首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine an eruptive sequence in late 2007 at Bezymianny Volcano to characterize the magmatic plumbing system and eruption-related seismicity. Earthquake locations reveal seismicity below and offset to the north of the volcano along a tectonic fault. Based on historical seismicity, the magma chamber is postulated to have a top at about 6 km depth. Minor dome explosions, large sub-plinian eruptions and dome collapses are analyzed using an automated event classification scheme. Low-frequency tremor, interpreted as gas escape, and low-frequency earthquakes are a dominant proportion of the energy released. We also examine multiplet earthquakes whose behavior during the study period changed significantly and systematically before the largest eruption, demonstrating the potential of tracking multiplets to assess changing conditions with the conduit.  相似文献   

2.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   

3.
 We analyzed more than 1700 earthquakes related to the 1982 eruption of El Chichon volcano in southern Mexico. The data were recorded at specific periods throughout the whole eruptive interval of March to April 1982, by three different networks. The seismic activity began several months before the first eruption on 28 March. During this period the seismicity consisted of hybrid and long-period shallow earthquakes most likely related to processes of faulting, fracturing, and fluid movement underneath the volcano. The foci of events occurring before the eruption circumscribe an aseismic zone from approximately 7 to 13 km below the volcano. After the eruption, the seismic activity consisted of tectonic-type earthquakes that peaked at 1200 events/h. This later activity occurred over a wide range of depths, mostly between 5 and 20 km, that includes the former aseismic zone and is roughly limited by the major tectonic faults in the area. Received: 19 May 1998 / Accepted: 13 June 1999  相似文献   

4.
INTRODUCTIONThe Changbaishan volcano is located in Jilin Province , along the border of China and NorthKorea .It isthelargest nature reservein China .Changbaishan belongstothe northeastern Asian activebelt in the eastern margin of the Euro-Asia plate . The Changbaishan volcano is a gigantic ,polygenetic ,central volcano,and has been active since Holocene .The early eruption started in thePliocene andformedthe basaltic shield. Duringthe middle and late Pleistocene ,the volcanic cone …  相似文献   

5.
Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day withb value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and withb values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (α=3.0±0.2 km/sec.).  相似文献   

6.
We analyze data from three seismic antennas deployed in Las Cañadas caldera (Tenerife) during May–July 2004. The period selected for the analysis (May 12–31, 2004) constitutes one of the most active seismic episodes reported in the area, except for the precursory seismicity accompanying historical eruptions. Most seismic signals recorded by the antennas were volcano-tectonic (VT) earthquakes. They usually exhibited low magnitudes, although some of them were large enough to be felt at nearby villages. A few long-period (LP) events, generally associated with the presence of volcanic fluids in the medium, were also detected. Furthermore, we detected the appearance of a continuous tremor that started on May 18 and lasted for several weeks, at least until the end of the recording period. It is the first time that volcanic tremor has been reported at Teide volcano. This tremor was a small-amplitude, narrow-band signal with central frequency in the range 1–6 Hz. It was detected at the three antennas located in Las Cañadas caldera. We applied the zero-lag cross-correlation (ZLCC) method to estimate the propagation parameters (back-azimuth and apparent slowness) of the recorded signals. For VT earthquakes, we also determined the S–P times and source locations. Our results indicate that at the beginning of the analyzed period most earthquakes clustered in a deep volume below the northwest flank of Teide volcano. The similarity of the propagation parameters obtained for LP events and these early VT earthquakes suggests that LP events might also originate within the source volume of the VT cluster. During the last two weeks of May, VT earthquakes were generally shallower, and spread all over Las Cañadas caldera. Finally, the analysis of the tremor wavefield points to the presence of multiple, low-energy sources acting simultaneously. We propose a model to explain the pattern of seismicity observed at Teide volcano. The process started in early April with a deep magma injection under the northwest flank of Teide volcano, related to a basaltic magma chamber inferred by geological and geophysical studies. The stress changes associated with the injection produced the deep VT cluster. In turn, the occurrence of earthquakes permitted an enhanced supply of fresh magmatic gases toward the surface. This gas flow induced the generation of LP events. The gases permeated the volcanic edifice, producing lubrication of pre-existing fractures and thus favoring the occurrence of VT earthquakes. On May 18, the flow front reached the shallow aquifer located under Las Cañadas caldera. The induced instability constituted the driving mechanism of the observed tremor.  相似文献   

7.
Ten years after the last effusive eruption and at least 15 years of seismic quiescence, volcanic seismic activity started at Colima volcano on 14 February 1991, with a seismic crisis which reached counts of more than 100 per day and showed a diversity of earthquake types. Four other distinct seismic crises followed, before a mild effusive eruption in April 1991. The second crisis preceded the extrusion of an andesitic scoriaceous lava lobe, first reported on 1 March; during this crisis an interesting temporary concentration of seismic foci below the crater was observed shortly before the extrusion was detected. The third crisis was constituted by shallow seismicity, featuring possible mild degassing explosion-induced activity in the form of hiccups (episodes of simple wavelets that repeat with diminishing amplitude), and accompanied by increased fumarolic activity. The growth of the new lava dome was accompanied by changing seismicity. On 16 April during the fifth crisis which consisted of some relatively large, shallow, volcanic earthquakes and numerous avalanches of older dome material, part of the newly extruded dome, which had grown towards the edge of the old dome, collapsed, producing the largest avalanches and ash flows. Afterwards, block lava began to flow slowly along the SW flank of the volcano, generating frequent small incandescent avalanches. The seismicity associated with the stages of this eruptive activity shows some interesting features: most earthquake foci were located north of the summit, some of them relatively deep (7–11 km below the summit level), underneath the saddle between the Colima and the older Nevado volcanoes. An apparently seismic quiet region appears between 4 and 7 km below the summit level. In June, harmonic tremors were detected for the first time, but no changes in the eruptive activity could be correlated with them. After June, the seismicity decreasing trend was established, and the effusive activity stopped on September 1991.  相似文献   

8.
长白山天池火山地震类型及火山活动性的初步研究   总被引:3,自引:0,他引:3  
2002年以来,长白山天池火山区出现了地震活动增强、地形变加剧和多种地球化学异常等现象,火山口附近发生的多次有感地震在社会上产生了较大影响。本文利用2002年以来的流动地震观测资料,采用频谱分析、时频分析和多台站资料对比的方法,对火山区地震事件的类型进行了分析;对火山活动的危险性进行了初步研究。结果表明,目前天池火山区出现的大量地震活动仍然属于火山构造地震,少量台站地震记录中表现出的低频特征主要是由于局部介质影响造成的,排除了长周期地震引起的可能。尽管长白山天池火山地震活动明最增强,震群活动较为频繁,但仍属于岩浆活动的早期阶段,短期内发生火山喷发的危险性较小。  相似文献   

9.
The 1991 eruption of the Hekla volcano started unexpectedly on 17 January. No long-term precursory seismicity was observed. The first related activity was a swarm of small earthquakes that began approximately half an hour before the eruption. Intensive seismicity, both earthquakes and volcanic tremor, accompanied the violent onset of the eruption. Almost 400 events up to ML magnitude 2.5 were recorded during the first few hours. During the later phases of the eruption, the earthquake activity was modest and the main volcano-related seismic signal was the persistent volcanic tremor. The tremor died away, together with the eruption on 11 March, and Hekla was seismically quiet until the beginning of June 1991, when a sudden swarm of numerous small shallow earthquakes occurred. This activity is atypical for Hekla and is interpreted to be a failed attempt to resume the eruption.  相似文献   

10.
Volcán de Colima, the most active volcano in Mexico, had a climactic episode on 20 November, 1998. On this date, a dome formed on the small summit crater during the previous few days, collapsed generating block-and-ash flows. The event was preceded by almost twelve months of seismic activity, which continued afterwards for several more months. We analyzed the main seismic activity, which occurred from 20 March, 1998 to 31 March, 1999. The seismicity was dominated by volcano-tectonic earthquakes before the climax, and subsequently by hybrid and long-period earthquakes. We determined the frequency of events for the entire period, and located most of the volcano-tectonic events. To assess the possibility that these earthquakes were generated by the same source, they were tested for their similitude through cross correlation in the time domain. Six groups of similar events, or earthquake families, were generated. The members of these families appeared before the 20 November event, apparently ceasing afterwards. We examined the location of the families' events with respect to an existing gravity model in which an anomalous body of negative density contrast suggests the presence of the magma chamber. Most of the family events occur on top of the anomalous body, which suggests they were associated with the passage of magma through the feeding conduits of the volcano.  相似文献   

11.
Shallow volcano-tectonic (VT) earthquakes recorded at the Kuchinoerabujima island volcano in southwest Japan are analyzed in order to clarify the role of hydrothermal activity in the development of volcanic seismicity. From analysis of shallow VT earthquakes in 2006, two specific episodes of elevated seismicity are observed in April and November 2006. The VT earthquakes have hypocenters at depths of 0–0.4 km beneath the summit crater, and normal fault focal mechanisms with WNW–ESE extension consistent with the tensional stress field indicated by the alignment of craters and fissures. Although the hypocenters and focal mechanisms are found to be largely invariant during these episodes, the corner frequencies of the VT earthquakes underwent a pronounced increase and decrease accompanying the changes in seismicity rates. The corner frequencies increased to 20–25 Hz approximately one month prior to the onset of elevated seismicity, and then decreased to 10–15 Hz in the period of peak seismicity. The rupture length also decreased at the onset of seismicity, thereafter increasing as the seismicity continued. The peak seismicity in terms of the daily number of VT events was accompanied by inflation around the crater, suggestive of a pressure increase in the volcanic system. It is inferred that the increase in shallow VT seismicity and rupture length is related to the development of a fractured zone. The pressure increase in the volcanic system is attributed to the intrusion of hydrothermal fluids, which is supported by an observed increase in fumarolic temperature and activity. The preceding monochromatic events are thus considered to be generated by the effect of fluid-filled cracks. The shortening of rupture length is then inferred to be related to the closing of non-fluid-filled cracks in the fracture zone under the increasing pressure field, leading to a transition from monochromatic events to low-frequency and shallow VT seismicity.  相似文献   

12.
Recent seismological studies of the Cameroon Volcanic Line show that Mt. Cameroon is the most active centre, so a permanent seismic network of six seismographs was set up in its region between 1984 and 1986. The network was reinforced with temporary stations up till 1987, and the local seismicity was studied. Here we emphasise a statistical analysis of seismic events recorded by the permanent seismic stations. Four swarms lasting 9 to 14 months are identified at intervals of 2–3 years. Most earthquakes are felt (intensity and magnitude, respectively, less than VI MM and 5) during the first three swarms and a few during repose periods. The main focal regions are the northwest and southeast flanks, the Bimbia and Bioko regions in the South of the volcano. Hypocentres are distributed from the surface to 60 km depth indicating crustal and subcrustal activities. The subcrustal events are observed only in the southeast flank, they are the most regular earthquakes with a monthly frequency of 9 to 15 events. They are characteristic earthquakes with magnitude 2.8 ± 0.1. Between 1984 and 1992, their yearly mean time interval between successive events range from 50 to 86 hours. For that period their occurrence can be modelled as a stationary renewal process with a 3-day period. But the analysis of variance shows possible significant differences among yearly means. A Weibull's distribution confirms that the time intervals between successive deep events are not independent, and in 1993 a swarm of deep earthquakes is recorded, hence a non-loglinear magnitude/frequency relation. The deep seismicity is thought to be associated with a zone of weakness (perhaps a magmatic conduit) and may have some close relationship with the magmatic activity.  相似文献   

13.
 Lascar Volcano (5592 m; 23°22'S, 67°44'W) entered a new period of vigorous activity in 1984, culminating in a major explosive eruption in April 1993. Activity since 1984 has been characterised by cyclic behaviour with recognition of four cycles up to the end of 1993. In each cycle a lava dome is extruded in the active crater, accompanied by vigorous degassing through high-temperature, high-velocity fumaroles distributed on and around the dome. The fumaroles are the source of a sustained steam plume above the volcano. The dome then subsides back into the conduit. During the subsidence phase the velocity and gas output of the fumaroles decrease, and the cycle is completed by violent explosive activity. Subsidence of both the dome and the crater floor is accommodated by movement on concentric, cylindrical or inward-dipping conical fractures. The observations are consistent with a model in which gas loss from the dome is progressively inhibited during a cycle and gas pressure increases within and below the lava dome, triggering a large explosive eruption. Factors that can lead to a decrease in gas loss include a decrease in magma permeability by foam collapse, reduction in permeability due to precipitation of hydrothermal minerals in the pores and fractures within the dome and in country rock surrounding the conduit, and closure of open fractures during subsidence of the dome and crater floor. Dome subsidence may be a consequence of reduction in magma porosity (foam collapse) as degassing occurs and pressurisation develops as the permeability of the dome and conduit system decreases. Superimposed upon this activity are small explosive events of shallow origin. These we interpret as subsidence events on the concentric fractures leading to short-term pressure increases just below the crater floor. Received: 12 December 1996 / Accepted: 6 May 1997  相似文献   

14.
We examine the correlations between SO2 emission rate, seismicity and ground deformation in the month prior to the 25 June 1997 dome collapse of the Soufriere Hills Volcano, Montserrat. During this period, the volcano exhibited a pattern of cyclic inflation and deflation with an 8–14 h period. We find that SO2 emission rates, measured by COSPEC, correlate with the amplitude of these tilt cycles, and that higher rates of SO2 emission were associated with stronger ground deformation and enhanced hybrid seismicity. Within tilt cycles, degassing peaks coincide with maximum deformation gradients. Increases in the amount of gas in the magma conduit feeding the dome, probably due to increases in volatile content of ascending magma volume can account for the observed increases in tilt amplitude, hybrid seismicity and SO2 emission rate.  相似文献   

15.
We give an overview of the 2005–2011 eruptions of Shiveluch Volcano together with the seismicity and deformations of the lava dome during dome growth. It is shown that the generation of the intracrater intrusive dome proceeded at a variable rate. The maximum discharge of erupted lava reached 0.6 million cubic meters per day. Increased explosive activity preceded periods of intensive growth of the lava dome. We determined the volumes and depths of the magma chambers that supplied magma for large eruptions of the volcano on November 12, 1964, February 28, 2005, and October 27, 2010. We calculated the effective viscosity of the 2007 and 2011 lava flows.  相似文献   

16.
Mount Erebus is presently the only Antarctic volcano with sustained eruptive activity in the past few years. It is located on Ross Island and a convecting anorthoclase phonolite lava lake has occupied the summit crater of Mount Erebus from January 1973 to September 1984. A program to monitor the seismic activity of Mount Erebus named IMESS was started in December 1980 as an international cooperative program among Japan, the United States and New Zealand. A new volcanic episode began on 13 September, 1984 and continued until December.Our main observations from the seismic activity from 1982–1985 are as follows: (1) The average numbers of earthquakes which occurred around Mount Erebus in 1982, 1983 and January–August 1984 were 64, 134 and 146 events per day, respectively. Several earthquake swarms occurred each year. (2) The averag number of earthquakes in 1985 is 23 events per day, with only one earthquake swarm. (3) A remarkable decrease of the background seismicity is recognized before and after the September 1984 activity. (4) Only a few earthquakes were located in the area surrounding Erebus mountain after the September 1984 activity.A magma reservoir is estimated to be located in the southwest area beneath the Erebus summit, based on the hypocenter distributions of earthquakes.  相似文献   

17.
2002年夏季长白山天池火山区的地震活动研究   总被引:32,自引:8,他引:24       下载免费PDF全文
2002年6月以来,长白山天池火山区的地震活动明显增加. 本文利用2002年夏季布设在长白山天池火山区15套宽频带流动地震台站的记录资料,对天池火山区的地震活动进行了研究. 地震观测结果表明,2002年夏季长白山天池火山日平均地震发生频次超过30次. 地震主要位于长白山天池西南部和东北部两个区域,震源深度较浅,离地表的深度一般小于5km. 天池西南部和东北部的地震,b值存在较大的差异. 火山区地震记录的频谱分析和时频分析结果表明,这些地震主要为火山构造型地震. HSZ和DZD等台站地震记录中丰富的低频成分,可能与台站附近的局部介质或断层带有关. 我们认为2002年夏季频繁发生的地震和小震震群活动是由火山深部活动诱发的局部断裂活动引起.  相似文献   

18.
Continuous seismic monitoring at Martinique since the 1902 eruption of the Montagne Pelée volcano did not detect local earthquakes for the first 70 years. For the only eruption which occurred in this time span in 1929 the seismograph was 20 km away and of a standard type, not particularly suited for the detection of small-scale local seismicity. Improvement of the monitoring array over the last 15 years with the installation of sensors on the volcano itself allowed the detection of signals of local origin which were interpreted as being due to surface sources, such as rockfalls and landslides. Since December 1985 seismic sources in the volcano itself, i.e. small earthquakes at shallow depth, were identified and located with the aid of a temporary upgrading of the array close to these weak sources. Such an onset of local seismicity could not have been detected with previous seismic equipment; such episodes of seismicity in the volcano might have occurred in the past, apparently quiescent history of the volcano as the reinterpretation of seismograms of some events in 1976 would indicate, without evolving to more important volcanic phenomena. For seismographs on volcanoes the constant upgrading of observation capabilities is certainly perferred to a strict continuity of standard observations.  相似文献   

19.
Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943–1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8–2.2 km/s drastically low compared to the results (3.0–4.0 km/s) in 1954; in addition, the velocity is 0.3–0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.  相似文献   

20.
Multiphase (MP) and low frequency (LF) earthquakes with spectral peak amplitudes at 3–4 and 1 Hz, respectively, are two common types of shallow volcanic earthquakes previously recognized at Merapi Volcano. Their mechanisms are poorly understood but MPs have been temporally associated with lava dome growth. We conducted a seismic experiment in January–February 1998, using four broadband seismographs to investigate the nature of seismic activity associated with dome growth. During our experiment, Merapi experienced mild dome growth with low-level seismic activity. We compare our data to that recorded on a local short-period (SP) network, with the following preliminary results.MP and LF events as recorded and classified on the short-period network instruments were recognized on the broadband network. Frequency spectrograms revealed similar patterns in the near summit region at widely separated broadband stations. Higher frequency spectra than previously recognized were identified for both MP and LF events, and were strongly attenuated as a function of radial distance from the source. Thus the spectral characteristics of these events as recorded on far-field stations are not fully indicative of the source processes. In particular, many events classified as LF-type appear to have much high frequency energy near the source. This aspect of these so-called LF earthquakes, and their association with very-long-period (VLP) pulses, suggests that many events identified in the far-field as LF events are in actuality a variety of the MP event and involve similar source processes. Broadband records indicated that simple large-amplitude VLP pulses were embedded in MP and LF wavetrains. From event to event these pulses were similar in their waveforms and had periods of 4 s. VLP events embedded in LF and MP earthquakes were located using particle motions. The epicenters were clustered in a central region of the dome complex, and preliminary source depths were within about 100 m of the dome surface, suggesting a source region deep within the dome or the uppermost conduit. A similar source location was established by study of MP high-frequency onsets. Our broadband data suggests that we have recorded both elastic seismic waves and a simple embedded pulse that is interpreted to represent a surface tilt at the seismometer site. The inferred tilt indicates an inflation and subsequent deflation, possibly caused by a gas pressure pulse or episodic shallow magma transport with stick-slip movement of the conduit wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号