首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以北京为研究区域,利用MODIS气溶胶光学厚度产品AOT(Aerosol Optical Thickness)定量反演北京近地面PM2.5质量浓度。首先对MODIS AOT与对应地面实测PM2.5质量浓度为数据源,两者的线性相关系数为0.323,经过AOT标高订正和PM2.5湿度订正后,两者相关系数升高为0.467;进一步分析AOT与PM2.5的季节变化特征发现,秋季相关性最高(0.802),春季最低(0.252),其他季节介于之间,并深入分析了AOT与PM2.5自身物理化学特性及气象因子对两者相关性的影响机制;最后在耦合标高和湿度订正基础上,建立了一个近地面PM2.5质量浓度对数反演模型,并与地面实测PM2.5样本进行对比分析,结果显示均方根误差为2.84%,平均误差为9.53%,验证了该对数反演模型能较好的依据AOT反演近地面PM2.5质量浓度的可行性,为卫星遥感高精度定量反演PM2.5提供了科学依据。  相似文献   

2.
基于MODIS的广东省气溶胶光学厚度时空分布特征分析   总被引:1,自引:0,他引:1  
利用地面太阳光度计产品对MODIS C005气溶胶光学厚度产品进行区域精度验证,进而分析 2002—2013年间广东省气溶胶光学厚度的时空分布特征。结果表明:在年际变化上,2002—2004年间广东省AOD呈上升趋势,2004—2013年间整体呈缓慢下降趋势,2009年与2012年有两个上升小高峰,但不影响总体下降趋势;在月际变化上,广东省AOD最高值出现在3、4月,最低值出现在11、12月,5—10月变化平缓,在年均值附近上下摆动;在空间分布上,珠三角>粤东>粤西>粤北, 高值区主要分布在珠三角的广州、佛山、中山、东莞、深圳、珠海等地,最高值出现在广州佛山中山交汇处附近,向外有一个递减的趋势,低值区主要分布在粤东的汕尾潮州邻近地区。   相似文献   

3.
文章针对大同市2006—2009年、榆社县2006—2008年PM10质量浓度数据,使用趋势分析、后向轨迹模拟不同高度的PM10的传输路径,可以看出:PM10浓度的日变化特征为"两高三低";PM10浓度日际变化不明显,只在典型日PM10浓度值明显增大;PM10浓度月变化特征为1、5、12月浓度高,春季5月份由于为沙尘期浓度高。PM10浓度季节变化规律与采暖期和非采暖期变化相符合,即采暖期的冬春季浓度高、非采暖期的夏秋季浓度低;从2006—2009年间,两站PM10质量浓度基本呈逐年下降趋势。不同气象要素与PM10浓度的相关性,按相关系数绝对值从大到小排列依次为:露点温度、气温、降水量、相对湿度。其中露点温度和PM10浓度呈显著负相关性,气温与PM10浓度呈较弱负相关性。  相似文献   

4.
通多对德州PM_(2.5)和PM_(10)浓度特征分析得出:德州PM_(2.5)和PM_(10)浓度年平均值分别为82.3μg/m~3和144.3μg/m~3,PM_(2.5)和PM_(10)浓度明显超过二级标准。PM_(2.5)占PM_(10)的63%,二者呈明显的正相关,相关系数为0.8695。一天内,PM_(2.5)和PM_(10)浓度呈双峰型,最大值出现在8-10时,其次出现在22时;最低值出现在17时。一年内,4~9月PM_(2.5)和PM_(10)浓度较小,8月份最小,PM_(2.5)浓度月均值为44.1μg/m~3。10~次年3月,PM_(2.5)和PM_(10)浓度较大,12月份最大,PM_(2.5)浓度月均值为201.2μg/m~3。统计发现:降水、绿色植被、水域能有效降低PM_(2.5)和PM_(10)浓度。  相似文献   

5.
海口市PM_(10)、PM_(2.5)和PM_1质量浓度的变化特征分析   总被引:2,自引:0,他引:2  
利用2013年在海口市气象局地面气象观测站采集的PM10、PM2.5和PM1质量浓度数据,分析了2013年可吸入颗粒物质量浓度的变化特征,并对其成因进行了初步分析。结果表明:2013年海口市PM10、PM2.5和PM1质量浓度的变化趋势基本相同,PM10、PM2.5质量浓度的超标率低,达到一级标准的概率分别为74.0%和68.8%,超过2级标准的天数分别为1和9 d,ρ(PM2.5)/ρ(PM10)与ρ(PM1)/ρ(PM2.5)的比例平均分别为78.1%和85.1%;海口PM10、PM2.5和PM1质量浓度冬季最高,夏季最低,春、秋两季处于冬夏之间;PM10、PM2.5和PM1质量浓度的日变化呈双峰现象,一个峰出现在上午,一个峰出现在夜间;颗粒物质量浓度的变化主要受到气象条件和污染物排放的影响。  相似文献   

6.
陈跃华  齐冰 《浙江气象》2015,(2):28-31,40
通过对淳安2013年全年的大气颗粒物PM2.5和PM10资料统计分析,得出该地区PM2.5和PM10质量浓度的季节变化、日变化特征以及气象因子对其的影响。结果表明:2013年淳安PM2.5年平均浓度为国家标准的1.2倍,PM10年平均浓度优于国家标准;PM2.5和PM10均具有明显的季节变化特征,表现为冬季秋季春季夏季;并且均呈现双峰型的日变化特征,二者出现峰值的时间基本一致,PM2.5和PM10峰值出现在18:00,次峰值出现在08:00,谷值均出现在14:00,主要与边界层变化和人为活动有关;PM2.5和PM10变化存在明显的线性关系。降水对颗粒物浓度影响较大,能有效降低颗粒物质量浓度。  相似文献   

7.
利用拉萨站及纳木错站地面观测数据分析了拉萨市气溶胶光学厚度(AOD)日变化、季节变化,并对MODIS产品的数据质量及适用性进行了初步检验。结果表明,拉萨市AOD在08~10时,17~20时存在明显波动,11~16时比较稳定。拉萨站与纳木错站AOD季节变化存在差异,拉萨站呈单峰型,峰值在春季,纳木错呈双峰型,主峰在春季,次峰出现在8月,季节变化极大值的出现可能与春季沙尘天气有关。拉萨站AOD整体高于纳木错站,Angstrom波长指数则相对较小,这可能与城市人类活动有关。MODIS气溶胶产品在拉萨不具适用性。   相似文献   

8.
王捷纯  邓玉娇 《气象科技》2018,46(4):809-813
本文采用地面太阳光度计实测数据对MODIS C6AOD(气溶胶光学厚度)产品进行精度检验,结果表明:该产品与地面太阳光度计实测数据的相关系数为0.85,标准偏差为0.28,平均相对偏差为0.27,数据精度满足需求。利用该产品分析了广东省气溶胶光学厚度的时空分布特征,得出以下规律:(1)空间分布:珠三角粤东粤西粤北,其中,珠江三角洲西部的佛山市、东莞市、中山市是全省AOD的高值区;(2)季节变化:春季为AOD高值期,夏季、秋季次之,冬季最低;(3)年际变化:2003—2016年,广东省年均AOD呈现波动式下降趋势,2012年为高值年份,年均AOD值为0.611,2007年为次高值年份,年均AOD值为0.603,2016年为低值年份,年均AOD值为0.382,2015年为次低值年份,年均AOD值为0.440。  相似文献   

9.
利用中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer,MODIS)大气气溶胶光学厚度产品数据,采用三角剖分算法、最近邻点搜索、插值法和趋势分析法,分析新疆气溶胶光学厚度(Aerosol Optical Depth,AOD)时空变化。结果表明:(1)新疆AOD总体呈下降趋势且地域差异明显,南疆AOD明显高于北疆,高值区主要集中在塔里木盆地边缘和天山北坡经济带。(2)北疆AOD年际变化不明显。2014年最高,2005年最低,年均值在0.15~0.18。南疆则呈明显的年际变化。最高值出现在2006年,为0.42;最低值出现在2017年,为0.22。(3)新疆AOD呈明显季节变化特征。春季最大,秋季最小。(4)2003—2019年南疆环塔里木盆地北部、东南边缘和北疆沿天山北坡经济带AOD增量明显。  相似文献   

10.
利用MODIS卫星遥感光学厚度产品,分析了四川盆地光学厚度分布和季节变化特征。由于受沙尘天气的影响,春季四川盆地具有最大的平均光学厚度。盆地内几个大值区中,西部成都一带的中心常年维持,季节变化小;南部中心位于宜宾到重庆沿长江流域一带;东部南充到重庆间的大值中心,季节变化大,在夏季消失。光学厚度分布和季节变化的数据结果为研究区域气候变化提供了依据。  相似文献   

11.
利用MODIS的Collection 005版本(MODIS—C005)数据的气溶胶光学厚度(AOT)产品,与我国海域多个AERONET观测站点太阳光度计测量得到的AOT结果进行了对比分析,对MODIS_C005数据的气溶胶产品在我国海域进行了验证,并对验证方法进行了探讨。结果表明,MODIS—C005的AOT在我国海域与AERONET站陆基观测到的AOT具有非常好的一致性,相关系数达到0.9以上。通过尝试不同的验证方法,发现验证数据的空间采样窗口大小的选择对于验证效果具有较大的影响,在中国海域可以使用30km×30km的空间采样窗口。通过MODIS—C005的AOT与AERONET站观测值在中国各个海区的比较,证明MODIS—C005的AOT在550nm满足美国NASA的设计要求,误差控制在±0.05±0.057τ,适用于我国海域,可以用于中国海域的气象和海洋等科学研究。  相似文献   

12.
利用MODIS资料遥感香港地区高分辨率气溶胶光学厚度   总被引:28,自引:2,他引:28  
在美国国家航空和宇航局(NASA)利用中分辨率成像光谱仪(MODIS)遥感大气气溶胶业务算法的基础上, 提出了一个1 km高分辨率气溶胶光学厚度反演方法, 并应用于香港地区的反演. 与地面太阳光度计的长期对比相对偏差大约为20%以内, 显示这一方法在香港地区的试用具有较高的精度.将该产品应用于空气污染个例, 并与香港地区14个站的地面污染物PM10(直径在10 μm以下的气溶胶颗粒物)质量浓度的变化进行了比较, 结果显示气溶胶光学厚度产品可以用来描绘城市尺度的气溶胶污染分布, 提供了更好地研究大气环境污染的新信息.  相似文献   

13.
中国区域MODIS陆上气溶胶光学厚度产品检验   总被引:13,自引:2,他引:13       下载免费PDF全文
以我国MODIS共享网站积累的MODIS L1B数据和美国威斯康辛大学提供的IMAPP软件包气溶胶产品软件为基础, 经过产品运行本地化改进处理, 在国家卫星气象中心建立了气溶胶产品业务化生成和发布机制。为支持气溶胶遥感产品算法改进以及潜在用户对产品的合理应用, 给出对国家卫星气象中心运行的MODIS气溶胶遥感产品质量检验分析结果。利用2005年1月— 2007年5月AERONET地基气溶胶监测网的L2.0级气溶胶光学厚度产品作为真值, 用它匹配MODIS陆上气溶胶光学厚度产品开展检验。检验结果表明:以卫星过境前后30min地基观测时间平均值匹配地基站点位置10 km半径范围内的卫星反演结果空间平均值开展检验, 总体样本的气溶胶光学厚度均方根误差约为0.25;满足产品误差要求 (±0.05±0.20τ) 的样本占总样本数的44%; 气溶胶光学厚度反演结果精度具有季节和地域差异, 干季(秋、冬、春)的气溶胶光学厚度误差较小, 而雨季气溶胶光学厚度误差较大, 云是雨季气溶胶光学厚度反演结果误差较大的主要影响因素。  相似文献   

14.
利用MODIS资料反演兰州地区气溶胶光学厚度   总被引:8,自引:7,他引:8  
赵秀娟  陈长和  张武  郭铌 《高原气象》2005,24(1):97-103
借助6S模式对MODIS的蓝光(0.46μm)、红光(0.66μm)和中红外(2.1μm)通道进行了行星反照率对地表反射率和气溶胶光学厚度的敏感性试验, 并对蓝光和红光通道的路径辐射对行星反照率的贡献做了数值试验; 计算了MODIS的蓝光、红光和中红外通道在兰州市及其周围地区的地表反射率, 检验了Kaufman给出的三个通道地表反射率之间的关系。检验结果表明, 在兰州周围地区蓝光通道与中红外通道地表反射率之间的关系与Kaufman给出的关系比较符合, 对于兰州周围大范围区域都是适用的。利用此关系通过6S模式进一步反演了兰州城市及其附近地区 1×104 km2 范围内的气溶胶光学厚度, 反演结果较为合理。  相似文献   

15.
文章利用国家卫星气象中心引进的以暗像元特性为基础的气溶胶光学厚度反演软件,对内蒙古地区2009年12月至2010年12月的EOS/MODIS气象卫星资料进行反演,计算0.55μm气溶胶光学厚度,并提取119个气象台站气溶胶光学厚度值按盟市进行月平均、年平均值统计分析,寻找气溶胶光学厚度的空间分布特征和时间变化规律。结果表明:(1)内蒙古地区气溶胶光学厚度存在非常明显的空间分布特征,最高值区主要集中在中部和西部地区,东部的大部地区基本没有最高值出现。(2)内蒙古地区气溶胶光学厚度存在明显的时间变化规律。从1月份逐渐增加,到6月和7月份达到全年最大值,再逐渐降低趋势;春季和夏季最大,而秋季和冬季最小,夏季>春季>秋季>冬季。  相似文献   

16.
陈艳  张武  张利  柳月  宋松涛 《干旱气象》2013,(3):517-522
利用全球自动观测网(AERONET)纳木错观测点(90.962°E,30.773°N)2009年1~12月的地基观测数据,对青藏高原中部气溶胶光学厚度的分布进行了分析研究,并利用观测结果对MODIS气溶胶光学厚度(AOD)产品进行检验。结果表明,2009年1~12月期间,气溶胶光学厚度月平均值呈现双峰双谷状分布,3月的值最大。9月以后的波长指数a较小,这一时期气溶胶粒子的粒径较大。混浊系数卢的平均值为0.063,说明该地区的空气较为清洁。利用该地基观测资料对MODISAOD产品进行检验,结果表明两者的相关系数平方为0.14,没有通过95%的置信度检验,适用性不显著,需要进一步订正该地区的MODIS气溶胶光学厚度产品。  相似文献   

17.
中国西南地区气溶胶光学厚度的时空特征   总被引:1,自引:1,他引:1  
采用MODIS卫星遥感产品研究西南地区气溶胶季节变化,并对成都和香格里拉两站2008年的太阳光度计观测资料进行分析。结果表明西南地区气溶胶光学厚度(AOD Aerosol Optical Depth)全年呈西低东高的地理分布特征,但东西部季节变化特征不同:西南地区东部AOD有春季最大,秋冬次之,夏季最小的演变特征,并且在四川盆地,黔、渝、湘交界和广西中部有三个明显的AOD高值区。西南地区西部AOD有春季最大,夏秋次之,冬季最小的演变特征,无明显高值区。太阳光度计资料分析表明,成都地区AOD日变化呈准双峰型,香格里拉AOD日变化呈上升趋势。  相似文献   

18.
中国中东部MODIS与MISR气溶胶光学厚度的对比   总被引:3,自引:2,他引:3  
张莹  孙照渤 《气象科学》2010,30(1):48-54
Terra/MODIS前一版本C4和最新版本C5的气溶胶光学厚度(AOT Aerosol OpticalThickness)数据,以及搭载于同一卫星上的Terra/MISR气溶胶光学厚度数据,在中国中东部地区存在差异。本文利用AERONET气溶胶光学厚度数据对以上三种资料验证的结果表明:MODIS气溶胶算法改进之后得到的C5 AOT数据较C4精度确有很大提高,且优于MISR的AOT数据。  相似文献   

19.
利用NASA发布的MODIS/Terra中Collection6数据集的MOD04_3K气溶胶光学厚度(AOD)产品,进行波段提取、重投影、剪裁等预处理,得到郑州市气溶胶光学厚度资料,对此进行统计分析,研究郑州市气溶胶光学厚度的时空变化特征。结果表明:1)2001-2016年郑州市AOD年均值整体以每年0.0033的速率增加,最大峰值出现在2011年(1.01),以2011年为界,2001-2011年呈显著增长趋势,2012-2016年呈显著下降趋势。AOD季节均值夏季的最大,春季的次之,冬季的最小。2)2001-2016年郑州市AOD夏季均值波动较大,春季均值与年均值趋势基本一致,AOD年均值和季均值与对应时间尺度的降水量有负相关关系。工业产值占GDP比重与AOD年均值呈正相关关系。3)2001-2016年郑州市AOD年均值空间分布呈现北高南低、东高西低的特征,高值区主要分布在新郑市、中牟县、郑州市区、荥阳市及巩义市的西北部。春、夏和秋季的AOD均值空间分布形态基本与年均值的分布一致,冬季的高值区集中在郑州市东南部(新郑市)。  相似文献   

20.
MODIS遥感中国近海气溶胶光学厚度的检验分析   总被引:16,自引:0,他引:16  
基于中分辨率成像光谱仪(TERRA/MODIS)的一级数据和相应的辅助数据,利用MODIS/ARIS预处理软件包(IMAPP)中的气溶胶软件反演得到中国近海气溶胶的光学厚度,与AERONET太阳光度计的反演结果作对比分析,验证了此反演方法的可行性.研究了2002年10-11月中国近海气溶胶光学厚度和Angstrom指数(表征粒子谱宽度)的变化特征,进一步结合气块后向轨迹分析和地理环境背景场信息讨论了卫星反演气溶胶光学参量的适用范围和误差来源,结果表明:IMAPP反演得到的气溶胶光学厚度,在东海和日本以南等广阔海域与气溶胶地基观测网(AERONET)的观测结果基本一致;在渤海和黄海近海岸一带反演值偏高,其主要原因是该海域存在二类水体的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号