首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
南海中部上层海洋温度的短周期振动   总被引:1,自引:0,他引:1  
南海季风试验(SCSMEX)期间,南海中部投放了3个ATLAS浮标.本文选取3个站点1998年4月13日~1999年4月8日的所有观测水层的温度数据作为研究.通过逐月功率谱分析,发现50-500m深度,温度存在全日和半日2个显著短周期的振动;利用小波分析得出了温度短周期振动的时空变化特点,并结合温度跃层时空结构的分析,发现跃层深度上,温度全日(或半日)周期振动的时空变化与跃层时空结构存在一致性,即在跃层核心深度上,跃层强度越大的时域内,温度全日(或半日)周期的振动就越显著.  相似文献   

2.
基于全球海洋模式OGCTM(Ocean General Circulation and Tide Model),利用19年(1992—2011年)的卫星高度计资料调和分析得到全球分潮调和常数回报逐时正压潮水位;采用Nudging(牛顿松弛逼近)方法进行潮汐同化,针对Nud-ging松弛项的差分方案以及松弛系数进行了数值...  相似文献   

3.
河口水流是河口生态环境、河道演变、物质输运等物理过程的根本动力。由于径流、潮波、地形以及气象等因素的影响,河口水流呈现复杂的三维结构。其中既包括淡水注入形成的余流,也包括周期性的潮流、风生流、斜压流及河口非线性作用导致的流动等。为探究河口水流的组成及其潮内变化,基于瓯江口实测资料,利用主成分分析(Principal Component Analysis, PCA)法对河口水流进行分解,探讨了PCA法对河口水流的分解性能及斜压分潮流的高频特征。研究认为,PCA法在河口水流结构研究中既可采用原始数据操作亦可用标准化的数据进行计算。PCA法可分解出斜压成分(河口重力环流型结构),但不能将正压成分(径流和潮流)分开,径流和潮流二者综合作用的结果体现在主成分的得分之中。主成分的取舍应根据水流结构和累计解释方差综合判断,不宜仅依据累计解释方差。河口斜压流动具有明显的高频特征,近似呈1/4日分潮的周期。  相似文献   

4.
利用桑沟湾海带播苗前和成熟期的海流剖面资料,对最显著的M2分潮流椭圆四要素(最大流速、椭圆率、最大流速方向和最大流速出现时间)的垂直分布特征进行对比分析,结果表明筏式海带养殖对潮流垂直结构有显著影响,由海带播苗前的单一海底边界层,变为海带成熟期的海表和海底双重边界层。海带播苗前,M2分潮流椭圆要素在垂向上变化不大;而在海带成熟期,从中层向海面和海底,最大流速迅速减小、椭圆率逐渐增大、最大流速方向左偏、最大流速出现时间提前。湾口中部的最大流速方向从海带播苗前的南北方向转为海带成熟期的西北—东南方向,这是由水位梯度的变化造成的。  相似文献   

5.
The evolution of energy, energy flux and modal structure of the internal tides(ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m~2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs.From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.  相似文献   

6.
南海西边界ADCP观测海流的垂直结构   总被引:9,自引:1,他引:8  
采用多种数据处理方法,分析了南海西南陆架西边界处定点连续观测站上的海流记录。正压潮流的调和分析结果表明该海域以日周期潮流为主,潮流椭圆随深度旋转。去潮后流速垂直结构的奇异值分解(SVD)证实观测点的流速结构存在不同的垂向模态,第一模态对应平均流的变化部分,第二模态含有倾向性变化部分,双日周期变化在各个模态中均较明显。对各观测层流速进行小波分析,进一步发现观测流的频率构成具有垂向变频和同一层次频率漂移的特征。  相似文献   

7.
Wind-driven South China Sea deep basin warm-core/cool-core eddies   总被引:8,自引:0,他引:8  
The formation of the South China Sea (SCS) deep basin warm-core and cool-core eddies was studied numerically using the Princeton Ocean Model (POM) with 20 km horizontal resolution and 23 sigma levels conforming to a realistic bottom topography. Numerical integration was divided into pre-experimental and experimental stages. During the pre-experimental stage, we integrated the POM model for three years from zero velocity and April temperature and salinity climatological fields with climatological monthly mean wind stresses, restoring type surface salt and heat fluxes, and observational oceanic inflow/outflow at the open boundaries. During the experimental stage, we integrated the POM model for another 16 months under three different conditions: one control and two sensitivity runs (no-wind and no lateral transport). We take the fields of the last 12 months for analysis. The simulation under control run agrees well with earlier observational studies on the South China Sea surface thermal variabilities. In addition, the sensitivity study further confirms that the wind effect is the key factor for generation of the SCS deep basin warm/cool eddy and that the lateral boundary forcing is the major factor for the formation of the strong western boundary currents, especially along the southeast Chinese coast during both summer and winter monsoon seasons.  相似文献   

8.
Barotropic tide in the northeast South China Sea   总被引:2,自引:0,他引:2  
A moored array deployed across the shelf break in the northeast South China Sea during April-May 2001 collected sufficient current and pressure data to allow estimation of the barotropic tidal currents and energy fluxes at five sites ranging in depth from 350 to 71 m. The tidal currents in this area were mixed, with the diurnal O1 and K1 currents dominant over the upper slope and the semidiurnal M2 current dominant over the shelf. The semidiurnal S2 current also increased onshelf (northward), but was always weaker than O1 and K1. The tidal currents were elliptical at all sites, with clockwise turning with time. The O1 and K1 transports decreased monotonically northward by a factor of 2 onto the shelf, with energy fluxes directed roughly westward over the slope and eastward over the shelf. The M2 and S2 current ellipses turned clockwise and increased in amplitude northward onto the shelf. The M2 and S2 transport ellipses also exhibited clockwise veering but little change in amplitude, suggesting roughly nondivergent flow in the direction of major axis orientation. The M2 energy flux was generally aligned with the transport major axis with little phase lag between high water and maximum transport. These barotropic energy fluxes are compared with the locally generated diurnal internal tide and high-frequency internal solitary-type waves generated by the M2 flow through the Luzon Strait.  相似文献   

9.
基于1993-2017年卫星高度计数据得到的中尺度涡追踪产品,分析了1000 m以深南海海盆中尺度涡移动速度C的时空分布特征。结果表明,南海海盆气候态平均的中尺度涡纬向移动速度cx均为西向,经向移动速度cy在海盆西北侧为南向,东南侧为北向。cy随经度的变化与背景经向流的变化一致,相关系数达0.96,而cx的变化与背景纬向流和β效应有关。cxC存在明显季节变化,夏季最慢,冬季最快。年际变化上,cxcy的大值多发生在太平洋年代际涛动(PDO)负位相期的La Nina年。中尺度涡在其生命周期的开始和结束阶段(即生成和耗散阶段)移速较快,而在稳定的“中期”阶段移动缓慢。该趋势与涡旋转速呈反相关,相关系数为-0.93。以移速小于1.5 cm/s和大于15.4 cm/s定义的极慢和极快涡旋,分别占总涡旋数量的1.5%和1.9%。移速极慢的涡多出现在海盆的中部,且主要发生在夏季;移速极快的涡多出现在海盆的边缘,且主要发生在冬季。机制分析显示,南海海盆中尺度涡移动速度的时空分布受到大尺度背景流场调制。  相似文献   

10.
Magnetic zoning and seismic structure of the South China Sea ocean basin   总被引:2,自引:0,他引:2  
We made a systematic investigation on major structures and tectonic units in the South China Sea basin based on a large magnetic and seismic data set. For enhanced magnetic data interpretation, we carried out various data reduction procedures, including upward continuation, reduction to the pole, 3D analytic signal and power spectrum analyses, and magnetic depth estimation. Magnetic data suggest that the South China Sea basin can be divided into five magnetic zones, each with a unique magnetic pattern. Zone A corresponds roughly to the area between Taiwan Island and a relict transform fault, zone B is roughly a circular feature between the relict transform fault and the northwest sub-basin, and zones C, D, and E are the northwest sub-basin, the east sub-basin, and the southwest sub-basin, respectively. This complexity in basement magnetization suggests that the South China Sea evolved from multiple stages of opening under different tectonic settings. Magnetic reduction also fosters improved interpretation on continental margin structures, such as Mesozoic and Cenozoic sedimentary basins and the offshore south China magnetic anomaly. We also present, for the first time, interpretations of three new 2D reflection seismic traverses, which are of ~2,000 km in total length and across all five magnetic zones. Integration of magnetic and seismic data enables us to gain a better 3D mapping on the basin structures. It is shown that the transition from the southwest sub-basin to the east sub-basin is characterized by a major ridge formed probably along a pre-existing fracture zone, and by a group of primarily west-dipping faults forming an exact magnetic boundary between zones D and E. The northwest sub-basin has the deepest basement among the three main sub-basins (i.e., the northwest sub-basin, the southwest sub-basin, and the east sub-basin). Our seismic data also reveal a strongly faulted continent–ocean transition zone of about 100 km wide, which may become wider and dominated with magmatism or transit to an oceanic crust further to the northeast.  相似文献   

11.
We report field measurements of vertical profiles of the turbulent diffusivity and temperature at different stations in the South China Sea (SCS). Our study shows that the measured turbulent diffusivity follows a power-law distribution with a varying exponent in water layers. Similar multiple-layer scaling regimes were also observed from the temperature fluctuations. Combining turbulent diffusivity and temperature fluctuations, the vertical structure of temperature was revealed. Furthermore, we discussed the temperature profiles in each layer. A constant function of a dimensionless temperature profile was found in water layers that have identical turbulence conditions. Our results reveal the multiple-layer structure of temperature in the SCS. This study contributes to the understanding of the vertical structure of multiple layers in the SCS and provides clues for exploring the physical mechanism for maintaining the temperature structure.  相似文献   

12.
Cold deep water in the South China Sea   总被引:1,自引:0,他引:1  
Two deep channels that cut through the Luzon Strait facilitate deep (>2000 m) water exchange between the western Pacific Ocean and the South China Sea. Our observations rule out the northern channel as a major exchange conduit. Rather, the southern channel funnels deep water from the western Pacific to the South China Sea at the rate of 1.06 ± 0.44 Sv (1 Sv = 106 m3s−1). The residence time estimated from the observed inflow from the southern channel, about 30 to 71 years, is comparable to previous estimates. The observation-based estimate of upwelling velocity at 2000 m depth is (1.10 ± 0.33) × 10−6 ms−1, which is of the same order as Ekman pumping plus upwelling induced by the geostrophic current. Historical hydrographic observations suggest that the deep inflow is primarily a mixture of the Circumpolar Deep Water and Pacific Subarctic Intermediate Water. The cold inflow through the southern channel offsets about 40% of the net surface heat gain over the South China Sea. Balancing vertical advection with vertical diffusion, the estimated mean vertical eddy diffusivity of heat is about 1.21 × 10−3 m2s−1. The cold water inflow from the southern channel maintains the shallow thermocline, which in turn could breed internal wave activities in the South China Sea.  相似文献   

13.
In the present study, theories based on the Korteweg–de Vries equation are extended to the Benjamin–Ono equation to allow the determination of internal solitary wave (ISW) amplitude from satellite images. The free surface flow induced by an ISW is derived for deep water. As a coherent structure, the amplitude of the ISW has a unique relation to the convergence/divergence of surface flow, such that the flow convergence/divergence will increase/decrease the backscattering cross section and generate bright/dark bands in satellite images. The distance between bright and dark bands can be related to the amplitude of ISW. To validate the theory, a multi-ship measurement made on 9–11 May 2005 during the spring tide period is used. A systematic approach to determine the thickness and density of the upper and lower layers is also included so that the free surface flow can be determined with a relatively high accuracy.  相似文献   

14.
南海北部大陆坡区斜压海流的垂向结构   总被引:6,自引:0,他引:6  
邱章  方文东 《台湾海峡》2000,19(4):405-412
对南海北部陆坡区一定点站连续28.6d的27个等间隔水层(11,15,…,115m)的ADCP海流观测资料进行正压海流、斜压海流分解, 运用调和分析、功率谱分析和能量计算等方法着重对观测点各水层的斜压海流的时间序列进行研究.得到如下结果:(1)斜压海流向岸分量平均值、斜压海流两分量样本标准差、斜压海流K1分潮流振幅、斜压海流的平均涡动动能以及斜压海流向岸分量功率谱显著的谱峰值的垂向分布均随深度的增加由大变小再变大.(2)斜压海流的日周期显著, 斜压海流的日分潮流的椭圆长轴方向偏NW-SE向, 日分潮流作顺时针方向旋转;斜压海流的日分潮流迟角的垂向分布是:约以67m为界,界面附近水层的迟角变化较大,远离界面的水层的迟角分布较稳定,界面上、下水体的迟角反向;67m层以浅水层, 相对集中在300°附近,67m以深水层,主要分布在120°周围.(3)斜压海流的平均涡动动能较大,约占实测海流平均动能的41%,其向岸分量大于沿岸分量, 且其大小与日分潮流椭圆的长短轴分布相对应.(4)斜压海流功率谱峰值显著周期在24h左右;19与99m层相同,为23.6h,55m层为24.4h;斜压海流向岸分量与沿岸分量功率谱的显著谱峰值的垂向分布有所不同, 前者随深度增加由大变小再变大,后者则随深度增加而减小.  相似文献   

15.
Tidal current ellipses formed by the Coriolis effect are investigated theoretically, taking account of the effect of horizontal boundaries. This study reveals that even in a narrow bay, the tidal current ellipse appears in the inside of the bottom boundary layer, although the ellipticity cannot be recognized in the outside of the boundary layer. In a wide bay, the ellipticity is observed even in the outside and it is larger in the inside. The rotation direction of these ellipses is counterclockwise in the northern hemisphere. And also, the Coriolis force has an effect to deflect the major axis of the ellipse in the inside of the boundary layer. These nature of the tidal current ellipse is well explained by the consideration of the formation mechanism of the ellipse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号