首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
After a 26 years long quiescence El Reventador, an active volcano of the rear-arc zone of Ecuador, entered a new eruptive cycle which lasted from 3 November to mid December 2002. The initial sub-Plinian activity (VEI 4 with andesite pyroclastic falls and flows) shifted on 6 and 21 November to an effusive stage characterized by the emission of two lava flows (andesite to low-silica andesite Lava-1 and basaltic andesite Lava-2) containing abundant gabbro cumulates. The erupted products are medium to high-K calc-alkaline and were investigated with respect to major element oxides, mineral chemistry, texture and thermobarometry. Inferred pre-eruptive magmatic processes are dominated by the intrusion of a high-T mafic magma (possibly up to 1165 ± 15 °C) into an andesite reservoir, acting as magma mixing and trigger for the eruption. Before this refilling, the andesite magma chamber was characterized by water content of 5.3 ± 1.0%, high oxygen fugacity (> NNO + 2) and temperatures, in the upper and lower part of the reservoir, of 850 and 952 ± 65 °C respectively. Accurate amphibole-based barometry constrains the magma chamber depth between 8.2 and 11.3 km (± 2.2 km). The 6 October 2002 seismic swarm (hypocenters from 10 to 11 km) preceding El Reventador eruption, supports the intrusion of magmas at these depths. The widespread occurrence of disequilibrium features in most of the andesites (e.g. complex mineral zoning and phase overgrowths) indicates that convective self-mixing have been operating together with fractional crystallization (inferred from the cognate gabbro cumulates) before the injection of the basic magma which then gave rise to basaltic andesite and low-silica andesite hybrid layers. Magma mixing in the shallow chamber is inferred from the anomalous SiO2–Al2O3 whole-rock pattern and strong olivine disequilibria. Both lavas show three types of amphibole breakdown rims mainly due to heating (mixing processes) and/or relatively slow syn-eruptive ascent rate (decompression) of the magmas. The lack of any disequilibrium textures in the pumices of the 3 November fall deposit suggest that pre-eruptive mixing did not occur in the roof zone of the chamber. A model of the subvolcanic feeding system of El Reventador, consistent with the intrusion of a low-Al2O3 crystal-rich basic magma into an already self-mixed andesite shallow reservoir, is here proposed. It is also inferred that before entering the shallow chamber the “basaltic” magma underwent a polybaric crystallization at deeper crustal levels.  相似文献   

2.
Medicine Lake Volcano (MLV), located in the southern Cascades ∼ 55 km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ∼ 2000 km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ∼ 475 to 300 ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ∼ 300 ka. Rhyolite eruptions were scarce post-300 ka until late Holocene time. However, a dacite episode at ∼ 200 to ∼ 180 ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ∼ 100 ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100 ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200 years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ∼ 600 km3, giving an overall effusion rate of ∼ 1.2 km3 per thousand years, although the rate for the past 100 kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline basalts erupted together in close temporal and spatial proximity. Petrologic studies indicate that the HAOT magmas were derived by dry melting of spinel peridotite mantle near the crust mantle boundary. Subduction-derived H2O-rich fluids played an important role in the generation of calcalkaline magmas. Petrology, geochemistry and proximity indicate that MLV is part of the Cascades magmatic arc and not a Basin and Range volcano, although Basin and Range extension impinges on the volcano and strongly influences its eruptive style. MLV may be analogous to Mount Adams in southern Washington, but not, as sometimes proposed, to the older distributed back-arc Simcoe Mountains volcanic field.  相似文献   

3.
Small euhedral chromite crystals are found in olivine macrophenocrysts (Fo80–84) from the basaltic andesites (150 ppm Cr) erupted in 1943–1947, and in orthopyroxene macrophenocrysts of the andesites (75 ppm Cr) erupted in 1947–1952. The majority of the chromite octahedra are 5–20 μm in diameter, and some are found in clusters and linear chains of three or more oriented chromite crystals. The composition of the majority of the chromite grains within olivine and orthopyroxene macrophenocrysts is Fe2+/(Fe2++Mg)=0.5–0.6, Cr/(Cr+Al)=0.5–0.6 and Fe3+/(Fe3++Al+Cr)=0.2–0.3. The chromite crystals in contact with the groundmass are larger, subhedral, and grade in composition from chromite cores to magnetite rims. Comparison of the composition of chromite with those of other volcanic rocks shows that the most primitive Paricutin chromite is richer in total iron and higher in Fe3+/(Fe3++Al+Cr) than primary chromite in most lavas. The linear chains of oriented chromite octahedra are found in olivine and orthopyroxene macrophenocrysts, and in the groundmass. These chromite chains are thought to result from diffusion-controlled crystallization because of the very high partition coefficient (1000) of Cr between chromite and melt. We conclude that chromite was a primary phase in the lavas at the time of extrusion and that magnetite only crystallized after extrusion during cooling of the lava flows. The presence of chromite microphenocrysts in andesitic lavas containing as little as 70 ppm Cr can be explained by dissolved H2O in the melt depressing the liquidus temperature for orthopyroxene such that chromite becomes a liquidus phase. The influence of dissolved H2O can also explain the lack of plagioclase macrophenocrysts in most of the lavas and the relatively high partition coefficient (20) of Ni between olivine and melt and the high partition coefficient (40) of Cr between orthopyroxene and melt. The liquidus temperature of the basaltic andesite is estimated to have been less than 1140°C, assuming H2O>1 wt.%, and the log fO2 to have been above that of the QFM buffer. The chromite and orthopyroxene liquidus temperature of the andesites, assuming H2O>1 wt.%, is estimated to have been 1100°C or less. The derivation of the later andesites from the earlier basaltic andesites has been explained by a combination of fractional crystallization of olivine, orthopyroxene and plagioclase, and assimilation of xenoliths. The significantly lower Cr, Ni and Mg of the andesites may have been in part due to the separation of olivine macrophenocrysts plus enclosed chromite crystals from the earlier basaltic andesites.  相似文献   

4.
Mount Hasan is a double-peaked stratovolcano, located in Central Anatolia, Turkey. The magmas erupted from this multi-caldera complex range from basalt to rhyolite, but are dominated by andesite and dacite. Two terminal cones (Big Mt. Hasan and Small Mt. Hasan) culminate at 3253 m and 3069 m respectively. There are four evolutionary stages in the history of the volcanic complex (stage 1: Kecikalesi volcano, 13 Ma, stage 2: Palaeovolcano, 7 Ma, stage 3: Mesovolcano and stage 4: Neovolcano). The eruptive products consist of lava flows, lava domes, and pyroclastic rocks. The later include ignimbrites, phreatomagmatic intrusive breccias and nuées ardentes, sometimes reworked as lahars. The total volume is estimated to be 354 km3, the area extent 760 km2. Textural and mineralogical data suggest that both magma mixing and fractional crystallization were involved in the generation of the andesites and dacites. The magmas erupted from the central volcanoes show a transition with time from tholeite to calc-alkaline. Three generations of basaltic strombolian cones and lava flows were emplaced contemporaneously with the central volcanoes. The corresponding lavas are alkaline with a sodic tendency.  相似文献   

5.
The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units 1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2–3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5–6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22–43% basalt, ~0.4–1% basaltic andesite, ~29–54% andesite, ~2–3% dacite, and ~18–40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely formed by episodic partial melting of upper crustal rocks in response to emplacement of basalts. There are no examples of mingled rhyolitic and basaltic magmas. Whatever mechanism is invoked to explain the generation of andesite at the Tequila volcanic field, it must be consistent with a dominantly bimodal distribution of high-Ti basalt and rhyolite for an 800 kyr interval beginning ~1 Ma, which abruptly switched to punctuated bursts of predominantly andesitic volcanism over the last 200 kyrs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial responsility: J. Donnelly-NolanThis revised version was published online in January 2005 with corrections to Tables 1 and 3.An erratum to this article can be found at  相似文献   

6.
The Pleistocene-Recent volcanism of this arc extends nearly linearly NNE from northern New Zealand for some 2800 km. Along its western margin lies an active marginal basin (Lau Basin and Havre Trough) which has its southern termination in the Taupo volcanic zone (TVZ, New Zealand). The New Zealand arc segment is developed within a continental crust, whereas the Tonga-Kermadec segments are developed on a ridge system within the oceanic basin. Submarine morphology suggests that the Kermadec volcanoes represent a less advanced stage of evolution relative to those of Tonga.Magmas erupted within the TVZ are dominantly rhyolitic (≈16,000 km3) with subordinate andesites and rare high-alumina tholeiites and dacites. The Kermadec Islands are dominated by tholeiites and basaltic andesites, with subordinate andesites and dacites. The Tongan Islands are dominated by basaltic andesites, with locally developed andesites and dacites. These Tonga-Kermadec lavas are characterised by subcalcic groundmass clinopyroxenes, whereas the younger group of TVZ andesites contain groundmass hypersthene and augite.Geochemically, the TVZ andesites are systematically enriched (relative to those of Tonga-Kermadec) in “incompatible” elements (e.g. K, Rb, Cs, Ba, light REE, U, Th, Zr, Pb), are less Fe-enriched, and contain more radiogenic Sr and Pb (excepting certain 207Pb/204Pb compositions). The evidence points to crustal equilibration of the TVZ andesites prior to eruption.A complete overlap of major and trace element chemistry (including TiO2) is observed between the Kermadec-TVZ tholeiites and basaltic andesites, and the ocean floor tholeiites of the Lau Basin. Compared to the Tongan lavas, those of the Kermadecs exhibit a greater degree of chemical variability, also reflected in the greater heterogeneity in their Pb isotopic compositions. Moreover, many of the Tonga-Kermadec basaltic andesites exhibit more depleted “incompatible” trace element abundances than the Kermadec and TVZ tholeiites.The “primary” magmas of this arc are interpreted to be of basaltic andesite type, derived from Benioff zone melting (essentially anhydrous), but extensively modified by low-pressure crystal fractionation processes. The Kermadec tholeiites are explained as products of relatively shallow upper mantle partial fusion induced during the earlier stages of diapiric rise of Benioff zone-derived magmas, which are sufficiently hot to intersect the peridotite solidus. This should result in the production and intermixing of a series of magmas extending from olivine tholeiite to basaltic andesite composition. The voluminous rhyolites of TVZ are interpreted as the products of crustal fusion involving Mesozoic sediments.  相似文献   

7.
The Tuxtla Volcanic Field (TVF) is located on the coast of the Gulf of Mexico in the southern part of the state of Veracruz, Mexico. Volcanism began about 7 my ago, in the Late Miocene, and continued to recent times with historical eruptions in ad 1664 and 1793. The oldest rocks occur as highly eroded remnants of lava flows in the area surrounding the historically active cone of San Martín Tuxtla. Between about 3 and 1 my ago, four large composite volcanoes were built in the eastern part of the area. Rocks from these structures are hydrothermally altered and covered with lateritic soils, and their northern slopes show extensive erosional dissection that has widened preexisting craters to form erosional calderas. The eastern volcanoes are composed of alkali basalts, hawaiites, mugearites, and benmoreites, with less common calc-alkaline basaltic andesites and andesites. In the western part of the area, San Martín Tuxtla Volcano and its over 250 satellite cinder cones and maars produced about 120 km3 of lava over the last 0.8 my. A ridge of flank cinder cones blocked drainage to the north to form Laguna Catemaco. Lavas erupted from San Martín and its flank vents are restricted to compositions between basanite and alkali basalt. The alignment of major volcanoes and flank vents along a N55°W trend suggests an extensional stress field in the crust with a minimum compressional stress orientation of N35° E. In total, about 800 km3 of lava has been erupted in the TVF in the last 7 my. This gives a magma output rate of about 0.1 km3/1000 year, a value smaller than most composite cones, but similar to cinder cone fields that occur in central Mexico. Individual eruptions over the last 5000 years had volumes on the order of 0.1km3, with average recurrence intervals of 600 years. The alkaline compositions of the TVF lavas contrast markedly with the calc-alkaline compositions erupted in the subduction-related Mexican Volcanic Belt to the west, leading previous workers to suggest that the TVF is not related to subduction. Trace-element signatures of TVF lavas indicate, however, that they are probably related to subduction. We suggest that the alkaline character of the TVF lavas is the result of low degrees of melting of a mantle source coupled with a stress regime that allows these small-volume melts to reach the surface in the TVF.  相似文献   

8.
The Puyo scoria cones and the Mera lava flows, two newly recognized volcanic formations dated between Late Pliocene to Middle Pleistocene, extend the limits of the Ecuadorian rear-arc volcanic province some 100 km to the south. The Puyo scoria cones have erupted K-rich absarokites containing olivine, diopside and phlogopite, whereas the Mera lava flows display a basic andesite composition, with olivine and minor augite phenocrysts. In addition to high contents in LILE, LREE and HFSE, the Puyo absarokites exhibit many characteristics of primitive melts, namely high Cr (590–310 ppm) and Ni (330–154 ppm) contents, high Mg# (64–70) and they contain forsteritic olivine (Fo82–89). The composition of the most primary Puyo absarokite was used in petrogenetic models, in order to constrain the genesis of these high-K magmas. Major and trace elements models, as well as isotopic data, indicate that the source of Puyo magmas is a hydrated phlogopite- and garnet-bearing lherzolite. Phlogopite crystallization in the mantle wedge is triggered by the metasomatism by 3–5% of a SiO2-, H2O-rich liquid generated by slab melting. Partial melting of the subducted oceanic crust beneath Ecuador is allowed by the subduction of the young and warm Carnegie Ridge, which modifies the thermal regime of the Benioff zone. A low degree (1–4%) of partial melting of the metasomatized mantle wedge, leaving a variable garnet (4–7%) ± phlogopite (0–4%) lherzolitic residual assemblage, leads to the compositions of the entire Puyo absarokite series and is consistent with previous petrogenetic models developed for the Ecuadorian volcanic arc. Indeed, the homogeneity of isotopic data across the arc suggests a similar source for the whole Ecuadorian magmas.  相似文献   

9.
Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80×200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occurred in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. Received March 13, 1993/Accepted September 10, 1993  相似文献   

10.
The formation of shallow, caldera-sized reservoirs of crystal-poor silicic magma requires the generation of large volumes of silicic melt, followed by the segregation of that melt and its accumulation in the upper crust. The 21.8?±?0.4-ka Cape Riva eruption of Santorini discharged >10 km3 of crystal-poor dacitic magma, along with <<1 km3 of hybrid andesite, and collapsed a pre-existing lava shield. We have carried out a field, petrological, chemical, and high-resolution 40Ar/39Ar chronological study of a sequence of lavas discharged prior to the Cape Riva eruption to constrain the crustal residence time of the Cape Riva magma reservoir. The lavas were erupted between 39 and 25 ka, forming a ~2-km3 complex of dacitic flows, coulées and domes up to 200 m thick (Therasia dome complex). The Therasia dacites show little chemical variation with time, suggesting derivation from one or more thermally buffered reservoirs. Minor pyroclastic layers occur intercalated within the lava succession, particularly near the top. A prominent pumice fall deposit correlates with the 26-ka Y-4 ash layer found in deep-sea sediments SE of Santorini. One of the last Therasia lavas to be discharged was a hybrid andesite formed by the mixing of dacite and basalt. The Cape Riva eruption occurred no more than 2,800?±?1,400 years after the final Therasia activity. The Cape Riva dacite is similar in major element composition to the Therasia dacites, but is poorer in K and most incompatible trace elements (e.g. Rb, Zr and LREE). The same chemical differences are observed between the Cape Riva and Therasia hybrid andesites, and between the calculated basaltic mixing end-members of each series. The Therasia and Cape Riva dacites are distinct silicic magma batches and are not related by shallow processes of crystal fractionation or assimilation. The Therasia lavas were therefore not simply precursory leaks from the growing Cape Riva magma reservoir. The change 21.8 ky ago from a magma series richer in incompatible elements to one poorer in those elements is one step in the well documented decrease with time of incompatibles in Santorini magmas over the last 530 ky. The two dacitic magma batches are interpreted to have been emplaced sequentially into the upper crust beneath the summit of the volcano, the first (Therasia) then being partially, or wholly, flushed out by the arrival of the second (Cape Riva). This constrains the upper-crustal residence time of the Cape Riva reservoir to less than 2,800?±?1,400 years, and the associated time-averaged magma accumulation rate to >0.004 km3 year-1. Rapid ascent and accumulation of the Cape Riva dacite may have been caused by an increased flux of mantle-derived basalt into the crust, explaining the occurrence of hybrid andesites (formed by the mixing of olivine basalt and dacite in approximately equal proportions) in the Cape Riva and late Therasia products. Pressurisation of the upper crustal plumbing system by sustained, high-flux injection of dacite and basalt may have triggered the transition from prolonged, largely effusive activity to explosive eruption and caldera collapse.  相似文献   

11.
 The postglacial eruption rate for the Mount Adams volcanic field is ∼0.1 km3/k.y., four to seven times smaller than the average rate for the past 520 k.y. Ten vents have been active since the last main deglaciation ∼15 ka. Seven high flank vents (at 2100–2600 m) and the central summit vent of the 3742-m stratocone produced varied andesites, and two peripheral vents (at 2100 and 1200 m) produced mildly alkalic basalt. Eruptive ages of most of these units are bracketed with respect to regional tephra layers from Mount Mazama and Mount St. Helens. The basaltic lavas and scoria cones north and south of Mount Adams and a 13-km-long andesitic lava flow on its east flank are of early postglacial age. The three most extensive andesitic lava-flow complexes were emplaced in the mid-Holocene (7–4 ka). Ages of three smaller Holocene andesite units are less well constrained. A phreatomagmatic ejecta cone and associated andesite lavas that together cap the summit may be of latest Pleistocene age, but a thin layer of mid-Holocene tephra appears to have erupted there as well. An alpine-meadow section on the southeast flank contains 24 locally derived Holocene andesitic ash layers intercalated with several silicic tephras from Mazama and St. Helens. Microprobe analyses of phenocrysts from the ash layers and postglacial lavas suggest a few correlations and refine some age constraints. Approximately 6 ka, a 0.07-km3 debris avalanche from the southwest face of Mount Adams generated a clay-rich debris flow that devastated >30 km2 south of the volcano. A gravitationally metastable 2-to 3-km3 reservoir of hydrothermally altered fragmental andesite remains on the ice-capped summit and, towering 3 km above the surrounding lowlands, represents a greater hazard than an eruptive recurrence in the style of the last 15 k.y. Received: 24 June 1996 / Accepted: 6 December 1996  相似文献   

12.
Reconnaissance mapping and 40Ar/39Ar age determinations establish an eruptive chronology for Koniuji Island in the central Aleutian island arc. Koniuji is a tiny 0.95 km2 island that rises only 896 ft above the Bering Sea. Previous accounts describe Koniuji as a mostly submerged, deeply eroded, dormant stratovolcano. However, new 40Ar/39Ar ages constrain the duration of subaerial eruptive activity from 15.2 to 3.1 ka. Furnace incremental heating experiments on replicate groundmass separates from two samples of a 30–50 m thick basaltic andesite flow at the southernmost point of the island gave a weighted mean 40Ar/39Ar age of 15.2 ± 5.0 (2σ). The next phase of eruptive activity includes a series of 5.8–4.6 ka basaltic andesitic to andesitic lava flows preserved along the western shoreline. The basal lavas contain numerous mafic enclaves and dioritic cumulates suggesting a major disturbance in the plumbing system during the initial stages of emplacement. The 5.8–4.6 ka lavas are truncated by an andesitic dome complex that includes hornblende-bearing domes, flows and pyroclastics which extruded into the center of the island and comprise the majority of the subaerial eruptive volume. An angular block from within the dome complex yielded 40Ar/39Ar age of 3.1 ± 1.9 ka, thereby making it one of the youngest island arc volcanics to be dated using the 40Ar/39Ar method. Overall, the 40Ar/39Ar data indicate that Koniuji is a nascent stratovolcano that has only recently emerged above sea level, not a glacially-eroded, long-lived volcanic complex like those found on many other central Aleutian Islands.  相似文献   

13.
Six new 40Ar/39Ar and three cosmogenic 36Cl age determinations provide new insight into the late Quaternary eruptive history of Erebus volcano. Anorthoclase from 3 lava flows on the caldera rim have 40Ar/39Ar ages of 23 ± 12, 81 ± 3 and 172 ± 10 ka (all uncertainties 2σ). The ages confirm the presence of a second, younger, superimposed caldera near the southwestern margin of the summit plateau and show that eruptive activity has occurred in the summit region for 77 ± 13 ka longer than previously thought. Trachyte from “Ice Station” on the eastern flank is 159 ± 2 ka, similar in age to those at Bomb Peak and Aurora Cliffs. The widespread occurrences of trachyte on the eastern flank of Erebus suggest a major previously unrecognized episode of trachytic volcanism. The trachyte lavas are chemically and isotopically distinct from alkaline lavas erupted contemporaneously in the summit region < 5 km away.  相似文献   

14.
New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber 7000 yr B.P.The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between 22,000 and 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber.Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall.A total of 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.  相似文献   

15.
The Spurr volcanic complex (SVC) is a calc-alkaline, medium-K, sequence of andesites erupted over the last 250000 years by the eastern-most currently active volcanic center in the Aleutian arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58%–60% SiO2), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt. Spurr) formed in the caldera. Both the ash flows and dome are made of acid andesite more silicic (60%–63% SiO2) than any analyzed lavas from the ancestral Mt. Spurr, yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53%–57% SiO2) erupted during and after dome emplacement from a separate vent only 3 km away. Hybrid block-and-ash flows and lavas were also produced. The vents for the silicic and mafic lavas are in the center and in the breach of the 5-by-6-km horseshoe-shaped caldera, respectively, and are less than 4 km apart. Late Holocene eruptive activity is restricted to Crater Peak, and magmas continue to be relatively mafic. SVC lavas are plag ±ol+cpx±opx+mt bearing. All postcaldera units contain small amounts of high-Al2O3, high-alkali amphibole, and proto-Crater Peak and Crater Peak lavas contain abundant pyroxenite and anorthosite clots presumably derived from an immediately preexisting magma chamber. Ranges of mineral chemistries within individual samples are often nearly as large as ranges of mineral chemistries throughout the SVC suite, suggesting that magma mixing is common. Elevated Sr, Pb, and O isotope ratios and trace-element systematics incompatible with fractional crystallization suggest that a significant amount of continental crust from the upper plate has been assimilated by SVC magmas during their evolution.  相似文献   

16.
High-magnesium andesites associated with basalts erupted after the opening of the Sea of Japan are present at Saga–Futagoyama in northwest Kyushu, southwest Japan. High Mg/(Mg + Fe) [=0.84] of orthopyroxene phenocrysts and bulk rock Mg–Fe–Ni compositions suggest that these high-magnesium andesites were originally primitive melts insignificantly modified in crustal magma chambers. KDCa–Na [= (Ca/Na)pl/(Ca/Na)bulk rock] ranges from 1.21 to 0.97 and suggests that the high-magnesium andesite magmas would originally have contained H2O less than 1.8 wt.%. Nb/La does not show a negative correlation with respect to SiO2. These lines of evidence indicate that hydrous components derived from the subducting slab would not have played a significant role in the genesis of the high-magnesium andesite magmas. Instead, the normative olivine − quartz − [CaTs + Jd] compositions and a negative correlation between Sr/Nd and SiO2 indicate that the basalt-high-magnesium andesite association would have been formed by multi-stage partial melting of relatively anhydrous source at pressure ranging from 1.5 to 0.5 GPa.  相似文献   

17.
Pelado, Guespalapa, and Chichinautzin monogenetic scoria cones located within the Sierra del Chichinautzin Volcanic Field (SCVF) at the southern margin of Mexico City were dated by the radiocarbon method at 10,000, 2,800–4,700, and 1,835 years b.p., respectively. Most previous research in this area was concentrated on Xitle scoria cone, whose lavas destroyed and buried the pre-Hispanic town of Cuicuilco around 1,665±35 years b.p. The new dates indicate that the recurrence interval for monogenetic eruptions in the central part of the SCVF and close to the vicinity of Mexico City is <2,500 years. If the entire SCVF is considered, the recurrence interval is <1,700 years. Based on fieldwork and Landsat imagery interpretation a geologic map was produced, morphometric parameters characterizing the cones and lava flows determined, and the areal extent and volumes of erupted products estimated. The longest lava flow was produced by Guespalapa and reached 24 km from its source; total areas covered by lava flows from each eruption range between 54 (Chichinautzin) and 80 km2 (Pelado); and total erupted volumes range between 1 and 2 km3/cone. An average eruption rate for the entire SCVF was estimated at 0.6 km3/1,000 years. These findings are of importance for archaeological as well as volcanic hazards studies in this heavily populated region.Editorial responsibility: J. Gilbert  相似文献   

18.
Discrete Quaternary (<400 ka) tephra fallout layers (mostly <1 cm thick) within the siliceous oozes of the central Mariana Trough at 18°N are characterized by medium-K to high-K subalkalic volcanic glasses (K2O=0.8–3.2 wt.%) with high large-ion lithophile elements (LILE)/high-field-strength elements (HFSE) ratios and Nb depletion (Ba/La35; Ba/Zr3.5; La/Nb4) typical for convergent margin volcanic rocks. Compositional zoning within layers ranges from basaltic to dacitic (SiO2=48–71 wt.%; MgO=0.7–6.5 wt.%); all layers contain basaltic andesites. The tephra layers are interpreted as single explosive eruptive events tapping chemically zoned reservoirs, the sources being the Mariana arc volcanoes (MAV) due to their proximity (100–400 km) and similar element ratios (MAV: Ba/La=36±7; Ba/Zr=3.5±0.9). The glasses investigated, however, contrast with the contemporaneous basaltic to dacitic lavas of the MAV by being more enriched in TiO2 (1.2 wt.%; MAV0.8 wt.%), FeO* (10 wt.%, MAV8–9 wt.%), K2O (1.1 wt.%; MAV0.8 wt.%) and P2O5 (0.4 wt.%; MAV0.2 wt.%). (Semi-)Incompatible trace elements (including Rare Earth Elements (REE)) of the basaltic-andesitic and dacitic glasses match those of the dacitic MAV lavas, which became enriched by fractional crystallization. Moreover, the glasses follow a tholeiitic trend of fractionation in contrast to MAV transitional trends and have a characteristic P2O5 trend that reaches a maximum of 0.6 wt.% P2O5 at 57 wt.% SiO2, whereas MAV lavas increase linearly in P2O5 from 0.1 to 0.3 wt.% with increasing silica. Both explosive and effusive series are interpreted to have evolved in common magma reservoirs by convective fractionation. Similar parental magmas are suggested to have separated into coexisting Si-andesitic to dacitic and basaltic melts by in situ crystallization. The differentiated melt is interstitial in an apatite-saturated crystalline mush of plag+px±ox±ol at the cooler chamber margins in contrast to the less differentiated basaltic to basaltic-andesitic magmas, which are not yet saturated in apatite and occupy the chamber interior. Reinjection of interstitial melt into the chamber interior and mixing with larger melt fractions of the interior liquid (mixing ratios about 1: 8–9) can explain the paradoxical behavior of apatite-controlled P and MREE variation in the basaltic andesite glasses and their MAV dacite-like fractionation patterns. The process may also account for the exclusively tholeiitic trend of fractionation of the glass shard series, but in situ crystallization alone cannot cause their absolute enrichment in (semi-)incompatible elements. The newly mixed melt is suggested to form the basaltic end member of the glass shard series. However, it must have become physically separated from the main MAV magma body (possibly by density-driven convective fractionation) in order to allow for further evolution of the contrasting geochemical paths as well as differentiation.  相似文献   

19.
The eruption of the Pelagatos scoria cone in the Sierra Chichinautzin monogenetic field near the southern suburbs of Mexico City occurred less than 14,000 years ago. The eruption initiated at a fissure with an effusive phase that formed a 7-km-long lava flow, and continued with a phase of alternating and/or simultaneous explosive and effusive activity that built a 50-m-high scoria cone on the western end of the fissure and formed a compound lava flow-field near the vent. The eruption ended with the emplacement of a short lava flow that breached the cone and was accompanied by weak explosions at the crater. Products consist of a microlite-rich high-Mg basaltic andesite. Samples were analyzed to determine the magma’s initial properties as well as the effects of degassing-induced crystallization on eruptive style. Although distal ash fallout deposits from this eruption are not preserved, a recent quarry exposes a large section of the scoria cone. Detailed study of exposed layers allows us to elucidate the mode of cone-building activity. Petrological and textural data, combined with models calibrated by experimental work and melt-inclusion analyses of similar magmas elsewhere, indicate that the magma was initially hot (>1,200°C), gas-rich (up to 5 wt.% H2O), crystal-poor (~10 vol.% Fo90 olivine phenocrysts) and thus poorly viscous (40–80 Pa s). During the early phase, low magma ascent velocity at the fissure vent allowed low-viscosity magma to degas and crystallize during ascent, producing lava flows with elevated crystal contents at T < 1,100°C, and blocky surfaces. Later, the closure of the fissure by cooling dikes focused the magma flow at a narrow section of the fissure. This led to an increased magma ascent velocity. Rapid and shallow degassing (<3 km deep) triggered ~40 vol.% microlite crystallization. Limited times for gas-escape and higher magma viscosity (6 × 105–4 × 106 Pa s) drove strong explosions of highly (60–80 vol.%) and finely vesicular magma. Coarse clasts broke on landing, which implies brittle behavior due to complete solidification. This requires sufficient time to cool and in turn implies ejection heights of over 1 km, which is much higher than “normal” Strombolian activity. Hence, magma viscosity significantly impacts eruption style at monogenetic volcanoes because it affects the kinetics of shallow degassing. The long-lasting eruptions of Jorullo and Paricutin, which produced similar magmas in western México, were more explosive. This can be related to higher magma fluxes and total erupted volumes. Implications of this study are important because basaltic andesites are commonly erupted to form monogenetic scoria cones of the Trans-Mexican Volcanic Belt.  相似文献   

20.
Located at the volcanic front in the western Mexican arc, in the Colima Rift, is the active Volcán Colima, which lies on the southern end of the massive (∼450 km3) Colima-Nevado volcanic complex. Along the margins of this andesitic volcanic complex, is a group of 11 scoria cones and associated lavas, which have been dated by the 40Ar/39Ar method. Nine scoria cones erupted ∼1.3 km3 of alkaline magma (basanite, leucite-basanite, minette) between 450 and 60 ka, with >99% between 240 and 60 ka. Two additional cones (both the oldest and calc-alkaline) erupted <0.003 km3 of basalt (0.5 Ma) and <0.003 km3 of basaltic andesite (1.2 Ma), respectively. Cone and lava volumes were estimated with the aid of digital elevation models (DEMs). The eruption rate for these scoria cones and their associated lavas over the last 1.2 Myr is ∼1.2 km3/Myr, which is more than 400 times smaller than that from the andesitic Colima-Nevado edifice. In addition to these alkaline Colima cones, two other potassic basalts erupted at the volcanic front, but ∼200 km to the ESE (near the historically active Volcán Jorullo), and were dated at 1.06 and 0.10 Ma. These potassic suites reflect the tendency in the west-central Mexican arc for magmas close to the volcanic front to be enriched in K2O relative to those farther from the trench.Ferric-ferrous analyses on pristine samples from the alkaline cones adjacent to V. Colima and V. Jorullo indicate that their oxygen fugacities relative to the nickel-nickel oxide buffer are significantly higher (ΔNN0=2–4) than those for the calc-alkaline magma types (0–1.5). These ΔNNO values correlate positively with Ba concentrations and likely reflect the influence of a slab-derived fluid. As a result of the high oxidation states, the solubility of sulfur in these potassic magmas is enhanced. Indeed the sulfur content of both the whole rock and the apatite phenocrysts (and in olivine melt inclusions reported in the literature) suggest that part of their pre-eruptive sulfur gas (SO2) concentrations could have been discharged to the atmosphere in amounts comparable to the 1982 eruption of El Chichón, although over a prolonged period spanning thousands of years (not per eruption).Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: J. Donnelly-Nolan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号