首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二叠纪末期发生的显生宙以来最大的生物绝灭事件,使海洋生态系统和陆地生态系统均受到重创之后,微生物岩广泛分布于全球正常浅海地区。研究认为,扬子地台在二叠纪末期存在一次海平面降低的事件,造成研究区二叠纪地层与早三叠世微生物岩之间存在沉积间断或剥蚀,并使三叠纪牙形石混入二叠纪末期的沉积物中。二叠-三叠系界线位于微生物岩层的底界;微生物岩形成于早三叠世最早期,相当于Hindeodus parvus带,是早三叠世最早期开始的海侵事件为其提供生长所需的可容纳空间。在Isarcicella staeschei带-I. isarcica带早期再次发生相对海平面降低事件,之后海平面开始快速上升。研究区早三叠世早期的微生物岩以凝块构造发育为特征,具有斑状、层状、枝状和网状凝块构造4种典型中型构造。结合前人的工作,认为微生物群落通过生物沉积和物理沉积作用形成球状体,球状体汇聚形成不同的中型凝块构造。研究扬子地台早三叠世凝块石的确切时代和结构、构造类型特征,为准确恢复生物大灭绝事件前后的环境变迁以及生物演化事件与环境变化的相互作用关系提供重要的证据。  相似文献   

2.
The end-Permian mass extinction devastated most marine communities and the recovery was a protracted event lasting several million years into the Early Triassic. Environmental and biological processes undoubtedly controlled patterns of recovery for marine invertebrates in the aftermath of the extinction, but are often difficult to single-out. The global diversity and distribution of marine lophophorates during the aftermath of the end-Permian mass extinction indicates that stenolaemate bryozoans, rhynchonelliform brachiopods, and lingulid brachiopods displayed distinct recovery patterns.Bryozoans were the most susceptible of the lophophorates, experiencing relatively high rates of extinction at the end of the Permian, and becoming restricted to the Boreal region during the Early Triassic. The recovery of bryozoans was also delayed until the Late Triassic and characterized by very low diversity and abundance. Following the final disappearance of Permian rhynchonelliform brachiopod survivors, Early Triassic rhynchonelliform brachiopod abundance remained suppressed despite a successful re-diversification and a global distribution, suggesting a decoupling between global taxonomic and ecological processes likely driven by lingering environmental stress.In contrast with bryozoans and rhynchonelliforms, lingulid brachiopods rebounded rapidly, colonizing shallow marine settings left vacant by the extinction. Lingulid dominance, characterized by low diversity but high numerical abundance, was short-lived and they were once again displaced back into marginal settings as environmental stress changed through the marine recovery. The presence in lingulid brachiopods of the respiratory pigment hemerythrin, known to increase the efficacy of oxygen storage and transport, when coupled with other morphological and physiological adaptations, may have given lingulids a survival advantage in environmentally stressed Early Triassic settings.  相似文献   

3.
The end-Permian mass extinction devastated most marine communities and the recovery was a protracted event lasting several million years into the Early Triassic. Environmental and biological processes undoubtedly controlled patterns of recovery for marine invertebrates in the aftermath of the extinction, but are often difficult to single-out. The global diversity and distribution of marine lophophorates during the aftermath of the end-Permian mass extinction indicates that stenolaemate bryozoans, rhynchonelliform brachiopods, and lingulid brachiopods displayed distinct recovery patterns.Bryozoans were the most susceptible of the lophophorates, experiencing relatively high rates of extinction at the end of the Permian, and becoming restricted to the Boreal region during the Early Triassic. The recovery of bryozoans was also delayed until the Late Triassic and characterized by very low diversity and abundance. Following the final disappearance of Permian rhynchonelliform brachiopod survivors, Early Triassic rhynchonelliform brachiopod abundance remained suppressed despite a successful re-diversification and a global distribution, suggesting a decoupling between global taxonomic and ecological processes likely driven by lingering environmental stress.In contrast with bryozoans and rhynchonelliforms, lingulid brachiopods rebounded rapidly, colonizing shallow marine settings left vacant by the extinction. Lingulid dominance, characterized by low diversity but high numerical abundance, was short-lived and they were once again displaced back into marginal settings as environmental stress changed through the marine recovery. The presence in lingulid brachiopods of the respiratory pigment hemerythrin, known to increase the efficacy of oxygen storage and transport, when coupled with other morphological and physiological adaptations, may have given lingulids a survival advantage in environmentally stressed Early Triassic settings.  相似文献   

4.
The severe mass extinction of marine and terrestrial organisms at the end of the Permian Period (c. 251 Ma) was accompanied by a rapid (<100 000 years and possibly <10 000 years) negative excursion of c. 3‰ in the δ13C of the global surface oceans and atmosphere that persisted for some 500 000 years into the Early Triassic. Simulations with an ocean–atmosphere/carbon-cycle model suggest that the isotope excursion can be explained by collapse of ocean primary productivity, and changes in the delivery and cycling of carbon in the oceans and on land. Model results suggest that severe reduction of marine productivity led to an increase in surface-ocean dissolved inorganic carbon and a rapid, short-term increase in atmospheric pCO2 (from a Late Permian base of 850 ppm to c. 2500 ppm). Increase in surface ocean alkalinity may have stimulated the widespread microbial and abiotic shallow-water carbonate deposition seen in the earliest Triassic. The model is also consistent with a long-term (>1 Ma) decrease in sedimentary burial of organic carbon in the early Triassic.  相似文献   

5.
6.
The end-Permian mass extinction is now robustly dated at 252.6 ± 0.2 Ma (U–Pb) and the Permian–Triassic (P–T) GSSP level is dated by interpolation at 252.5 Ma. An isotopic geochronological timescale for the Late Permian–Early Triassic, based on recent accurate high-precision U–Pb single zircon dating of volcanic ashes, together with calibrated conodont zonation schemes, is presented. The duration of the Early Triassic (Induan + Olenekian stages) is estimated at only 5.5 million years. The duration of the Induan Stage (Griesbachian + Dienerian sub-stages) is estimated at ca. one million years and the early Olenekian (Smithian sub-stage) at 0.7 million years duration. Considering this timescale, the “delayed” recovery following the end-Permian mass extinction may not in fact have been particularly protracted, in the light of the severity of the extinction. Conodonts evolved rapidly in the first 1 million years following the mass extinction leading to recognition of high-resolution conodont zones. Continued episodic global environmental and climatic stress following the extinction is recognized by multiple carbon isotope excursions, further faunal turnover and peculiar sedimentary and biotic facies (e.g. microbialites). The end-Permian mass extinction is interpreted to be synchronous globally and between marine and non-marine environments. The nature of the double-phased Late Permian extinction (at the Guadalupian–Lopingian boundary and the P–T boundary), linked to large igneous provinces, suggests a primary role for superplume activity that involved geomagnetic polarity change and massive volcanism.  相似文献   

7.
The latest Permian was a time of major change in ocean chemistry, accompanying the greatest mass extinction of the Phanerozoic. To examine the nature of these changes, samples from two well-studied marine sections that span the Permian-Triassic boundary have been analyzed: the Meishan and Shangsi sections located in Southern China. Isotopic analysis of the carbonate-associated sulfate in these samples provides a detailed record of several isotopic shifts in δ34SCAS approaching and across the PTB, ranging from +30 to −15‰ (VCDT), with repeated asynchronous fluctuations at the two locations. We interpret the patterns of isotopic shifts, in conjunction with other data, to indicate a shallow unstable chemocline overlying euxinic deep-water which periodically upwelled into the photic zone. These chemocline upward excursion events introduced sulfide to the photic zone stimulating a bloom of phototrophic sulfur oxidizing bacteria. We hypothesize that elemental sulfur globules produced by these organisms and 34S-depleted pyrite produced in the euxinic water column were deposited in the sediment; later oxidation led to incorporation as CAS. This created the large changes to the δ34SCAS observed in the latest Permian at these locations.  相似文献   

8.
The mass extinction at the Permian–Triassic Boundary (PTB) is said to have been abrupt and probably caused by an extraterrestrial impact. However, evidence from the Global Stratotype Section and Point (GSSP) of the base of the Induan at Meishan, China, shows that the biotic crisis began prior to the level, in beds 25 and 26 at which the postulated impact event occurred. Evidence of such an earlier biotic crisis occurs in other sections in South China, and in central and western Tethyan regions. This event is characterized by the extinction of a range of faunas, including corals, deep-water radiolarians, most fusulinids and pseudotirolitid ammonoids, and many Permian brachiopods. In all sections, this extinction level is usually a few decimeters to meters below that of the main mass extinction in the event beds (25 and 26) at Meishan, and their correlatives elsewhere. This earlier extinction event happened before the postulated bolide impact at the level of beds 25 and 26, and constrains interpretation of the mechanisms that brought about this greatest mass extinction. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
This work provides new insights to assess the factors controlling carbonate deposition in the siliciclastic fluvial systems of rift basins. Sedimentological and stable‐isotope data of microbialites and associated carbonate facies, along with regional geological information, are shown to reveal the influence of climate and tectonics on the occurrence and attributes of carbonate deposits in these settings. The Vega Formation – a 150 m thick Lower Kimmeridgian siliciclastic fluvial sequence in Asturias Province (northern Spain) – constitutes a candidate for this approach. This unit includes varied facies (stromatolites; rudstones, packstones and wackestones containing oncoids, intraclasts, charophytes and shell bioclasts; marlstones and polygenic calcareous conglomerates) that formed in a low‐gradient fluvial–lacustrine system consisting of shallow, low‐sinuosity oncoid‐bearing channels and pools within marshy areas, with sporadic coarse alluvial deposition. The sedimentological attributes indicate common erosion by channel overflow and rapid lateral changes of subenvironments caused by water‐discharge variations. The carbonate fluvial–lacustrine system developed near uplifted marine Jurassic rocks. The occurrence of the system was conditioned by normal faults (active during the deposition of the unit) that favoured: (i) springs of HCO3–Ca‐rich water from a Rhaetian–Sinemurian carbonate rock aquifer; and (ii) carbonate deposition in areas partially isolated from the adjacent siliciclastic fluvial system. The microbialite δ13C and δ18O values support deposition in a hydrologically open system, fed by ambient‐temperature meteoric water, with riparian vegetation. Three types of lamination in the stromatolites and oncoids reflect distinct morphological types of cyanobacterial communities. The textural pattern of lamination parallels δ13C and δ18O changes, suggesting short‐term cycles of precipitation and temperature. A moderately to strongly contrasted seasonal and/or pluriannual precipitation regime is inferred from the cyclic δ13C pattern of the lamination and from the discontinuous and asymmetrical growth of oncoids. Thus, the isotopic and sedimentological attributes of the carbonate deposits were linked to short‐term climate changes associated with semi‐arid conditions, consistent with the studied climatic zone.  相似文献   

10.
11.
罗茂  时国  龚一鸣 《古地理学报》2007,9(5):519-532
报道了贵阳花溪下三叠统大冶组中14种遗迹属,它们包括Beaconichnus、Cosmorhaphe、Dendrorhaphe、Gyrochorte、Gordia、Micatuba、Mammillichnis、Megagrapton、Planolites、Palaeophycus、Phycodes、Phycosiphon、Rhizocorallium和Undichna。遗迹化石产出特征为以水平潜穴为主、浅的阶层分布(<4mm)、以觅食迹为主的遗迹组合和小型化的Planolites,这些特征表明经历了P-T事件之后,华南早三叠世浅海生态环境仍处于缺氧异常环境,这种环境直到早三叠世晚期才趋于正常。大冶组遗迹化石发展模式体现出海洋环境群落生态演替特征,造迹生物由早期单一多毛类蠕虫向物种丰富的多毛类发展,再到以甲壳纲动物在沉积物中开辟更大的生态空间和定居。这种绝灭后软躯体动物在崩溃生态系中的发展模式与贵州晚泥盆世弗拉期-法门期之交绝灭界线之上遗迹化石所表现的软躯体动物的演化特征相似。向三度空间开拓发展的复杂遗迹Rhizocorallium,Thalassinoides在绝灭前后世界范围内的分布表明,高纬度区软躯体动物的复苏比低纬度区要快。  相似文献   

12.
Flat pebble conglomerates were a common carbonate facies in Cambrian to Early Ordovician open marine settings, but they become extremely rare in these environments after this time. However, the Early Triassic witnessed an anachronistic reappearance of flat pebbles, together with other intraclast types, in a range of carbonate depositional settings. In south China, flat pebble conglomerates are encountered in storm-dominated, platform carbonates to deep basinal settings, while prefossilized bivalve intraclasts and flat pebbles are common in mid-ramp facies of northern Italy. The emplacement mechanisms of the intraclast-bearing beds appear to have been diverse and to have included basinal turbidity flows and storm-generated hyperconcentrated flows: true storm beds, deposited under combined flow conditions, are rare. The cause of the widespread early lithification implied by the Early Triassic intraclasts appears to have been twofold: suppression of bioturbation, allowing the preservation of thin beds, and rapid submarine lithification. Both features appear to be a response to the widespread development of benthic dysoxia/anoxia during and following the end-Permian mass extinction. This event appears to have temporarily recreated the conditions that pertained in Cambro-Ordovician shelf seas. Flat pebble conglomerates may, therefore, constitute a proxy indicator of stressed environmental conditions associated with global anoxic/dysoxic events.  相似文献   

13.
本文对全球范围内23个典型的研究程度较高的晚长兴期露头进行了研究,逐一检查了晚长兴期白云岩前身沉积的沉积相,结果发现所有白云岩的前身都是浅水相的(除汉中梁山一个剖面外)。相反,目前已经研究的深水相上二叠统碳酸盐沉积物都没有发生白云岩化。这一结果表明,世界范围内上二叠统顶部白云岩的形成机制可能都与海平面下降有关,很可能是蒸发成因的浓缩卤水使沉积物发生白云岩化。据此推断,四川盆地东北部长兴组白云岩也应当是此种成因。  相似文献   

14.
丁奕  张立军 《古地理学报》2023,25(2):405-418
地质历史时期的重大生物—环境事件往往伴随着古海洋海水氧化还原条件的改变,而遗迹化石作为原位保存的生物成因沉积构造,对于解读古海洋氧化还原条件具有显著的优势。通过对前人常用的遗迹学参数进行分析总结,发现遗迹化石多样性、生物扰动强度、潜穴直径、特征遗迹化石组合这4项定量参数可以表征古海洋氧化还原条件的变化。文中以华南二叠系乐平统遗迹化石及生物扰动构造作为研究对象,系统分析了二叠纪末生物大灭绝事件前后遗迹化石参数表征的古海洋氧化还原条件变化特征:自吴家坪期晚期华南古海洋开始出现缺氧,然而该缺氧状态在长兴期不具有持续性,而是呈现出周期性缺氧/贫氧→富氧/有氧的波动特征;在二叠纪末生物大灭绝之前,煤山剖面高精度的定量遗迹学参数指示长兴组24e层顶部存在缺氧事件,并与大灭绝事件有着良好的对应关系。这一实例具体展示了遗迹学参数在古海洋水体氧化还原条件重建中应用前景广阔。  相似文献   

15.
豫西地区下三叠统遗迹化石记录了二叠纪—三叠纪之交生物大灭绝事件(PTME)后遗迹群落由残存向复苏的演变,其中Skolithos以垂直或高角度倾斜于岩层面、被动充填为典型特征,广泛保存于下三叠统和尚沟组。文中以登封、宜阳地区下三叠统和尚沟组保存良好的Skolithos遗迹化石为研究对象,从宏观和微观不同尺度分析Skolithos遗迹属。基于遗迹化石和生物扰动记录反映的生物运动能力、觅食策略、生物与沉积物相互作用的方式、生物改造沉积物的方式,构建出豫西地区和尚沟组生态空间占据和生态系统工程三维空间模式图;在此基础上,进一步分析Skolithos的古环境意义,探讨Skolithos所指示的高生态压力。研究结果表明,经历过PTME事件后的Skolithos遗迹化石主要受到高温、干热气候以及巨型季风等高生态压力的影响,并在此影响下形成机会主义遗迹组合,在曲流河、滨浅湖环境中广泛发育。该成果可为豫西地区下三叠统的陆相沉积环境以及古生态背景研究提供参考依据。  相似文献   

16.
豫西地区下三叠统遗迹化石记录了二叠纪—三叠纪之交生物大灭绝事件(PTME)后遗迹群落由残存向复苏的演变,其中Skolithos以垂直或高角度倾斜于岩层面、被动充填为典型特征,广泛保存于下三叠统和尚沟组。文中以登封、宜阳地区下三叠统和尚沟组保存良好的Skolithos遗迹化石为研究对象,从宏观和微观不同尺度分析Skolithos遗迹属。基于遗迹化石和生物扰动记录反映的生物运动能力、觅食策略、生物与沉积物相互作用的方式、生物改造沉积物的方式,构建出豫西地区和尚沟组生态空间占据和生态系统工程三维空间模式图;在此基础上,进一步分析Skolithos的古环境意义,探讨Skolithos所指示的高生态压力。研究结果表明,经历过PTME事件后的Skolithos遗迹化石主要受到高温、干热气候以及巨型季风等高生态压力的影响,并在此影响下形成机会主义遗迹组合,在曲流河、滨浅湖环境中广泛发育。该成果可为豫西地区下三叠统的陆相沉积环境以及古生态背景研究提供参考依据。  相似文献   

17.
Sulfur isotope composition of carbonate-associated sulfate (δ34SCAS) and carbon isotope composition of carbonate (δ13Ccarb) were jointly investigated on the Late Permian rocks at Shangsi Section, Guanyuan, Northeast Sichuan, South China. Both δ34SCAS and δ13Ccarb show gradual decline trends in Late Permian strata, inferring the occurrence of the long-term variation of marine environmental conditions. Associated with the long-term variation are the two coincident negative shifts in δ34SCAS and δ13Ccarb, with one occurring at the boundary between Middle Permian Maokou Formation and Late Permian Wujiaping Formation and another at Middle Dalong Formation. Of significance is the second shift which clearly predates the regression and the biotic crisis at the end of Permian at Shangsi Section, providing evidence that a catastrophic event occurred prior to the biotic crisis. The frequent volcanisms indicated by the volcanic rocks or fragments, and the upwelling are proposed to cause the second negative excursion. An abrupt extreme negative δ34SCAS (ca. −20‰) associated with a low relative concentration of CAS and total organic carbon without large change in δ13Ccarb is found at the end of the second shift, which might arise from the short-term oxygenation of bottom waters and sediments that resulted from the abrupt sea level drop.  相似文献   

18.
《Gondwana Research》2014,25(3-4):1276-1282
Concentrations of total organic matter (TOC), carbon isotopic compositions of carbonate and organic matter (δ13Ccarb, δ13Corg), and sulfur isotopic compositions of carbonate associated sulfate (δ34Ssulfate) across the Guadalupian–Lopingian (G–L) boundary were analyzed from identical samples of Tieqiao section, Laibin, Guangxi province, South China. The δ13Ccarb values show a positive excursion from − 0.45‰ to the peak of 3.80‰ in the Laibin limestone member of the Maokou Formation, followed by a drastic drop to − 2.60‰ in the lowest Heshan formation, then returned to about 1.58‰. Similar to the trends of the δ13Ccarb values, Δ13Ccarb–org values also show a positive excursion followed by a sharp negative shift. The onset of a major negative carbon isotope excursion postdates the end Guadalupian extinction that indicates subsequent severe disturbance of the ocean–atmosphere carbon cycle. The first biostratigraphic δ34Ssulfate values during the G–L transition exhibit a remarkable fluctuation: a dramatic negative shift followed by a rapid positive shift, ranging from 36.88‰ to − 37.41‰. These sulfate isotopic records suggest that the ocean during the G–L transition was strongly stratified, forming an unstable chemocline separating oxic shallow water from anoxic/euxinic deep water. Chemocline excursions, together with subsequent rapid transgression and oceanic anoxia, were likely responsible for the massive diversity decline of the G–L biotic crisis.  相似文献   

19.
20.
贵州碳酸盐岩相与岩溶地下水赋水条件关系研究   总被引:4,自引:1,他引:4       下载免费PDF全文
贵州碳酸盐岩相控制了碳酸盐岩的类型和分布,碳酸盐岩又是岩溶地下水的储集岩,因此,碳酸盐岩相与岩溶地下水赋存条件存在一定的关系。通过野外调查和现场取样等手段,采用岩矿鉴定、化学分析、抽真空注煤油法和充气法、井下电视成像法等测试技术,选取贵州具有代表性的三个地层二叠纪茅口组(P2m)开阔台地相石灰岩地层、寒武纪娄山关群(∈2-3ls)局限台地相白云岩地层、三叠纪青岩组(T2q)台地边缘相(生物礁相)礁灰岩地层,从岩石的化学成分和结构特征等方面对不同岩相碳酸盐岩的赋水条件进行定性分析。同时运用层次分析方法和原理,对不同岩相碳酸盐岩的赋水条件进行定量评价。通过定性和定量评价得出贵州碳酸盐岩相与岩溶地下水赋水条件的关系为:台地边缘相礁灰岩的赋水条件优于开阔海台地相的石灰岩,开阔台地相的石灰岩的赋水条件优于局限台地相白云岩。该研究结果对指导贵州省岩溶地下水的勘探、开发利用及保护具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号