向与纵向预报相整合的预报模型(Fzh),对贵州日最高气温进行预报试验。结果表明,无论平均均方根误差还是预报准确率,各模型预报效果均有不同程度改进,三种客观订正预报中Fzh表现最优;相对于SCMOC,F1春、夏季的预报优于秋、冬季,且贵州省北部地区改进较南部明显,F2四季均有改进,总体较平稳;Fzh预报结果明显优于F1和F2,均方根误差得到明显改善,平均RMSE下降1.0~2.0℃,准确率平均提高11%~13%。 相似文献
16.
超级集合预报的误差订正与集成研究 总被引:6,自引:3,他引:6
利用类似KALMAN滤波的自适应误差订正法对中国国家气象中心、日本气象厅、美国国家环境预报中心、加拿大气象中心和澳大利亚-法国气象局的区域集合预报模式2m温度预报做订正,并对订正后的结果采用算术平均和多元回归两种方法进行集成.结果表明:订正后温度预报的各项检验指标都显示出不同程度的改善.36h内平均绝对误差在1.8℃以内;均方根误差也有明显减小,且与离散度大小更接近;talagrand图的U型分布仍然存在,但个别成员异常的现象得到改善;集合成员预报分簇的现象得到了很好的矫正;此外预报误差存在日变化.两种集成方法的温度预报结果都优于单一模式预报,并且不存在明显的系统误差,预报达到了一定精度.其中多元回归方法的集成效果胜于算术平均集成. 相似文献
17.
采用一元线性方法建立南海台风模式CMA-TRAMS地形高度偏差和地面气温预报误差的回归关系,分别开展不分级、高度偏差分级和地面气温误差分级的三种订正方法的研究,并进行订正效果评估。结果表明,模式地面气温预报误差与地形高度偏差总体呈负的线性相关关系,地面气温预报绝对误差随地形高度偏差绝对值增大而增大(对模式地形高度偏低站点尤为明显),但不同时刻地面气温预报误差特征表现不同,模式对地形高度偏高(即模式地形高于测站高度)和地形高度偏差小于50 m的站点,06时地面气温(世界时,下同)预报总体偏低,对地形高度偏低大于50 m的站点(即模式地形低于测站高度),06时地面气温预报总体偏高;而无论站点地形高度偏差如何,模式对18时地面气温预报总体偏高。三种订正方法中地面气温误差分级法能有效地减小地面气温预报误差,该方法订正后的分析场准确率可达96%~99%,12~48小时时效预报场准确率总体可提升至90%以上,该方法具有回归关系稳定、效果显著、适用性广、简单易行等特点。 相似文献
18.
《湖北气象》2020,(4)
利用变分方法建立预报场和预报倾向场这一预报场组合与模式预报非系统性误差之间的映射关系,来估计GRAPES (Global/Regional Assimilation and PrEdiction System)模式的非系统性误差,从而对预报做出修正。采用两种不同的历史样本建立这一映射关系,其中,利用相同时刻历史样本建立映射关系的方法称为DEM方法;通过相似面积比选取"相似样本"来建立上述映射关系的方法称为SEM方法。以FNL分析资料作为评判预报误差的依据,根据2002—2010年7月GRAPES模式500 h Pa高度场48 h预报的回报资料,利用两种不同的方案进行非系统性误差的估计及预报订正试验。对279个检验样本的试验结果表明:SEM方法和DEM方法都对非系统性误差有一定的估算能力,二者估算的非系统性误差空间分布和量级与模式非系统性误差较一致,SEM方法的修订效果略优于DEM方法,但并不明显。对预报做出系统性误差和非系统性误差两步订正后,DEM方法和SEM方法的订正有效率分别为98.566%和100%,可明显提高预报的准确性。 相似文献
19.
使用2017年9月至2021年3月国家级业务化运行的智能网格实况分析产品和欧洲中期天气预报中心全球模式(EC)产品,根据湖北省的地理分布特征构建6个分区,采用基于LightGBM机器学习算法建立的气温预报方法,生成湖北省0.05°×0.05°格点气温预报产品。利用2021年4—9月的预报产品和格点实况资料进行检验,结果表明:基于机器学习的气温预报方法(MLT)取得了较好的预报效果,其在0~72 h时效内优于中央气象台下发的气温精细化指导预报(SCMOC)和EC产品;MLT在山区的误差较平原大,但山区的订正幅度大于平原,日最高气温的订正幅度大于日最低气温的订正幅度;4—9月MLT、SCMOC、EC产品的平均绝对误差(MAE)日变化都呈现了白天偏高、夜间偏低、午后凸起的单峰特征,MLT的MAE值较SCMOC和EC产品的更低,并且在转折性天气中仍具有优势;站点检验与格点检验结论一致,基于格点建模的气温预报产品对站点预报同样得到了订正。机器学习在格点气温的模式订正方面可以作为一个行之有效的手段。 相似文献
20.
利用2016年1月1日—2018年12月31日吉林省381个站的逐日最高气温、最低气温和定时气温的观测数据,对ECMWF高分辨率模式的2 m最高、最低气温和定时气温预报进行检验分析.结果表明,ECMWF模式对吉林省的气温预报与实况存在一定偏差;从空间上看,自西向东气温预报准确率逐渐递减,预报误差逐渐增大;从时间上看,随预报时效的增长,预报准确率逐渐下降.对ECMWF的气温预报进行高度差订正后,模式最高气温24 h、48 h、72 h的预报准确率分别从52%、51%、50%提高至58%、56%、54%;最低气温准确率分别从58%、56%、54%提高至64%、62%、59%;定时气温准确率分别从63%、60%、58%,提高至67%、63%、61%.高度差订正的方法有效提高了模式气温预报的准确率,减小了模式预报误差,提高了模式预报释用能力,订正后的气温预报TS评分得到明显的提高.该方法已应用在吉林省客观预报的订正算法中. 相似文献