首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perceptions of hazard and risk on Santorini   总被引:1,自引:0,他引:1  
Santorini, Greece is a major explosive volcano. The Santorini volcanic complex is composed of two active volcanoes—Nea Kameni and Mt. Columbo. Holocene eruptions have generated a variety of processes and deposits and eruption mechanisms pose significant hazards of various types. It has been recognized that, for major European volcanoes, few studies have focused on the social aspects of volcanic activity and little work has been conducted on public perceptions of hazard, risk and vulnerability. Such assessments are an important element of establishing public education programmes and developing volcano disaster management plans. We investigate perceptions of volcanic hazards on Santorini. We find that most residents know that Nea Kameni is active, but only 60% know that Mt. Columbo is active. Forty percent of residents fear that negative impacts on tourism will have the greatest effect on their community. In the event of an eruption, 43% of residents would try to evacuate the island by plane/ferry. Residents aged >50 have retained a memory of the effects of the last eruption at the island, whereas younger residents have no such knowledge. We find that dignitaries and municipal officers (those responsible for planning and managing disaster response) are informed about the history, hazards and effects of the volcanoes. However, there is no “emergency plan” for the island and there is confusion between various departments (Civil Defense, Fire, Police, etc.) about the emergency decision-making process. The resident population of Santorini is at high risk from the hazards associated with a future eruption.  相似文献   

2.
Two explosive eruptions occurred on 2 January 1996 at Karymsky Volcanic Center (KVC) in Kamchatka, Russia: the first, dacitic, from the central vent of Karymsky volcano, and the second, several hours later, from Karymskoye lake in the caldera of Akademia Nauk volcano. The main significance of the 1996 volcanic events in KVC was the phreatomagmatic eruption in Karymskoye lake, which was the first eruption in this lake in historical time, and was a basaltic eruption at the acidic volcanic center. The volcanic events were associated with the 1 January Ms 6.7 (Mw 7.1) earthquake that occurred at a distance of about 9–17 km southeast from the volcanoes just before the eruptions. We study the long-term (1972–1995) and short-term (1–2 January 1996) characteristics of crustal deformations and seismicity before the double eruptive event in KVC. The 1972–1995 crustal deformation was homogeneous and characterized by a gradual extension with a steady velocity. The seismic activity in 1972–1995 developed at the depth interval from 0 to 20 km below the Akademia Nauk volcano and spread to the southeast along a regional fault. The seismic activity in January 1996 began with a short sequence of very shallow microearthquakes (M ~0) beneath Karymsky volcano. Then seismic events sharply increased in magnitude (up to mb 4.9) and moved along the regional fault to the southeast, culminating in the Ms 6.7 earthquake. Its aftershocks were located to the southeast and northwest from the main shock, filling the space between the two active volcanoes and the ancient basaltic volcano of Zhupanovsky Vostryaki. The eruption in Karymskoye lake began during the aftershock sequence. We consider that the Ms 6.7 earthquake opened the passageway for basic magma located below Zhupanovsky Vostryaki volcano that fed the eruption in Karymskoye lake.  相似文献   

3.
 The ca. 10,500 years B.P. eruptions at Ruapehu volcano deposited 0.2–0.3 km3 of tephra on the flanks of Ruapehu and the surrounding ring plain and generated the only known pyroclastic flows from this volcano in the late Quaternary. Evidence of the eruptions is recorded in the stratigraphy of the volcanic ring plain and cone, where pyroclastic flow deposits and several lithologically similar tephra deposits are identified. These deposits are grouped into the newly defined Taurewa Formation and two members, Okupata Member (tephra-fall deposits) and Pourahu Member (pyroclastic flow deposits). These eruptions identify a brief (<ca. 2000-year) but explosive period of volcanism at Ruapehu, which we define as the Taurewa Eruptive Episode. This Episode represents the largest event within Ruapehu's ca. 22,500-year eruptive history and also marks its culmination in activity ca. 10,000 years B.P. Following this episode, Ruapehu volcano entered a ca. 8000-year period of relative quiescence. We propose that the episode began with the eruption of small-volume pyroclastic flows triggered by a magma-mingling event. Flows from this event travelled down valleys east and west of Ruapehu onto the upper volcanic ring plain, where their distal remnants are preserved. The genesis of these deposits is inferred from the remanent magnetisation of pumice and lithic clasts. We envisage contemporaneous eruption and emplacement of distal pumice-rich tephras and proximal welded tuff deposits. The potential for generation of pyroclastic flows during plinian eruptions at Ruapehu has not been previously considered in hazard assessments at this volcano. Recognition of these events in the volcanological record is thus an important new factor in future risk assessments and mitigation of volcanic risk at Tongariro Volcanic Centre. Received: 5 July 1998 / Accepted: 12 March 1999  相似文献   

4.
Citlaltépetl or Pico de Orizaba is the highest active volcano in the North American continent. Although Citlaltépetl is at present in repose, its eruptive history reveals repetitive explosive eruptions in the past. Its relatively low eruption rate has favored significant population growth in areas that may be affected by a potential eruptive activity. The need of some criteria for hazards assessment and land-use planning has motivated the use of statistical methods to estimate the time and space distribution of volcanic hazards around this volcano. The analysis of past activity, from late Pleistocene to historic times, and the extent of some well-identified deposits are used to calculate the recurrence probabilities of eruptions of various size during time periods useful for land-use planning.  相似文献   

5.
LI Yu-che 《地震地质》2017,39(5):1079-1089
The historical document record is of vital significance to determine the volcanic eruption history age in the volcanology research and it cannot be replaced by 14C dating and other methods. The volcanoes are widely distributed in the northeast area of China, but there is lack of relevant historical records. However, there are the records of the volcanic eruption in the historical documents of Goryeo Dynasty(AD918-1392)and Joseon Dynasty(AD1391-1910)in the Korean Peninsula which is separated by a river with China only. Some of the records have been widely used as important information to the research of Changbaishan Tianchi volcano eruption history by researchers both at home and abroad, but they have different opinions. On the basis of the historical documents in the Korean Peninsula, that is, the History of Goryeo Dynasty and the Annals of the Joseon Dynasty so on, the phenomena of volcanic eruptions, including the intuitive eruptive events and the doubtful volcanic eruption phenomenon such as "the ash fall", "the white hair fall", "the sky fire", "the dust fall" are investigated and put in order systematically in this paper. The results are as follows:1)The intuitive eruptive events are the 1002AD eruption of Mt. Halla volcano on Jeju Island, Korea Peninsula, and the 1007AD volcanic eruption offshore to the west of Jeju Island, Korea Peninsula, as well as the 1597AD eruption of Mt. Wangtian'e volcano in Changbai County, Jilin Province, China; 2)"The ash fall" is airborne volcanic ash, and those "ash falls" happening in 1265, 1401-1405, 1668, 1673 and 1702AD are possibly the tephra of Changbaishan Tianchi volcano; 3)"The white hair fall" is Pele's hair and it is speculated that the "white hair fall "happening in 1737AD is related to Changbaishan Tianchi volcanic eruption; 4)If regarding "the sky fire" as the volcanic eruption phenomenon, "the sky fire" happening in 1533AD is possibly the Changbaishan volcanic eruption event, and "the sky fire" in 1601-1609AD may be the eruptive event of the Longgang volcano in Jilin Province, China or Changbaishan Tianchi volcano; 5)"The dust fall" is recorded in many historical documents. However, "the dust fall" is not the volcanic ash fall but the phenomenon of loess fall. So, it is improper to determine the eruptive events of Changbaishan Tianchi volcano on the basis of "the dust fall".  相似文献   

6.
During 1999, the volcanic activity at Mt. Etna was both explosive and effusive at the summit craters: Strombolian activity, lava fountains and lava flows affected different areas of the volcano, involving three of the four summit craters. Results from analysis of the 1999 volcanic tremor features are shown at two different time scales. First, the long-term time variation of the features of the volcanic tremor (including spectral and polarization parameters), during the entire year, was compared with the evolution of the eruptive activity. This approach demonstrated the good agreement between tremor data and observed eruptive activity; the activation of different tremor sources was suggested. Then, a more refined analysis of the volcanic tremor, recorded during 14 lava fountain eruptions, was performed. In particular, a shift of the dominant frequencies towards lower values was noted which corresponds with increasing explosive activity. Similar behaviour in the frequency content has already been observed in other explosive eruptions at Mt. Etna as well as on other volcanoes. This behaviour has been explained in terms of either an increase in the tremor source dimension or a decrease in the sound speed in the magma within the conduit. These results confirm that the volcanic tremor is a powerful tool for better understanding the physical processes controlling explosive eruptions at Mt. Etna volcano.  相似文献   

7.
Probabilistic eruption forecasting at short and long time scales   总被引:1,自引:1,他引:0  
Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time–space–magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.  相似文献   

8.
Principal and subsidiary building structure characteristics and their distribution have been inventoried in Icod, Tenerife (Canary Islands) and used to evaluate the vulnerability of individual buildings to three volcanic hazards: tephra fallout, volcanogenic earthquakes and pyroclastic flows. The procedures described in this paper represent a methodological framework for a comprehensive survey of all the buildings at risk in the area around the Teide volcano in Tenerife. Such a methodology would need to be implemented for the completion of a comprehensive risk assessment for the populations under threat of explosive eruptions in this area. The information presented in the paper is a sample of the necessary data required for the impact estimation and risk assessment exercises that would need to be carried out by emergency managers, local authorities and those responsible for recovery and repair in the event of a volcanic eruption. The data shows there are micro variations in building stock characteristics that would influence the likely impact of an eruption in the area. As an example of the use of this methodology for vulnerability assessment, we have applied a deterministic simulation model of a volcanic eruption from Teide volcano and its associated ash fallout which, when combined with the vulnerability data collected, allows us to obtain the vulnerability map of the studied area. This map is obtained by performing spatial analysis with a Geographical Information System (GIS). This vulnerability analysis is included in the framework of an automatic information system specifically developed for hazard assessment and risk management on Tenerife, but which can be also applied to other volcanic areas. The work presented is part of the EU-funded EXPLORIS project (Explosive Eruption Risk and Decision Support for EU Populations Threatened by Volcanoes, EVR1-2001-00047).  相似文献   

9.
归纳总结2017年度全球81座活火山的活动情况,共计活动1058座次,平均每周记录20座活火山的活动信息。根据火山潜在喷发的危险性和火山活动的强弱程度对上述火山进行分级描述,火山活动主要反映了地球表层的构造活动,其中大角度俯冲带的弧后火山最为强烈,小角度的俯冲带、拉张裂谷和走滑为主的板块边界火山活动较为平静,火山活动频繁的印度尼西亚岛链是受灾最为严重的区域。预计全球火山活动将进一步加剧,印尼岛链受火山灾害威胁的程度依然较大。位于印尼岛链巴厘岛上的阿贡火山自2017年9月开始活动以来,整个喷发过程极具代表性,监测阿贡火山喷发过程可为全球典型火山喷发事件研究提供参考。  相似文献   

10.
《Journal of Geodynamics》2007,43(1):118-152
The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone.Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine).Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of “wet” eruptions and Strombolian to Plinian in terms of “dry” eruptions. In historical time the magma volume extruded by individual eruptions ranges from ∼1 m3 to ∼20 km3 DRE, reflecting variable magma compositions, effusion rates and eruption durations.All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as “Fires”, which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20–25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga–Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ–WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ∼4.5% of the eruptions is not known.Magma productivity over 1100 years equals about 87 km3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km3 (∼82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ–WVZ accounts for 13% of the magma and the NWZ and the intraplate belts for 2.5% each. Collectively the axial zone (RVZ, WVZ, NVZ) has only erupted 15–16% of total magma volume in the last 1130 years.  相似文献   

11.
Field investigation and lab analysis on samples were carried out for Quaternary volcanoes, including Xiaoshan volcano, Dashan volcano and Bianzhuang hidden volcano, in Haixing area, east of North China. Results show that Xiaoshan volcano with the eruptive material of volcanic scoria, crystal fragments and volcanic ash is a maar volcano, the eruptive pattern is pheatomagmatic eruption, and the influence scope is near the crater. Dashan volcano exploded in the early stage, and then the magma intruded, forming the volcanic neck. The eruption strength and scale are limited, and the eruptive materials are scoria, volcanic agglomerate and dense lava neck. The volcanic rocks in Bianzhuang are porosity and dense volcanic rocks and volcanic breccia, reflecting the pattern of weak explosive eruption and lava flow, and the K-Ar age dating on volcanic rocks indicates that the eruption happened in early Pleistocene. Xiaoshan volcanic scoria and Bianzhuang hidden volcanic rocks are mainly basaltic, Dashan volcanic rocks with lower SiO2 content are nephelinite in composition. Their oxide contents have no linear relationship, indicating that there is no magma evolution relationship between these magmas from the three places. Three volcanic rocks all have enrichment of light rare earth. The Bianzhuang volcanic rocks are rich in large ion lithophile elements, and have no high field strength elements Zr and Hf, Ti losses. The volcanic materials from Xiaoshan and Dashan are intensively rich in Th, U, Nb and Ta, and significantly poor in K and Ti. Although the magmas from these three places in Haixing area may all come from asthenosphere, the volcanic materials have different petrological and geochemical features, and relatively independent volcanic structures, therefore, they experienced different magma processes.  相似文献   

12.
We propose a long-term volcanic hazards event tree for Teide-Pico Viejo stratovolcanoes, two complex alkaline composite volcanoes that have erupted 1.8–3 km3 of mafic and felsic magmas from different vent sites during the last 35 ka. This is the maximum period that can be investigated from surface geology and also represents an upper time limit for the appearance of the first phonolites on that volcano. The whole process of the event tree construction was divided into three stages. The first stage included the determination of the spatial probability of vent opening for basaltic and phonolitic eruptions, based on the available geological and geophysical data. The second, involved the analysis of the different eruption types that have characterised the volcanic activity from Teide during this period. The third stage focussed on the generation of the event tree from the information obtained in the two previous steps and from the application of a probabilistic analysis on the occurrence of each possible eruption type. As for other volcanoes, the structure of the Teide-Pico Viejo Event Tree was subdivided into several steps of eruptive progression from general to more specific events. The precursory phase was assumed as an unrest episode of any geologic origin (magmatic, hydrothermal or tectonic), which could be responsible for a clear increase of volcanic activity revealed by geophysical and geochemical monitoring. According to the present characteristics of Teide-Pico Viejo and their past history, we started by considering whether the unrest episode would lead to a sector collapse or not. If the sector collapse does not occur but an eruption is expected, this could be either from the central vents or from any of the volcanoes' flanks. In any of these cases, there are several possibilities according to what has been observed in the period considered in our study. In the case that a sector collapse occurs and is followed by an eruption we considered it as a flank eruption. We conducted an experts elicitation judgement to assign probabilities to the different possibilities indicated in the event tree. We assumed long term estimations based on existing geological and historical data for the last 35 Ka, which gave us a minimum estimate as the geological record for such a long period is incomplete. However, to estimate probabilities for a short term forecast, for example during an unrest episode, we would need to include in the event tree additional information from the monitoring networks, as any possible precursors that may be identified could tell us in which direction the system will evolve. Therefore, we propose to develop future versions of the event tree to include also the precursors that might be expected on each path during the initial stages of a new eruptive event.  相似文献   

13.
长白山天池火山减灾对策初探   总被引:7,自引:0,他引:7  
国内外专家学者认为,长白山天池火山是一座具潜在灾害性喷发危险的活火山,因此制定火山减灾对策理应提到议事日程。针对天池火山研究现状和火山灾害特点,制定了火山活动各阶段的减灾对策。中长期阶段应加强火山监测与研究和火山知识宣传工作,采取必要的工程防护措施,重大工程进行火山安全性评价,制定火山喷发应急预案;短期阶段请求国际火山流动监测台网给予支援;临近喷发阶段重点是有组织的撤离;喷发及其后阶段应及时救灾抢险,对火山喷发趋势进行科学判定,合理地重建家园。  相似文献   

14.
国外火山减灾研究进展   总被引:4,自引:1,他引:3  
徐光宇  皇甫岗 《地震研究》1998,21(4):397-405
概述了国外近期火山灾害减轻进展,内容包括:火山灾害分类,识别高危险性火山,灾害识别、评价和分带,火山监测和喷发预测。减轻火山灾害的工程措施以有火山应急管理等方面。并对几次重大火山喷发灾难实例作了介绍和分析比较  相似文献   

15.
One of the best-studied volcanoes of the world, Mt. Etna in Sicily, repeatedly exhibits eruptive scenarios that depart from the behavior commonly considered typical for this volcano. Episodes of intense explosive activity, pyroclastic flows, dome growth and cone collapse pose a variety of previously underestimated threats to human lives in the summit area of the volcano. However, retrospective analysis of these events shows that they were likely caused by the same very sets of premises and starting conditions as “normal” eruptions, yet combined in an unexpected, probably unique, way. To cope with such unexpected consequences, we involve an approach of artificial intelligence developed specially for needs of the geosciences, the event bush. Scenarios inferred from the event bush fit the observed ones and allow to foresee other low-probability events that may occur at the volcano. Application of the event bush provides a more impartial vision of volcanic phenomena and may serve as an intermediary between expert knowledge and numerical assessment, e.g., by means of Bayesian Belief Networks.  相似文献   

16.
More than 40 late Cenozoic monogenetic volcanoes formed a volcanic belt striking NNW from Keluo, through Wudalianchi to Erkeshan in NE China. These volcanoes belong to a unified volcano system, namely Wudalianchi volcanic belt(WVB for short). Based on the volcanic evolution history and the nature of monogenetic volcanic system, we estimate that the volcanic system of WVB is still active and has the potential to erupt again. Hence, this paper studied the temporal-spatial distribution and volcanic eruption types to evaluate the possible eruption hazard types and areas of influence in the future. Volcanic field characteristics and K-Ar radiometric data suggest two episodes of volcanism in the WVB, the Pliocene to early Pleistocene volcanism(4.59~1.00MaBP)and the middle Pleistocene to Holocene volcanism(0.79Ma to now). The early episode volcanoes are distributed only in the north of WVB(mainly in Keluo volcanic field), featured by effusive eruption, and mainly formed monogenetic shield, whose base diameter is large and slope is gentle. However, the late episode eruptions occurred over the entire WVB. The explosive eruption in this stage formed numerous relatively intact scoria cones of explosive origin. Meanwhile the effusive eruption formed widely distributed lava flows. Both effusive eruption and explosive eruption are common in WVB. The effusive eruption formed monogenetic shields and lava flows. The resulting pahoehoe lava, aa lava and block lava appeared in WVB. There are three end-member types of explosive eruption driven by magmatic volatile. Violent Strombolian eruption has the highest degree of fragmentation and mass flux, characterized by eruption column. Strombolian eruption has the high degree of fragmentation, but low mass flux, featured by pulse eruption. Hawaiian eruption has low degree of fragmentation, but high in mass flux, generating large scoria cones. In addition, this paper for the first time found phreatomagmatic eruption in WVB, which formed tuff cone. Transitional eruptions are also common in WVB, which have certain characteristics among the end-member eruption types. Besides, certain volcanoes displayed multiple explosive eruption types during the whole eruption span. According to the volcanic temporal-spatial distribution and eruption characteristics in WVB, the potential volcanic hazards in future are constrained. It appears that the violent Strombolian and Strombolian eruption will not have significant impact on aviation safety in the vertical direction. In the radial direction, the ejected volcanic bomb can reach as far as 1km from the vents and the fallout tephra may disperse downwind over a distance ranging from 1~10km. The major hazard of Hawaiian eruption and effusive eruption comes from lava flow, and its migration distance may reach 3.0~13.5km for pahoehoe lava and 2.9~14.9km for aa lava. The base surge in phreatomagmatic eruption can reach a velocity of 200~400m/s, and the migration distance is around 10km. This is a big threat that people should pay more attention to and take precautions in advance. Besides, it is necessary to strengthen the real-time observation of the volcanoes in the WVB, especially those formed in the late episode as well as near the active fault.  相似文献   

17.
This paper emphasizes the fact that tsunamis can occur in continental lakes and focuses on tsunami triggering by processes related to volcanic eruptions and instability of volcanic edifices. The two large lakes of Nicaragua, Lake Managua and Lake Nicaragua, host a section of the Central American Volcanic Arc including several active volcanoes. One case of a tsunami in Lake Managua triggered by an explosive volcanic eruption is documented in the geologic record. However, a number of events occurred in the past at both lakes which were probably tsunamigenic. These include massive intrusion of pyroclastic flows from Apoyo volcano as well as of flank-collapse avalanches from Mombacho volcano into Lake Nicaragua. Maar-forming phreatomagmatic eruptions, which repeatedly occurred in Lake Managua, are highly explosive phenomena able to create hugh water waves as was observed elsewhere. The shallow water depth of the Nicaraguan lakes is discussed as the major limiting factor of tsunami amplitude and propagation speed. The very low-profile shores facilitate substantial in-land flooding even of relatively small waves. Implications for conceiving a possible warning system are also discussed.  相似文献   

18.
The Igwisi Hills volcanoes (IHV), Tanzania, are unique and important in preserving extra-crater lavas and pyroclastic edifices. They provide critical insights into the eruptive behaviour of kimberlite magmas that are not available at other known kimberlite volcanoes. Cosmogenic 3He dating of olivine crystals from IHV lavas and palaeomagnetic analyses indicates that they are Upper Pleistocene to Holocene in age. This makes them the youngest known kimberlite bodies on Earth by >30?Ma and may indicate a new phase of kimberlite volcanism on the Tanzania craton. Geological mapping, Global Positioning System surveying and field investigations reveal that each volcano comprises partially eroded pyroclastic edifices, craters and lavas. The volcanoes stand <40?m above the surrounding ground and are comparable in size to small monogenetic basaltic volcanoes. Pyroclastic cones consist of diffusely layered pyroclastic fall deposits comprising scoriaceous, pelletal and dense juvenile pyroclasts. Pyroclasts are similar to those documented in many ancient kimberlite pipes, indicating overlap in magma fragmentation dynamics between the Igwisi eruptions and other kimberlite eruptions. Characteristics of the pyroclastic cone deposits, including an absence of ballistic clasts and dominantly poorly vesicular scoria lapillistones and lapilli tuffs, indicate relatively weak explosive activity. Lava flow features indicate unexpectedly high viscosities (estimated at >102 to 106?Pa?s) for kimberlite, attributed to degassing and in-vent cooling. Each volcano is inferred to be the result of a small-volume, short-lived (days to weeks) monogenetic eruption. The eruptive processes of each Igwisi volcano were broadly similar and developed through three phases: (1) fallout of lithic-bearing pyroclastic rocks during explosive excavation of craters and conduits; (2) fallout of juvenile lapilli from unsteady eruption columns and the construction of pyroclastic edifices around the vent; and (3) effusion of degassed viscous magma as lava flows. These processes are similar to those observed for other small-volume monogenetic eruptions (e.g. of basaltic magma).  相似文献   

19.
Abstract Tyatya Volcano, situated in Kunashir Island at the southwestern end of Kuril Islands, is a large composite stratovolcano and one of the most active volcanoes in the Kuril arc. The volcanic edifice can be divided into the old and the young ones, which are composed of rocks of distinct magma types, low‐ and medium‐K series, respectively. The young volcano has a summit caldera with a central cone. Recent eruptions have occurred at the central cone and at the flank vents of the young volcano. We found several distal ash layers at the volcano and identified their ages and sources, that is, tephras of ad 1856, ad 1739, ad 1694 and ca 1 Ka derived from three volcanoes of Hokkaido, Japan, and caad 969 from Baitoushan Volcano of China/North Korea. These could provide good time markers to reveal the eruptive history of the central cone, which had continued intermittently with Strombolian eruptions and lava flow effusions since before 1 Ka. Relatively explosive eruptions have occurred three times at the cone during the past 1000 years. We revealed that, topographically, the youngest lava flows from the cone are covered not by the tephra of ad 1739 but by that of ad 1856. This evidence, together with a report of dense smoke rising from the summit in ad 1812, suggests that the latest major eruption with lava effusion from the central cone occurred in this year. In 1973, after a long period of dormancy, short‐lived phreatomagmatic eruptions began to occur from fissure vents at the northern flank of the young volcano. This was followed by large eruptions of Strombolian to sub‐Plinian types occurring from several craters at the southern flank. The 1973 activity is evaluated as Volcanic Explosivity Index = 4 (approximately 0.2 km3), the largest eruption during the 20th century in the southwestern Kuril arc. The rocks of the central cone are strongly porphyritic basalt and basaltic andesite, whereas the 1973 scoria is aphyric basalt, suggesting that magma feeding systems are definitely different between the summit and flank eruptions.  相似文献   

20.
We present precise geodetic and satellite observation-based estimations of the erupted volume and discharge rate of magma during the 2011 eruptions of Kirishima-Shinmoe-dake volcano, Japan. During these events, the type and intensity of eruption drastically changed within a week, with three major sub-Plinian eruptions on January 26 and 27, and a continuous lava extrusion from January 29 to 31. In response to each eruptive event, borehole-type tiltmeters detected deflation of a magma chamber caused by migration of magma to the surface. These measurements enabled us to estimate the geodetic volume change in the magma chamber caused by each eruptive event. Erupted volumes and discharge rates were constrained during lava extrusion using synthetic aperture radar satellite imaging of lava accumulation inside the summit crater. Combining the geodetic volume change and the volume of lava extrusion enabled the determination of the erupted volume and discharge rate during each sub-Plinian event. These precise estimates provide important information about magma storage conditions in magma chambers and eruption column dynamics, and indicate that the Shinmoe-dake eruptions occurred in a critical state between explosive and effusive eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号