首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partition of Si, Al, Ti, Fe3+, Mg, Fe2+, Mn, Ca and Na between coexisting Ca-rich and Ca-poor pyroxenes from a wide variety of igneous and metamorphic rocks have been investigated systematically. Many of the distributions, and especially those for the partition of Ti, Mg, Fe2+, Mn and Na, indicate characteristic trends for pyroxenes from the various petrologic groups identified. The partition of Mg, Fe2+ and Mn correlate with inferred cooling rates, the partition co-efficients of pyroxenes from extruded and other quickly cooled rocks most nearly approaching unity. In contrast, the partition of Si and Ti and the absolute amounts of Al may be related to the physicochemical conditions prevailing during original crystallisation; Ti being particularly relatively enriched in Ca-rich pyroxenes of ultramafic associations. The trends of the compositions of the Ca-rich pyroxenes plotted in the pyroxene quadrilateral also correlate with cooling rates and comparison with the limited data available on the phase relations of coexisting pyroxenes suggests that sub-solidus chemical readjustments have occurred in both phases.  相似文献   

2.
Thirty-three coal samples from the Northumberland Coalfield were investigated for thirty-six major and minor elements with a view to interpreting the mode of inorganic formation or association and their enrichment or depletion in relation to the published data for other coals.It was generally observed that the interelement correlation did not confirm a total dependency of the elements either on the inorganic or organic matter. However, the association of some of the minor elements tend to constitute a more satisfactory reference to the first phase of coalification (i.e. organo-metallic complexes). Principal components and factor analyses given for the elements confirm the mode of formation and provide the basis for suggesting three significant modes of concentration and association: (a) biological fixation; (b) mineral sorption; and (c) localized concentration.Comparison of the chemical data for this coal with published data appears to show similarity with the averages quoted for a “rich coal ash”.  相似文献   

3.
贵州主要汞矿床的微量元素特征   总被引:5,自引:0,他引:5  
刘平 《矿床地质》1994,13(3):250-259
贵州6个不同类型的主要汞矿床,其矿石和辰砂的微量元素,特别是其中的分散元素和稀土元素有着明显差别,表明各汞矿床的成矿物质来源是不相同的。  相似文献   

4.
The major element composition of sound-producing sand is reported together with rare-earth elements (REE) and other selected elements for the first time. Rare-earth element concentrations in beach sands from Miyagi and Tottori in Japan were determined by induction-coupled, argon-plasma spectrometry (ICP-MS) to characterize the REE of sound-producing and silent sands relative to the parental rocks. Sound-producing sand beaches are very common and all over in Japan: five beaches in Miyagi and 2 in Tottori are selected with other silent sand beaches in the areas. Both sound-producing sand and silent sand samples from Miyagi and Tottori contain more than 60wt% of SiO2 and are composed mainly of quartz and feldspar. Miyagi sand samples are characterized by light REE enrichment and flat chondrite-normalized patterns that are similar to those of local source sandstone. However, all sand samples from Miyatojima in Miyagi show positive Eu anomalies, a characteristic feature not shown in other sand samples from Miyagi. Tottori sand samples also are characterized by high REE contents and remarkable positive Eu anomalies. The sands containing lower REE contents are due to high quartz and feldspar contents. Miyatojima sand samples and Tottori sand samples have high REE contents and show remarkable positive Eu anomalies due to the presence of feldspar. The best results are obtained using all of the geological methods and the Principal Component Analysis (PCA) as a measure of the similarity between sound-producing sand and silent sand. The difference between sound-producing sand and silent sand is obtained from the PCA results.  相似文献   

5.
6.
Water samples were collected for 23 different stations along a cross section profile of an estuary extending over to adjacent sea. The collected water samples were filtered and analyzed for major?Cminor ions and strontium isotope using the standard procedure to understand the geochemical behaviors of major and minor elements. The normalized values indicated that all riverine elements were entering to adjacent coastal sea with some significant variations at the estuary. The seawater dilution and regression lines explain about the overall patterns for seven elements. Removal processes were detected on calcium, magnesium, strontium and sulfate in the estuarine region. No significant mineral precipitation observed to release magnesium with respect to calcium. Minor variations of strontium and sulfate ions could be attributed to the presence of organic matter in the study area. Comparing seven elements with total suspended matters revealed that the total suspended matters played crucial role in either adsorption or absorption of all the elements in estuary before it reaches to coastal sea. Mixing patterns of strontium isotope showed minimal non-conservative with an evidence of active geochemical process in the estuary.  相似文献   

7.
The lower reaches of the Coatzacoalcos River in southeast Mexico is an area of intense industrial development. The physico-chemical characteristics of the area have exhibited differences over the years. Apparently from the associated outcroppings of limestone in the Uxpanapa River Basin, the major elements that are dissolved show higher concentrations of Ca, Mg and HCO3 in the waters supplied by this river. The water in the Calzadas River contains high concentrations of Ca, SO4 and HCO3 that are associated with the saline domes crossed by this river. Due to industrial discharges, the sulfate concentration is very high in the water and air during April. Nitrate concentration diminishes with salinity. Higher nitrate as well as nitrite and ammonia levels are present during flood season. Phosphate concentration, associated with high oxygen levels, is higher in January. Zn, Cu and Cr are higher during the dry season (April) when dilution is minimal and low levels of TOC are present. The smaller concentrations of Zn and Cu observed in January are associated with high TOC values in water. The lower levels of Cr present in August are associated with high amounts of suspended matter. Pajaritos Lagoon and Teapa-L, with large industrial discharges, have the highest nutrient and dissolved metal concentrations in the area. Air particles smaller than 2.5 m contain Fe, V, Ti, Cu, Zn, and high amounts of S. These anomalous concentrations of sulfates and metals are attributed to anthropogenic sources.  相似文献   

8.
采用电感耦合等离子体发射光谱法,同时测定高铁三水铝土矿中的Si、Fe、Al、Ti、Mn、V、As、P等元素。对影响其光谱测量的各种因素进行了较为详细的研究,确定了最佳的试验测定条件。结果表明,该方法的检出限为0.0012-0.061μg/mL,回收率为95.4%-107.4%,主量元素相对标准偏差在1%-3%之间,次量元素相对标准偏差在2%-6%之间。该方法准确、快速、简便,应用于高铁三水铝土矿的测定,结果令人满意。  相似文献   

9.
The major-, minor- and trace-element contents of coals from Hat Creek No. 2 deposit, British Columbia, are determined using INAA and inductively coupled plasma emission spectrometry (boron only).

Al, Cr, Fe, Mn and Na were found to be inorganically bound in the coal while As, B and S are associated with the organic fraction of the coal. The rare-earth element concentrations in the coal are variable, however, the LREE/HREE ratio decreases from base to the top of the deposits. Many elements show little variation in concentration with depth; however, the gradual increase of As and S with depth appears to be rank related and indicative of progressive decrease in porosity with increasing rank.

Concentrations of B and Cr are sensitive to the environment of coal deposition, with coal deposited in a freshwater environment (Hat Creek No. 2 deposit), having low B and high Cr compared with more brackish coals.  相似文献   


10.
Fourteen trace elements (La, Cr, Sc, Y, Yb, Ga, Ni, V, Be, Zr, Ge, Pb, Sn, Ce) have been determined by emission spectroscopy in the ash from 7–17 levels within four early Tertiary lignite seams from Wyoming, Texas and Alabama, and two elements (Cu, Zn) in the acid-soluble and acid-insoluble fractions of the samples by inductively coupled plasma arc emission spectrometry. These elements were also determined in the roof and floor strata enclosing the seams. The concentrations of a number of elements (e.g. Be, V, Cu, Y, Yb) were considerably higher in the coal ash than in the adjacent inorganic layers, and these elements are most probably associated with organic matter as coordination complexes. Several elements (Be, Y, Yb, Ga, Sc) were frequently found to be concentrated near the margins of the seam relative to the main body. One of the seams has a 6 cm “rider” separated from the top of the main seam by 9 cm of clayey sand. Analysis of fractions separated by specific gravity and solubility in acid showed this to be rich in trace elements, of which V, Be, Cu, Ni, Ge, Cr, Y, Yb, Ga and Sc appeared to be partly complexed with organic matter, and Sn and Pb were present only in minerals. The rider evidently acted as an efficient trap for unusually large amounts of many trace elements. Cluster analysis showed that the distributions of elements with depth in three of the seams represent three very distinctly separate populations of data; each seam constitutes a different geochemical problem.In a general discussion of the results of the whole series of three papers, a model describing the incorporation of inorganic components in peats is presented, based on the erosion of rocks by chelating organic acids and other agents, followed by transport in water and trapping of mineral grains and dissolved ions by the organic matter of peat. Inorganic materials in peat thus constitute the principal input of mineral matter into coals. The elements that tend to be enriched near the margins of lignite seams are mostly those that have complexed with organic matter. However, the data on this enrichment from our own and previously published work are quite variable, no doubt depending on the nature and efficiency of transport of the incoming cations.  相似文献   

11.
Trace and minor elements in sphalerite: A LA-ICPMS study   总被引:18,自引:0,他引:18  
Sphalerite is an important host mineral for a wide range of minor and trace elements. We have used laser-ablation inductively coupled mass spectroscopy (LA-ICPMS) techniques to investigate the distribution of Ag, As, Bi, Cd, Co, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, Pb, Sb, Se, Sn and Tl in samples from 26 ore deposits, including specimens with wt.% levels of Mn, Cd, In, Sn and Hg. This technique provides accurate trace element data, confirming that Cd, Co, Ga, Ge, In, Mn, Sn, As and Tl are present in solid solution. The concentrations of most elements vary over several orders of magnitude between deposits and in some cases between single samples from a given deposit. Sphalerite is characterized by a specific range of Cd (typically 0.2-1.0 wt.%) in each deposit. Higher Cd concentrations are rare; spot analyses on samples from skarn at Baisoara (Romania) show up to 13.2 wt.% (Cd2+ ↔ Zn2+ substitution). The LA-ICPMS technique also allows for identification of other elements, notably Pb, Sb and Bi, mostly as micro-inclusions of minerals carrying those elements, and not as solid solution. Silver may occur both as solid solution and as micro-inclusions. Sphalerite can also incorporate minor amounts of As and Se, and possibly Au (e.g., Magura epithermal Au, Romania). Manganese enrichment (up to ∼4 wt.%) does not appear to enhance incorporation of other elements. Sphalerite from Toyoha (Japan) features superimposed zoning. Indium-sphalerite (up to 6.7 wt.% In) coexists with Sn-sphalerite (up to 2.3 wt.%). Indium concentration correlates with Cu, corroborating coupled (Cu+In3+) ↔ 2Zn2+ substitution. Tin, however, correlates with Ag, suggesting (2Ag+Sn4+) ↔ 3Zn2+ coupled substitution. Germanium-bearing sphalerite from Tres Marias (Mexico) contains several hundred ppm Ge, correlating with Fe. We see no evidence of coupled substitution for incorporation of Ge. Accordingly, we postulate that Ge may be present as Ge2+ rather than Ge4+. Trace element concentrations in different deposit types vary because fractionation of a given element into sphalerite is influenced by crystallization temperature, metal source and the amount of sphalerite in the ore. Epithermal and some skarn deposits have higher concentrations of most elements in solid solution. The presence of discrete minerals containing In, Ga, Ge, etc. also contribute to the observed variance in measured concentrations within sphalerite.  相似文献   

12.
Trace and minor elements in sphalerite from metamorphosed sulphide deposits   总被引:1,自引:0,他引:1  
Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently constrained.  相似文献   

13.

硫化物矿物中元素含量及其分布可示踪硫化物成矿过程、辨别金属来源和沉积过程的物理化学条件,在地质学、矿床学等领域具有重要的应用价值。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)已成功应用于硫化物矿物元素微区分析研究,但激光与物质作用产生的热效应严重制约分析结果的可靠性。本文建立了一种高精密度、高准确度的低温剥蚀LA-ICP-MS测定硫化物矿物多元素方法。采用自行研制的Peltier低温剥蚀池可有效抑制硫化物矿物LA-ICP-MS分析中的热效应,提高分析结果的精密度和准确度。扫描电子显微镜(SEM)表明:在低温(−30℃)条件下可在一定程度地抑制激光剥蚀引起的热效应,减少样品熔化和气溶胶气相再沉积;而通过气溶胶颗粒分析发现低温剥蚀可以减小样品气溶胶颗粒的平均尺寸,得到的颗粒粒径分布范围也较小。不同元素信号强度的精密度(RSD)从常温下的20.1%~34.4%改善到11.5%~15.8%,元素的检出限为0.054~0.077μg/g。将该低温LA-ICP-MS系统应用于实验室内部标样黄铜矿Ccp-1分析,测定值与参考值之间的标准偏差在7%以内。

  相似文献   

14.
冲绳海槽玄武岩中中酸性残余熔体研究及其岩石学意义   总被引:1,自引:0,他引:1  
与洋壳有关的酸性岩由于对了解幔源岩浆的演化以及判别古老蛇绿岩套及其构造位置的重要意义而倍受岩石学家和构造地质学家的关注。本对发现于冲绳海槽玄武岩基质中的中酸性到酸性残余熔体进行了详细研究,它们提供了幔源玄武岩浆结晶分异形成酸性岩浆的直接证据。在细小的基质矿物间分布有一种玻璃质的残余熔体,其成分随距冷凝边距离(L)的增加而越来越酸性。在SiO2对Na2O K2O图解上,残余熔体的投影点从玄武岩到英安岩均有分布,反映了一个连续的演化系列。在AFM图解上,残余熔体表现出与Thingmuli火山岩系列类似的拉斑玄武岩系列的演化趋势。我们的研究表明:残余熔体的演化受结晶分异作用控制。在早期结晶阶段,辉石的结晶起主导作用,结果造成残余熔体中SiO2、Al2O3,Na2O的迅速增加,FeO、MgO、CaO迅速降低。在晚期结晶阶段,斜长石成为主导结晶相,导致残余熔体中Al2O3,Na2O的迅速消减。Al2O3、Na2O从增加到降低的转变出现在SiO2=62%左右。在L=27.5mm处,85~90%的基质岩浆已发生了结晶作用,导致残余熔体中SiO2含量达到69~70%,而且此处还新出现了一种富FeTi的氧化物。该玄武岩中残余熔体和基质矿物的成分及演化特征分别与Thingmuli火山岩系列中酸性端元的组成相似,在也佐证了Thingmuli火山岩系列是幔源岩浆结晶分异的产物.  相似文献   

15.
Lignites resemble peats, the precursors of coals, in containing many carboxylic acid and other functional groups. Consequently much of the relatively small amount of inorganic matter in lignites is present as cations in carboxylates and in chelated coordination complexes, and not only as distinct mineral phases. Consequently the distribution of inorganic matter in lignites will be influenced by the structure of the organic matter, as well as by microbial processes in peats and the geochemical processes involving erosion of rocks and transport of mineral grains and cations in solution. The objective of this study was to seek information on the distribution of major, minor and trace elements in different forms of combination, and in particular to document organic/inorganic interactions in coal formation. Study of the first of five lignites is reported here. The coal (from the Hagel seam in North Dakota) was separated into five fractions by float/ sink methods, and the fractions were further separated into an ammonium acetate extract, an HCl extract and an insoluble residue. Analysis of the fractions (by atomic absorption, plasma arc emission, emission spectroscopy and neutron activation) was found to give much information on how elements were combined in the coals. Results of the fractionation indicate that Ca, Mg, Na, K, Sr, Ba and Mn were present largely or partly in ion-exchangeable form; appreciable amounts of K (illite), Ba (sulfate, carbonate) and Mn were also present in mineral phases. Some Al appeared to be present in organic association. Ti often occurs in sediments by substitution in clays, but we infer that substantial amounts are present here in both acidsoluble and acid-insoluble organic chelates. The considerable enrichment of a number of elements in the fractions of lowest specific gravity suggests that Be, Sc, Cr, Y, Yb, V, Ni, Cu and Zn are associated primarily or partly with the organic matter. The extent to which these elements are associated with the organic matter in this lignite is much greater than it is with the bituminous coals studied by others.  相似文献   

16.
与日本黑矿及现代海底火山岩为主岩矿床相比,白银厂矿田各类矿石,尤其是块状Zn-Pb-Cu矿石具有最高的As和Bi含量,比较高的Ga、Cd和Au含量,以及较高的Au/Ag和Co/Ni比值。该矿田矿石的Au含量与闪锌矿中铁含量呈负相关关系。小铁山矿床闪锌矿与日本黑矿的闪锌矿微量元素特征很相似。矿田各类矿石REE型式与细碧角斑岩类岩石基体相似,这说明矿石与岩石的物质来源基本一致。研究和对比表明,火山成因  相似文献   

17.
Soils, rocks, altered rocks, hot and cold waters, and hot spring precipitates were sampled within and on the outskirts of geothermal fields in China. The contents of thirty trace elements in soils and rocks show that Hg, As, Sb, Bi, Li, Rb, Cs, Au, Ag, B, W, Sn, Pb, Zn, Mn, Ni and Co can serve as direct and indirect indicators for geothermal field exploration. Large amounts of data indicate that Hg, As and Sb are the best indicators of hot water sources. Altered rocks contain higher Hg, As, Sb, Bi and Be than unaltered rocks. Based on their abundances in hot waters, it is suggested that the following elements may be used as hydrochemical indicators of high-temperature hot-water geothermal systems: K+, Na+, Ca2+, Mg2+, SO2−4, HCO3, F, Cl, SiO2, HBO2, CO2, pH, total dissolved solids and hydrochemical types, as well as Hg, As, Sb, Be, Li, Rb and Cs. Modern precipitates associated with hot springs have high contents of Ba, Be, Fe, Ti, Hg, As, Sb and Bi. Using these geochemical data, the authors have had much success in locating hot water drill sites within geothermal fields. Case histories are described for five geothermal areas.  相似文献   

18.
Sea-surface microlayer samples were obtained in the North sea, by collecting droplets ejected by bubbles bursting at the sea-surface. The samples were analysed for some trace and major elements, mainly by neutron activation and atomic absorption spectrophotometry, and the results were compared with those from samples of bulk seawater taken at the same time. For any element X, the results may be expressed as a concentration factor related to Na, thus: CF = ratio of X and Na concentrations in microlayer samplesimilar ratio in corresponding bulk seawater sampleThe CF values for trace elements showed wide fluctuations from sample to sample. The only two elements for which relatively unambiguous CF values were obtained were Sc (from 2.5 to 100) and Pb (from 140 to 410). Other CF values were obtained for Co (up to 76). Zn (<50), La (up to 3000) and Ce (up to 500). The major ions Mg, Cl, K, Ca, Br, gave CF values between 0.54 and 2.2 in all cases measured. It is concluded that large enrichments of some trace elements can occur in the surface microlayer, but enrichment of major ions has not been observed.Concentrations of about 30 trace elements in particulate form in bulk seawater were measured in the course of the study.  相似文献   

19.
Manganese oxides from deposits in west-central Arkansas were analyzed by X-ray diffraction for mineralogy and by atomic absorption spectroscopy for Mn, Fe, Co, Cu, Ni, Zn, V, Al, Li, Na, K, Mg, Ca, Sr and Ba. We report on 42 samples from 25 sites with more than 25 wt.% Mn and less than 7 wt.% Fe. Most samples were mixtures of two or more of the following minerals, many with concentric deposition: cryptomelane, lithiophorite, psilomelane and pyrolusite. In the purer samples of single minerals, lithiophorite contained the higher concentrations of total base metals (Co + Cu + Ni + Zn) than other minerals. In atom % of Mn these concentrations were: 9.51% in lithiophorite; 0.432% in psilomelane; and 0.275% in cryptomelane. The relative concentration of base metals in the pure minerals, proceeding from highest to lowest concentration, were: lithiophorite (Co = Cu > Ni > Zn); psilomelane (Co > Cu > Zn > Ni) and cryptomelane (Zn > Co = Cu > Ni).The concentration of Li correlates with the metals Al, Co, Cu, Ni and Zn, in the mineral samples containing measurable Li. Correlation coefficients (?) for Li with the various metals and sum of the base metals were: Al (? = 0.976); Co (? = 0.44); Ni (? = 0.954); Cu (? = 0.918); Zn (? = 0.875); and (Co + Cu + Ni + Zn) (? = 0.979). Li is believed to be a measure of lithiophorite. Correlation was found between Al content and base metal contents for all samples: Co (? = 0.354); Ni (? = 0.749); Cu (? = 0.808); Zn (? = 0.632); and (Co + Cu + Ni + Zn) (? = 0.884). The Al correlation extended to published values for these and the minerals hollandite and todorokite, except for Zn. Zn correlated with K in published analyses and in the eastern half of the study area where cryptomelane predominated.A mechanism is proposed to explain the enhancement by Al of base metal incorporation into manganese oxide minerals. The mechanism involves the isomorphous substitution of Al3+ for Mn4+ with charge neutralization by bivalent base metal ions.  相似文献   

20.
As the first phase of an investigation of the possible geologic significance of the occurrence and distribution of trace and minor elements in deep sub-surface waters, determinations have been made of these elements in a number of water samples from the Woodbine sand of Upper Cretaceous age in the East Texas basin. The determinations were made by use of an emission spectrograph.

Of a number of elements which occur in trace amounts in Woodbine waters, four appear to vary systematically in concentration. Strontium and potassium increase in concentration with increasing depth from which the water samples were produced. The distribution of barium, which occurs in relatively high concentrations in the waters of the north-western part of the basin, seems to be related to the pattern of deposition of near-shore sediments during a part of Woodbine time. The distribution of manganese, which is found in relatively high concentrations in the central portions of the basin, appears to reflect the areal extent of deeper parts of the basin. The occurrence of soluble manganese in this area indicates that reducing conditions have prevailed in the central part of the basin during the past.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号