首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We review the theoretical basis for, and the advantages of, random flight models for the trajectories of tracer particles in turbulence. We then survey their application to calculate dispersion in the principal types of atmospheric turbulence (stratified, vertically-inhomogeneous, Gaussian or non-Gaussian turbulence in the surface layer and above), and show that they are especially suitable for some problems (e.g., quantifying ground emissions).  相似文献   

2.
Summary An earlier paper showed that there is a growing need for increasingly accurate and reliable numerical models to predict optical turbulence conditions, especially in complex (nonuniform) signal propagation environments. Thus, we present a finite-difference computer model to demonstrate a viable approach for predicting the microphysical (microclimate) influences on optical turbulence intensity (C n 2) around the ARL A_LOT Facility and its surroundings (which consist of multiple building arrays and forests). Our multi-dimensional prototype model begins to address optical turbulence conditions along more complex lines-of-sight and begins to account for inhomogeneities in C n 2 brought about by horizontal changes in landscape, wind flow, temperature, and humidity. For now, the model physics represent advection, pressure gradient, eddy diffusion, and vegetation drag force processes. Simple mechanisms to predict the heat and moisture source terms have also been incorporated. Initial model results have been quite encouraging. The model code is computationally efficient and extremely flexible with regard to modifications and debugging. We anticipate that this kind of computational research will be an important vehicle for investigating C n 2 and related laser-optic propagation effects in complex areas.  相似文献   

3.
In view of the absence or insufficiency of tropical cyclone(TC) turbulence parameters in current design standards of wind turbines, in this paper, TC turbulence parameter models with roughness length involved are developed based on six landfall TCs observed from meteorological towers located on various underlying surfaces, so as to provide references for the wind turbine design under TC conditions. Firstly, the roughness length values are examined in order to reduce the effect on turbulence parameters of the various underlying surfaces. On this basis, the reference turbulence intensity is normalized by the roughness length. The related turbulence parameters are parameterized, including the turbulence standard deviation and the turbulence spectrum; and the turbulence parameters available under TC conditions for turbulence turbine design are presented finally. Comparisons of the wind parameter models presented in this paper with those used in current turbine design standards suggest that the former can represent TC characteristics more accurately. In order to withstand TCs, we suggest that the turbulence parameter models recommended in this paper be included in future wind turbine design standards under TC conditions.  相似文献   

4.
In nested nonhydrostatic mesoscale model MM5,the characteristic quantities of atmosphericturbulence,i.e.,the standard deviations of the turbulent fluctuated speeds for three directions inPBL are computed by Mellor-Yamada's level 2.5 closure scheme.The magnitudes and the verticalprofiles of these quantities computed from the model are closely connected with temperature andwind speed profiles as well as the type of the ground with a significant diurnal variation,and are inagreement with known magnitudes and regularities in different stratification conditions.Hence themethod in this paper is reasonable and convincible.Their horizontal distribution depends on thehorizontal distribution of the stratification.The method of predicted characteristic quantities ofturbulence from mesoscale model in this paper can be used in the problem of atmospheric diffusionand atmospheric environment.  相似文献   

5.
In nested nonhydrostatic mesoscale model MM5,the characteristic quantities of atmospheric turbulence,i.e.,the standard deviations of the turbulent fluctuated speeds for three directions in PBL are computed by Mellor-Yamada's level 2.5 closure scheme.The magnitudes and the vertical profiles of these quantities computed from the model are closely connected with temperature and wind speed profiles as well as the type of the ground with a significant diurnal variation,and are in agreement with known magnitudes and regularities in different stratification conditions.Hence the method in this paper is reasonable and convincible.Their horizontal distribution depends on the horizontal distribution of the stratification.The method of predicted characteristic quantities of turbulence from mesoscale model in this paper can be used in the problem of atmospheric diffusion and atmospheric environment.  相似文献   

6.
The longitudinal (i.e., in the direction of the mean wind) spectra and cospectra of wind components and temperature fluctuations in the atmospheric surface layer during neutral conditions were carefully investigated by Kader (1984, 1987) for a broad range of wave numbers which included wavelengths far beyond the large-scale limit of the inertial subrange. At the same time, some direct measurements of spatial correlation functions of the longitudinal wind component and temperature were performed by Zubkovskii and Fedorov (1986) and Zubkovskii and Sushko (1987). Section 2 of the present paper gives a review of the available results on longitudinal spectra and cospectra of wind velocity and temperature fluctuations in neutral stratification and examines the consequences of these results related to the longitudinal autocorrelation and symmetrized cross-correlation functions of surface-layer turbulence. In Section 3 it is shown that the correlation equations of Section 2 agree satisfactorily with some recent measurements of the longitudinal correlation functions in the range of distances from 3 m to 100 m. Some measurements of the lateral correlation functions of atmospheric turbulence are also presented in Section 3. It is shown that these measurements lead to some predictions concerning the never-measured lateral space spectra of surface-layer turbulence.  相似文献   

7.
In the present study, three wavelet basis functions (Mexican-hat, Morlet, and Wave) were used to analyze atmospheric turbulence data obtained from an eddy covariance system in order to determine effect of six meteorological elements (three-dimensional wind speed, temperature, and CO2 and H2O concentrations) on the time scale of coherent structures. First, we used the degree of correlation between original and reconstructed waveforms to test the three wavelets’ performance when determining the time scale of coherent structures. The Wave wavelet’s reconstructed coherent structure signal best matched the original signal; thus, it was used for further analysis of the time scale, number, and time cover of the meteorological elements. We found similar results for all elements, though there was some internal variation, suggesting that coherent structures are not inherently dependent on these elements. Our results provide a basis for proper coherent structure detection in atmospheric turbulence and improve the understanding of similarities and differences between coherent structure characteristics of different meteorological elements, which is helpful for further research into atmospheric turbulence and boundary layers.  相似文献   

8.
The likely effects on two tree species of a range of scenarios of climatic and atmospheric change expected by the year 2050 are investigated using a climatic mapping program, a simple simulation model and a process-based simulation model. Styrax tonkinensis is a native species for which relatively little information is available. Acacia mangium is an introduced species, which is important for pulp production in several other countries, and for which there is considerable information for growth and utilization. A climatic mapping program is used to show areas which may be suitable for these species under present and predicted conditions. Two simulation models are used to investigate likely effects on productivity of the two species for a range of climatic change scenarios for Hanoi and Ho Chi Minh City. The estimated changes in production are predicted to be relatively small, though uncertainities associated with the simulations are quite high. However, the models highlight areas where more data are needed and also suggest some key regions in Vietnam which would be worth monitoring to detect early signs of the effects of climatic and atmospheric change.  相似文献   

9.
In this paper, the attractors of turbulent flows in phase space are reconstructed by the time delay technique using observed data of atmospheric boundary-layer turbulence, which include high resolution temperature, humidity andthree-dimensional wind speed measurements in Gansu province and Beijing, China. The correlation dimensions and largest Lyapunov exponents have been computed. The results indicate that all the largest Lyapunov exponents in different conditions of time, site and atmospheric stability are greater than zero. This means that the atmospheric boundary-layer turbulence system is really chaotic and has appropriate low-dimensional strange attractors whose dimension numbers range from 3 to 7 and vary with different variables (dynamical variables or non-dynamical variables) and atmospheric stability. Turbulent kinetic energy is first applied to reconstruct the attractor of turbulence, and is found to be feasible.  相似文献   

10.
The operating ranges of mesoscale numerical models and meteorological wind tunnels for sea- and land-breeze simulations are defined in this paper based on a review of the theoretical and practical limitations of these two approaches. Numerical-model operating ranges are limited by the choice of governing equations, the numerical methods used to solve the governing equations, the scales of the surface or atmospheric forcing and the atmospheric response, the specified grid resolution and domain size, and the available computer resources. Wind-tunnel operating ranges are limited by the dimensions of the simulated circulations and of the tunnel itself, the tunnel flow speed and turbulence characteristics, the temperature gradients within the tunnel, the lack of Coriolis force and moist processes, and the characteristics of the measurement instrumentation. The operating ranges of these two simulation methods are shown to overlap. In this common range, results of simulations from both approaches can be compared so as to strengthen the validity of the results and to help in the development and improvement of parameterizations of physical processes in numerical models. In addition, the coupling of meteorological wind tunnels and mesoscale numerical models offers a larger range of operating conditions than can be achieved by either approach alone. Together, they can be used in a hybrid form to predict atmospheric conditions at the scale of a few meters for complex terrain (e.g., buildings, hills, etc.) within larger mesoscale atmospheric flow regimes. In the case of sea and land breezes, the sea-land transition zone and coastal internal boundary layer can be studied using both approaches.  相似文献   

11.
The propagation of optical and electromagnetic waves is affected by small-scale atmospheric turbulence, quantified by the structure parameter of the refractive index. In the atmospheric surface layer, the mean structure parameter Cn2{C_{n}^{2}} , as averaged over the large-scale turbulence, relates to meteorological forcings through well-documented relationships. Present-day numerical weather forecast models routinely produce these forcings at the global scale. This study introduces a method where the products of such a model are used to calculate the mean optical turbulence near the surface. The method is evaluated against scintillometry measurements over climatologically distinct sites in Western Europe. The diurnal cycle modulation, and regional and seasonal contrasts, are all reproduced by our predictions. Hence, the present method explains and predicts some essential aspects of the meteorological variability of Cn2{C_{n}^{2}} near the surface. The noted discrepancies combine instrumental limitations, site peculiarities, differences related to distinct averaging procedures, and model errors, notably from weather forecasts. The minute-scale fluctuations of the measured scintillation rate are also analysed in the light of the forecast weather conditions. Fair-weather daytime periods consistently show a small short-term variability compared to the nighttime and perturbed weather periods. Thus, this short-term variability appears to have a predictable component.  相似文献   

12.
13.
14.
The problem of boundary conditions for the variances and covariances of scalar quantities (e.g., temperature and humidity) at the underlying surface is considered. If the surface is treated as horizontally homogeneous, Monin–Obukhov similarity suggests the Neumann boundary conditions that set the surface fluxes of scalar variances and covariances to zero. Over heterogeneous surfaces, these boundary conditions are not a viable choice since the spatial variability of various surface and soil characteristics, such as the ground fluxes of heat and moisture and the surface radiation balance, is not accounted for. Boundary conditions are developed that are consistent with the tile approach used to compute scalar (and momentum) fluxes over heterogeneous surfaces. To this end, the third-order transport terms (fluxes of variances) are examined analytically using a triple decomposition of fluctuating velocity and scalars into the grid-box mean, the fluctuation of tile-mean quantity about the grid-box mean, and the sub-tile fluctuation. The effect of the proposed boundary conditions on mixing in an archetypical stably-stratified boundary layer is illustrated with a single-column numerical experiment. The proposed boundary conditions should be applied in atmospheric models that utilize turbulence parametrization schemes with transport equations for scalar variances and covariances including the third-order turbulent transport (diffusion) terms.  相似文献   

15.
In the modelling of turbulence in the atmospheric boundary layer, some knowledge is generally required of the turbulence quantities themselves, as well as their effect on the mean flow. For such applications, it is therefore necessary that the details of the modelling are consistent with the boundary conditions assumed. This note gives an indication of the way in which the turbulence quantities will decay near the outer edge of the boundary layer in order that all the appropriate equations and conditions should be satisfied.Formerly, Cranfield Institute of Technology.  相似文献   

16.
大气湍流引起的折射率起伏会导致光信号的振幅和相位发生随机波动,同时日益严重的城市雾霾现象带来的系统性能降低问题也不可忽视.基于湍流相位波动和激光器相位噪声的缓慢时变特性,本文提出了将DAML相位估计算法应用到空间相干光通信系统中来提高系统性能,并推导了在大气湍流、激光器相位噪声以及各种天气状况衰减效应影响下,针对DQPSK信号的DAML相位估计系统的误码率,最后重点分析了在雾、霾天气条件下该系统的传输距离限制和波长选择特性.仿真结果表明:湍流相位波动造成的信噪比损失低于0.1 dB;在雾和霾天气下,相较于传统的OOK IM/DD FSO通信系统,DAML相位估计系统在不同的大气湍流环境中至少有500 m的传输距离优势;在霾和薄雾天气,传输波长为1 550 nm的DAML系统比波长为850 nm的系统的性能更优,但在能见度低于200 m的浓雾天气,系统性能基本与波长选择无关.  相似文献   

17.
北京市郊区及城区边缘的大气湍流结构特征   总被引:10,自引:2,他引:10       下载免费PDF全文
张霭琛  吕杰  张兵 《大气科学》1991,15(4):87-96
为了比较城市边缘地区和郊区大气边界层中湍流结构的差异,本文分析了1986年春、夏两季在北京市城市边缘地区和郊区两处大气湍流观测结果.结果表明,由于城市边缘地区的下垫表面具有较高数值的粗糙度,使其近地面层大气受到较强的动力影响,在其湍流速度分量谱曲线;无量纲化湍流速度分量标准偏差,σ_u/u*,σ_v/u*和σ_w/u*;以及无量纲化湍流耗散率φ_ε等湍流特征量在近中性层结条件下显示出与大气稳定度的关系比较微弱.  相似文献   

18.
从湍流经典理论到大气湍流非平衡态热力学理论   总被引:2,自引:0,他引:2  
湍流是日常生活中一种普遍的自然现象,也是经典物理学仍未完全解决的难题。湍流更是大气运动的最基本特征。本文系统地回顾了大气湍流经典理论发展简史,进一步详细介绍了大气湍流非平衡态热力学理论。大气湍流非平衡态热力学理论在熵平衡方程中引入动力过程,进而统一推导出大气湍流输送的Fourier定律、Flick定律和Newton定律,证明了Dufour效应、Soret效应、可逆动力过程与热力不可逆湍流输送过程之间的交叉耦合效应,以及湍流强度定理。这些定律和定理中得到了观测的事实验证,同时它们的唯象系数也由观测资料所确定。湍流强度定理揭示,湍流发展的宏观原因是速度和温度的剪切效应,Reynolds湍流和Rayleigh-Bénard湍流共存于大气湍流中。热力过程和动力过程间耦合效应现象的发现突破了传统湍流输送理论,即Fourier定律、Flick定律和Newton定律的观点——一个宏观量的输送通量等价于这个宏观量的梯度湍流输送通量。热力和动力过程间的耦合原理认为,一个宏观量的输送通量包括这个量的梯度湍流输送通量和速度耦合输送通量两部分。因此,能量和物质的垂直输送通量除了相应物理量梯度造成的湍流输送外,还应包括垂直速度耦合效应,即辐散或辐合运动造成的耦合效应。在一个很宽的尺度范围内,地表面的空间特征是非均匀的。下垫面非均匀性造成的对流运动将引起大气的辐散或辐合运动。这可能是导致地表能量收支不平衡的重要原因之一。垂直速度对垂直湍流输送的交叉耦合效应为非均匀下垫面大气边界层理论的发展,并为克服地表能量收支不平衡问题及非均匀下垫面大气边界层参数化遇到的困难提供了可能的线索。  相似文献   

19.
In this two-part study, we investigate the usefulness of Sodars as part of a large instrument suite for the study of high mountains in the site selection process of the Thirty Meter Telescope (TMT). In this first part, we describe the reproducibility of the measurements and the comparability of results from different sites for data taken with two complementary Sodar models: the XFAS and SFAS models manufactured by Scintec Inc. To this end, a cross-calibration campaign was conducted on two of the sites comparing both the wind speeds and the optical turbulence measurements of the different units. The specific set-up conditions and the low atmospheric pressure require us to make a compromise between the amount of data available for statistics and the quality of the data. For the comparison of the wind speed, results from the same models show a systematic difference of 12 and 9% for the XFAS and SFAS, respectively. The scatter between individual measurements, which includes instrumental, set-up and statistical fluctuation contributions, was found to be 21 and 23%. For optical turbulence, the respective values are 6 and 3% for the systematic difference and 46 and 67% for the scatter. These results show that Sodars can be useful tools for astronomical site testing for projects such as the TMT.  相似文献   

20.
This review of the last three years of progress in the understanding of wind profiles and the structure of turbulence in the planetary boundary layer is divided into three parts. The first part, by N. E. Busch, deals with the atmospheric surface layer below 30 m. It is shown that the Monin-Oboukhov similarity hypotheses fail at low frequencies and large wave-lengths, probably due to mesoscale influences. Also, it is suggested that the neutral surface layer is a poor reference state in some respects, because the structure of turbulence in unstable conditions is quite different from that in stable stratification. The second part, by H. Tennekes, is concerned with the intermittency of the dissipative structure of turbulence and its effects on the velocity and temperature structure functions. It is shown that the modified Kolmogorov-Oboukhov theory, which attempts to explain the consequences of the dissipative intermittency, is unable to predict the shape of the temperature structure functions. The third part of this review, by H. A. Panofsky, deals with wind profiles and turbulence structure above 30 m. It is shown that between 30 and 150 m, surface-layer formulas can be used, if such mesoscale effects as changes of terrain roughness are taken into account where needed. Experimental data on turbulence above 150 m are quite sparse; some of the current scaling laws that can be used in this region are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号