首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水下滑翔机其通过集成生物、化学、物理传感器可以测量如温度、盐度、溶解氧等多种海洋基础水文要素,其利用卫星定位系统获得实际出水速度和理论出水模型获得理论出水速度之差可以计算深度平均流,。本文利用海翼水下滑翔机获得温盐场及卫星定位数据评估深度平均流,结果显示利用温盐场获得深度平均地转流与水下滑翔机获得深度平均流相关系数0.95,表明其流场的一致性,同时根据船载观测ADCP误差分析法估算深度平均流误差约为0.036 m/s。借助深度平均流可以估算绝对地转流,包括正压地转流和斜压地转流。在零动力面的假设下,我们选取了海翼号水下滑翔机在南海的一组实验对流量误差进行了评估。该实验为2019年1月3日-2月16日海翼号水下滑翔机自南向北穿越西沙群岛附近一个中尺度涡观测。观测结果表明,该中尺度涡为冷涡流核,在涡心以南,绝对地转流为东向流,最大流速约为0.48 m/s;涡心以北,绝对地转流为西向流,最大流速约为0.47 m/s,稍弱于南侧。受不均匀时空观测计划影响,本文未对流量做出估计。  相似文献   

2.
We have investigated the water mass distribution and circulation in Tachibana Bay, which is located in the junction area between Ari-ake Sound and Amakusa-Nada in western Kyushu, Japan. This was done to clarify the mechanism by which ghost shrimp larvae, originating from a sandflat of Amakusa-Shimoshima Island, are transported. Temperature and salinity data repeatedly obtained over the area of Tachibana Bay show that relatively low salinity water lies over northern part of the bay, while high salinity water lies over southern part of the bay. The location of the low salinity water margin tends to depend on the amount of rainfall several days before the observation. A large amount of rainfall makes a clear boundary between low and high salinity waters. Current velocity data indicate an eastward mean flow just north of Tomioka, northern tip of Amakusa-Shimoshima Island, and a clockwise mean flow approaching the Tomioka Bay sandflat, which should be suitable for the on-shore transport of the ghost shrimp postlarvae. Current measurements with shipboard ADCP just west of Hayasaki Strait, at the entrance of Ari-ake Sound, show that a westward tidal residual current tends to incline to the north, with evidence of a density current in the northern part of the western Hayasaki Strait.  相似文献   

3.
对长江口2002年和2003年共4个潮周期的数据进行了分析,通过流速对数剖面公式计算边界层参数,并对各个潮周期内的边界层参数的变化规律进行了分析,同时也对悬沙输送可能对垂向水流结构以及边界层参数造成的影响进行了探讨。结果表明,悬沙的时间分布特征对温度、盐度、水体密度的分布格局有重要影响,主要表现在水体的Rf值普遍较高,分层稳定。此外,悬沙也可影响边界层参数,从而对水流结构产生影响。由于水体的层化作用,使层间的摩擦阻力增大,相当于在垂向上产生不同内边界层,因而影响了流速在垂向上的变化。  相似文献   

4.
With observational data from three Acoustic Doppler Current Profiler (ADCP) moorings, we detected strong near-inertial oscillations (NIO) in the continental shelf region of the northern South China Sea in July 2008. The amplitude of the near-inertial current velocity is much greater than that of diurnal and semi-diurnal tides. The power of the NIOs is strongest in the intermediate layer, relatively weak in the surface layer, and insignificant in the near-bottom layer. The spectral analysis indicates that the NIOs have a peak frequency of 0.0307 cph, which is 2% lower than the local inertial frequency, i.e., a red-shift. The near-inertial wave has an upward vertical phase velocity, which involves a downward group velocity and energy flux. The estimated vertical phase velocity is about 43 m day−1, corresponding to a vertical wave length of about 58 m. The horizontal scale of the NIOs is at least hundreds of kilometers. This NIO event lasted for about 15 days after a typhoon’s passage. Given the northeastward background flow with significant horizontal shear, both Doppler shift and shear flow modulation mechanisms may be responsible for the red-shift of the observed NIOs. For the shear flow mechanism, the observed negative background vorticity and the corresponding effective Coriolis frequency reduce the lower limit of admissible frequency band for the NIOs, causing the red-shift. Meanwhile, the mooring area with the broadened frequency band acts as a wave-guide. The trapping and amplification effects lead to the relatively long sustaining period of the observed NIOs.  相似文献   

5.
基于南海北部浮标和潜标的声学多普勒流速剖面仪(ADCP)数据,通过一套几何算法计算了台风海鸥(1415)期间ADCP的空间变化和流速误差,并进行数据校正。浮标上,台风过后ADCP的水平位移最大可达2.61 km,水平流速误差最大可达0.27 m/s,垂向流速误差最大仅为5×10-4 m/s;温跃层流速校正值在台风过后显著大于流速测值,这表明水平校正对于温跃层流速的质量控制很重要。潜标上,ADCP最大垂向位移增量为179 m,最大绳子倾角为35°,最大水平位移为1.5 km; ADCP水平流速误差和倾角误差都很小,在数据校正中可忽略不计,但对台风过后中层流速的垂向校正不能忽略。  相似文献   

6.
长江口悬沙动力特征与输运模式   总被引:5,自引:0,他引:5  
本项研究用ADCP在长江河口进行高频、高分辨率三维流速和声学浊度的定点观测,通过对定点站位潮周期内的悬沙浓度、流速和盐度的分析,计算悬沙输运率;悬沙输运机制分析表明平流作用、斯托克斯漂移效应在悬沙输运中占据主导地位.此外,从河口内向河口外,潮周期内的水动力特征与悬沙净输运具有明显的地域性差异,主要表现在悬沙输送的贡献因子、盐度的垂向混合和分布特征、垂向流速等方面.在拦门沙下游和口外地区,悬沙均向西、北方向输送,而拦门沙上游则向东、南方向输送.这种悬沙输运格局,对于长江口拦门沙及附近最大浑浊带的形成有着重要的作用.  相似文献   

7.
The velocity fluctuations of wind over wind-waves in a wind tunnel are measured with a X-type hot-wire anemometer at some heights over the water surface.The observed vertical profiles of the wave-induced velocity fluctuations and the wave-induced Reynolds stress at the wave spectral peak frequency are different from those expected from the inviscid quasi-laminar model;i.e., the observed vertical profiles of the power spectral density of the wave-induced horizontal or vertical velocity fluctuations of wind have the minimum value at the height much heigher than the critical layer, and the value of the wave-induced Reynolds stress is negative at several heights over the water surface. From the comparison between the experimental results and the numerical solutions of a linear model of the turbulent shear flow over the wavy boundary, it is shown that the discrepancy described above can be attributed to the atmospheric turbulence.  相似文献   

8.
2009-2010年冬季南海东北部中尺度过程观测   总被引:2,自引:1,他引:1  
根据南海北部陆架陆坡海域2009-2010年冬季航次的CTD调查资料,发现西北太平洋水在上层通过吕宋海峡入侵南海,其对南海东北部上层水体温盐性质的影响自东向西呈减弱趋势,影响范围可达114°E附近。入侵过程中受东北部海域反 气旋式涡旋(观测期间,其中心位于20.75°N,118°E附近) 的影响,海水的垂向和水平结构发生了很大变化,特别是涡旋中心区域,上层暖水深厚,混合层和盐度极大值层显著深于周边海域。该暖涡在地转流场、航载ADCP观测海流及卫星高度计资料中均得到了证实。暖涡的存在还显著影响了海水化学要素的空间分布,暖涡引起的海水辐聚将上层溶解氧含量较高的水体向下输运,使次表层的暖涡中心呈现高溶解氧的分布特征。  相似文献   

9.
High spatial resolution measurements of current velocity performed by the shipboard mounted Acoustic Doppler Current Profiler (ADCP) in the lateral boundary layer of the southern Gulf of Finland during two 5-day periods are described and analysed with a focus on the dominant dynamics. The measurement site represents a small (15×20 km), relatively deep (up to 100 m) bay opened to large-scale estuarine circulation. The measurement period was characterized by calm winds and a strong seasonal pycnocline (Brunt-Väisälä frequencyN=6–9*10−2 s−1). The quasi-steady velocity field revealed polarization of currents along the shore whereas an intensive baroclinic coastal jet was observed over a cross-shore scale of 1–2 km. The level of vertical separation of the alongshore flow coincided with the pycnocline at the coast, but was shifted below it in the offshore region. The cross-shore flow was considerably weaker and showed a three-layer structure with an opposite phase between the first and second surveys. It is suggested that the observed jet resembles a non-locally forced eastward propagating coastally trapped wave. In the offshore area the alongshore flow field satisfies local geostrophic balance quite well, except in the pycnocline where strong vertical stratification exerts considerable vertical stress. As vertical velocity shear is well correlated with vertical stratification, the horizontal advection prevails over vertical mixing. Horizontal inhomogeneities of density distribution are partly explained by vertical velocities with an estimated magnitude of less than 0·6 mm/s and the spatial pattern following bottom topography.  相似文献   

10.
During the South China Sea monsoon experiment (SCSMEX),three autonomous temperature line acquisition system (ATLAS) buoys with acoustic Doppler current profiler (ADCP) were moored in the South China Sea to measure temperature,salinity and current velocity.Typhoon Faith passed through about 250 km south to one of the mooring buoys located at 12 58.5 N,114 24.5 E from December 11 to 14,1998.The data analysis indicates that the typhoon winds induce a great increase in the kinetic energy at near-inertial frequencies with two maxima in the mixed layer and thermocline.The near-inertial oscillations were observed at the upper 270 m in the wake of Typhoon Faith.The oscillations were originally excited in the sea surface layer and propagated downward.The amplitudes of the oscillations decrease with depth except in the thermocline.The near-inertial oscillation signals are also remarkable in temperature and salinity fields.  相似文献   

11.
A simple advection-diffusion model is applied to the deep water of the North Pacific Ocean. The physical mixing parameter, i.e., the ratio of vertical advection velocity (W) to vertical eddy diffusivity (D), is obtained from the vertical distribution of a conservative property such as salinity. The rate of decomposition of organic matter is estimated from the oxygen consumption rate which is obtained from dissolved oxygen content. The calcium carbonate flux in the deep water is obtained from alkalinity. Using these values and the vertical distribution of a radioisotope,14C or226Ra, the vertical eddy diffusivity and the upwelling velocity are found to be 1.2 cm2/sec and 1.4 ×10–5 cm/sec, respectively, at the Geosecs 1969 station. The oxygen consumption rate at 3 km depth of the station is found to be 1.4×10–3ml/l/yr.  相似文献   

12.
Near-diurnal vertically-standing waves with high vertical wavenumbers k z were observed in the velocity and shear fi elds from a set of 75-d long ADCP moored in the northeastern South China Sea(SCS)away from the“critical”latitude of 28.8°.These enhanced near-diurnal internal waves followed a fortnightly spring-neap cycle.However,they always happened during semidiurnal spring tides rather than diurnal springs although strong diurnal internal tides with the fortnightly spring-neap cycle were prevailing,suggesting that they were generated via subharmonic instability(PSI)of dominant semidiurnal M 2 internal tides.When two semidiurnal internal tidal waves with opposite vertical propagation direction intersected,both semidiurnal subharmonic and super harmonic waves were largely intensifi ed.The observed maximum diurnal velocity amplitudes were up to 0.25 m/s.The kinetic energy and shear spectra further suggested that frequencies of daughter waves were not always perfectly equal to M 2/2.The superposition of two daughter waves with nearly equal frequencies and nearly opposite k z in a PSI-triad leaded to the vertically-standing waves.  相似文献   

13.
Relation between internal waves with short time scale and density distribution near the shelf break in the East China Sea is studied utilizing moored current meters, thermometers and conductivity-temperature-depth (CTD) casts. A well developed pycnocline was frequently observed around 150–200 m depth near the shelf break accompanied with the development of internal waves with short time scale. During the cruise in May 1998, the intensified internal wave motion with short time scale and the distinct offshore flow were observed just below the lower pycnocline, which shoaled and extended above the shelf area. It is suggested that vertical mixing generated by amplified internal waves would produce cross-shelf ageostophic density current around the pycnocline. During the cruise in May 1999, on the other hand, the lower pycnocline was located offshore below the shelf break, and the internal wave motion was amplified just above the lower pycnocline. In this case, the offshore flow should be generated above the lower pycnocline, but vertical profiles of current velocity were not obtained because acoustic Doppler current profiler (ADCP) data were not available around the lower pycnocline.  相似文献   

14.
The overall goal of this study was to strengthen understanding of the hydrographic structure in shallow estuaries as influenced by seasonal and depth-dependent variability, and by variability from extreme meteorological events. The mesohaline Neuse Estuary, North Carolina, U.S.A., which was the focus, receives surface inputs from upriver and tributary freshwater sources and bottom inputs from downriver high-salinity sound water sources, resulting in varying degrees of stratification. To assess depth-dependent, estuary-wide changes in salinity, a multiple time series was created using data from four discrete depths (surface and 1, 2, and 3 m±0.25 m). The database was developed from weekly to biweekly sampling of the entire water column, and included side-channel as well as mid-channel data. We characterized seasonal differences in halocline depth affecting the hydrographic structure of the mesohaline estuary and site-specific variation in nutrient concentrations, based on a comprehensive eight-year physical/chemical database. The first two years of the record showed an expected seasonal signal and included events that impacted the surface layer from freshwater inputs. Remaining years had greater variability over seasons and depths, with freshening events that affected all depths. Halocline depth was compared at specific locations, and a “snapshot” view was provided of the relative depth of these water masses within the estuary by season. We also examined flow patterns at the same cross-estuary sites over a three-year period, using a boat-mounted acoustic Doppler current profiler (ADCP) with bottom-tracking capability. Composite visualizations constructed with single-transect ADCP data revealed a classical estuarine circulation pattern of outflow at the surface/southern shore and inflow at the bottom/northern shore. Although this pattern deviated under extreme climatological events and was sometimes variable, the estuary generally exhibited a high probability of direction of flow. Wind fields, hurricanes, and small-scale, high-precipitation events represented significant forcing variables.  相似文献   

15.
The sea surface height data from 1992 through 2012 in the Eastern Indian Ocean, the 6 sets of hydrographic data sparsely spanning 1990–2001 in water south of Java–Bali, and the 24 shipboard acoustic Doppler current profiler (ADCP) data across the Ombai Strait during 1997–2000 were used as a combined dataset to understand sea level and current variability along the southern coast of Java and Lesser Sunda Islands. The first two dominant empirical orthogonal function (EOF) modes capture combined seasonal with interannual and seasonal variability that account for 44.5 and 19.9 % of the total variances caused by El Niño Southern Oscillation and Indian Ocean Dipole events, and by the seasonal change of the Asian monsoon, respectively. The geostrophic current and ADCP data show that the eastward and westward currents are distinguishable via the vertical profiles of current velocity. The eastward-flowing South Java Current (SJC) is characterized by a large vertical shear and shallower diminishing depth of about 150 m and it is increased to 300 m in the presence of the Indian Ocean Kelvin Waves (IOKWs). In contrast, the westward current is dominated by the Indonesian Throughflow (ITF) with no vertical shear and has uniform current in the upper 300 m layer. The coastally trapped SJC and IOKWs are responsible for the eastward current. The SJC is not observed in the westward current because of non-existence of coastally trapped modes. The ITF and SJC generate persistent cyclonic (cold) and anticyclonic (warm) mesoscale eddies, respectively, in waters south of eastern Java.  相似文献   

16.
Distributions and characteristics of water mass and chlorofluorocarbons (CFCs) in the North Pacific are investigated by using a General Circulation Model (GCM). The anthropogenic CO2 uptake by the ocean is estimated with velocity fields derived from the GCM experiments. The sensitivity of the uptake to different diffusion parameterizations and different surface forcing used in the GCM is investigated by conducting the three GCM experiments; the diffusive processes are parameterized by horizontal and vertical eddy diffusion which is used in many previous models (RUN1), parameterized by isopycnal diffusion (RUN2), and isopycnal diffusion and perpetual winter forcing for surface temperature and salinity (RUN3). Realistic features for water masses and CFCs can be simulated by the isopycnal diffusion models. The horizontal and vertical diffusion model fails to simulate the salinity minimum and realistic penetration of CFCs into the ocean. The depth of the salinity minimum layer is better simulated under the winter forcing. The results suggest that both isopycnal parameterization and winter forcing are crucial for the model water masses and CFCs simulations. The oceanic uptake of anthropogenic CO2 in RUN3 is about 19.8 GtC in 1990, which is larger by about 10% than that in RUN1 with horizontal and vertical diffusive parameterization. RUN3 well simulates the realistic water mass structure of the intermediate layer considered as a candidate of oceanic sink for anthropogenic CO2. The results suggest that the previous models with horizontal and vertical diffusive parameterization may give the oceanic uptake of anthropogenic CO2 underestimated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Observations of the velocity and salinity structure of the Tees estuary were made at eight stations along the estuary axis between Victoria Bridge and the sea during the summer of 1975. The measurements were made on ten separate tidal periods covering neap and spring tides.The data were collected over a period of relatively low freshwater flows and the residual current was found to have a strong dependence on the Stokes drift. At the upstream stations, the residuals were more than an order of magnitude greater than the currents anticipated from the freshwater discharge. Although the mean stratification decreased as the tidal range increased, the vertical circulation was stronger on spring tides than on neaps. Vertical variations in the amplitude and phase of the tidal current results in a current which strengthens the vertical circulation. However, this effect only made a relatively small contribution to the observed vertical circulation.The relative contribution of the individual salt flux terms to the net upstream transport of salt varies along the estuary. As the estuary narrows, the contribution by the oscillatory terms dominates that from the shear in the steady state flow. Of these oscillatory terms, the correlation of velocity and salinity fluctuations plays a key rôle in the salt transport. The depth mean values make a greater contribution than deviations from the depth mean and the flux due to phase variations over depth is smaller than either of these. Since the Stokes drift is compensated by a down-stream steady state flow, it does not contribute to the tidal mean transport of salt.At the seaward end of the estuary, the salt fluxes due to the steady state vertical shear and the convariance of the tidal fluctuations act in a complementary way to counter the seaward transport of salt by the freshwater flow. With the possible exceptions of the wide or narrow reaches of the Tees, the longitudinal fluxes of salt due to transverse variations in velocity, salinity and depth and turbulent fluctuations are of secondary importance as contributors to the estuary salt budget.On both neap and spring tides, the computed total salt transports at the Newport and Victoria bridges did not match the values required for a salt balance with the corresponding freshwater flows. These fluxes were probably the cause of the observed downstream displacement of the tidal mean salinity distribution between neap and spring tides.  相似文献   

18.
Using the micro-structure profiler, TurboMAP, large values for the turbulent energy dissipation rate ε were found just above the bottom of the shelf and around the thermocline near the continental shelf break in the East China Sea. The values found above the bottom are produced by the bottom stress due to tidal currents, resulting in a distinct bottom mixed layer where the vertical eddy diffusivity Kz is also large. Distinct maxima in the values of ε detected around the thermocline are located at the depth of the fine-scale shear maxima detected with the moored ADCP. The vertical profiles of ε were compared with those of the current velocity, and it was found that the maxima in ε appear to correspond to those of the shear with fine scale. The magnitude of the observed ε coincided approximately with the ε calculated from the fine-scale shear and the buoyancy frequency according to the parameterization proposed by Gregg (1989), if the large-scale mean shear caused by the Kuroshio is subtracted. However, it is not clear whether the parameterization for the internal wave fields in the open ocean is applicable to the estimation of ε in the shelf break. Whereas the most predominant value of ε was found just above the bottom and around the thermocline, the maxima of ε could be found in the internal area. They could have been caused by the propagation of the vertically high wave number internal tides along the characteristic ray.  相似文献   

19.
A system of 3-D linearized momentum equations, the continuity equation and a simplified equation of state for sea water are analytically solved. The solution comprises three parts. The first part is a wind-driven current, the second a jet-like current caused by Yangtze River outflow and the last a density flow. The computed current velocity is obtained by solving an advection-diffusion equation of salinity by a finite-difference method. The results show that the Yangtze brackish water plume spreads as a large low salinity tongue. At the surface, the turning of the tongue axis is mainly controlled by wind stress, Yangtze run-off and bottom topography. Near the bottom, the axis changes little all the year around. At about 10–15 m depth, there is a sharp halocline in summer, but at deeper layers the vertical distribution is almost always uniform. The computed salinity distribution agrees fairly well with the observed one.  相似文献   

20.
Temporal variations in temperature and salinity observed in 2004 were investigated on a short time scale in the Tsushima Strait. The data were obtained by long-term in situ measurements at Mitsushima and Futaoi Island using an instrument equipped with a piston-type wiper to avoid biofouling. In addition, the temperature and salinity values of the surface layer obtained by a commercial ferryboat between Hakata and Busan were used to investigate their spatiotemporal variations. Temperature and salinity variations with a time scale of several days had a negative correlation in the summer. This evidence suggests that a warm and less saline water mass, which is considered to be mainly the Changjiang Diluted Water (CDW), flowed intermittently through the Tsushima Strait in summer. In late July 2004, a large low-salinity water mass was detected in the Tsushima Strait. At that time, the freshwater transport through the Tsushima Strait transiently reached about 12 × 104 m3s−1, which is estimated from observed acoustic Doppler current profiler (ADCP) data along a ferryboat line and inferred salinity profiles. This estimated value is more than double the maximum of the climatological monthly mean of the Changjiang discharge. Furthermore, salinity and surface current data obtained by high frequency ocean radar (HF radar) indicate that water properties at Mitsushima may occasionally represent part of the water flowing through the western channel via a countercurrent, although Mitsushima is geographically located in the eastern channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号