首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glacial geomorphology of Teesdale and the North Pennines uplands is analysed in order to decipher: a) the operation of easterly flowing palaeo-ice streams in the British-Irish Ice Sheet; and b) the style of regional deglaciation. Six landform categories are: i) bedrock controlled features, including glacitectonic bedrock megablocks or ‘rubble moraine’; ii) discrete mounds and hills, often of unknown composition, interpreted as weakly streamlined moraines and potential ‘rubble moraine’; iii) non-streamlined drift mounds and ridges, representing lateral, frontal and inter-ice stream/interlobate moraines; iv) streamlined landforms, including drumlins of various elongation ratios and bedrock controlled lineations; v) glacifluvial outwash and depositional ridges; and vi) relict channels and valleys, related to glacial meltwater incision or meltwater re-occupation of preglacial fluvial features. Multiple tills in valley-floor drumlin exposures indicate that the subglacial bedform record is a blend of flow directions typical of areas of discontinuous till cover and extensive bedrock erosional landforms. Arcuate assemblages of partially streamlined drift mounds are likely to be glacially overridden latero-frontal moraines related to phases of “average glacial conditions” (palimpsests). Deglacial oscillations of a glacier lobe in mid-Teesdale are marked by five inset assemblages of moraines and associated drift and meltwater channels, named the Glacial Lake Eggleshope, Mill Hill, Gueswick, Hayberries and Lonton stages. The Lonton stage moraines are thought to be coeval with bedrock-cored moraines in the central Stainmore Gap and likely record the temporary development of cold-based or polythermal ice conditions around the margins of a plateau-based icefield during the Scottish Readvance.  相似文献   

2.
This article describes distinctive lateral meltwater channels at the margins of low-elevation cold-based glaciers in the Dry Valleys. The channels significantly modify the ground surface and indicate that cold-based glaciers can be active geomorphic agents. Summer meltwater from the glacier surface flows over ice-aprons and erodes into the frozen ground creating channels up to 3 m deep and 10 m wide adjacent to unmodified ground that is protected beneath the glacier itself. Rapid fluvial excavation in the channels leads to undercutting and collapse of channel walls, which is capable of overturning large boulders. During glacial retreat, a succession of channels is incised into newly exposed ground creating a distinctive series of nested lateral channels and ridges. These represent the most obvious and persistent geomorphological signature of cold-based glacier activity in the region. Cold-based glaciers may advance and retreat over the same area many times without necessarily destroying older features, thereby creating a complex series of channels, deposits and remnant surfaces with a disordered chronology. Recognizing the role of cold-based glaciers and their meltwater channels on landscape evolution is critical for interpreting the timing and style of glacial events in the Antarctic.  相似文献   

3.
On North Harris and southeast Lewis a weathering limit separates glacially-moulded bedrock on low ground from frost-shattered bedrock and blockfields on high plateaux. Analysis of the depths of horizontal stress-release joints demonstrates significant contrasts in bedrock weathering above and below this boundary, and the survival of gibbsite only in soils above the weathering limit indicates that it represents the upper limit of Late Devensian glacial erosion. The weathering limit declines regularly in altitude on either side of the former ice shed, and is therefore interpreted as a periglacial trimline defining the upper limit of a locally-nourished ice mass at its maximum extent, rather than a former thermal boundary between protective cold-based and erosive warm-based ice. Calculated basal shear stress values are consistent with this interpretation. The configuration of the trimline indicates that at the last glacial maximum the area supported an ice cap that achieved a maximum altitude of ca. 700 m above present sea level and declined in altitude to the west-northwest and east-southeast at an average gradient of ca. 20 m km?1. Extrapolation of the dimensions of this ice cap suggests that it terminated ca. 7–10 km west of the present coast of Harris, and was confluent with mainland ice a short distance east of the present coastline.  相似文献   

4.
Three wells in New Hampshire were sampled bimonthly over three years to evaluate the temporal variability of arsenic concentrations and groundwater age.All samples had measurable concentrations of arsenic throughout the entire sampling period and concentrations in individual wells had a mean variation of more than 7 μg/L.The time series data from this sampling effort showed that arsenic concentrations ranged from a median of 4 μg/L in a glacial aquifer well(SGW-65)to medians of 19μg/L and37 μg/L in wells(SGW-93 and KFW-87)screened in the bedrock aquifer,respectively.These high arsenic concentrations were associated with the consistently high pH(median≥8)and low dissolved oxygen(median0.1 mg/L)in the bedrock aquifer wells,which is typical of fractured crystalline bedrock aquifers in New Hampshire.Groundwater from the glacial aquifer often has high dissolved oxygen,but in this case was consistently low.The pH also is generally acidic in the glacial aquifer but in this case was slightly alkaline(median = 7.5).Also,sorption sites may be more abundant in glacial aquifer deposits than in fractured bedrock which may contribute to lower arsenic concentrations.Mean groundwater ages were less than 50 years old in all three wells and correlated with conservative tracer concentrations,such as chloride;however,mean age was not directly correlated with arsenic concentrations.Arsenic concentrations at KFW-87 did correlate with water levels,in addition,there was a seasonal pattern,which suggests that either the timing of or multiple sampling efforts may be important to define the full range of arsenic concentrations in domestic bedrock wells.Since geochemically reduced conditions and alkaline pHs are common to both bedrock and glacial aquifer wells in this study,groundwater age correlates less strongly with arsenic concentrations than geochemical conditions.There also is evidence of direct hydraulic connection between the glacial and bedrock aquifers,which can influence arsenic concentrations.Correlations between arsenic concentrations and the age of the old fraction of water in SGW-65 and the age of the young fraction of water in SGW-93 suggest that water in the two aquifers may be mixing or at least some of the deeper,older water captured by the glacial aquifer well may be from a similar source as the shallow young groundwater from the bedrock aquifer.The contrast in arsenic concentrations in the two aquifers may be because of increased adsorption capacity of glacio-fluvial sediments,which can limit contaminants more than fractured rock.In addition,this study illustrates that long residence times are not necessary to achieve more geochemically evolved conditions such as high pH and reduced conditions as is typically found with older water in other regions.  相似文献   

5.
A proposal for the classification of accumulations formed at the foot of mountain slopes and glacier snouts is presented for South Spitsbergen. Simple (talus cones) and complex (protalus ramparts, protalus rock glaciers, moraine rock glaciers) landforms are distinguished. The homogeneity of the features deposited at the foot of mountain slopes on a bedrock as well as on a glacial ice is noted, although the latter are more easily destructed due to melting of the buried ice. A significance of the ice core (interstitial or glacial ice) for a development of protalus rock glaciers and moraine rock glaciers is emphasized.  相似文献   

6.
Field examination of four landforms in the Wasdale area of the western Lake District that have previously been classified as relict rock glaciers indicates that such designation is no longer appropriate. Two of the features consist of bedrock with clusters of locally derived boulders; another is largely the product of glacial deposition with some evident fluvial modification; the fourth resembles a series of solifluction lobes, which may also have undergone some fluvial alteration. Use of these features to draw palaeoclimatic inferences concerning permafrost and temperature is no longer tenable.  相似文献   

7.
Peter Wilson 《Geology Today》2011,27(4):149-153
The Lake District is a region of great scenic beauty in north‐west England that has inspired artists and poets alike, and which comes high on the list of classic geological localities in Great Britain in terms of both bedrock and geomorphological features. With its inspiring views, the Lake District is often portrayed as the product of repeated glaciation, mainly because of the clarity of the erosional and depositional features that can be seen there. But since the last glaciers disappeared other processes have been modifying the landscape, processes that have superimposed their own signatures on to the glacial features. Hillslopes in particular have undergone significant changes, as a result of slope failures in both bedrock and superficial sediments. Although these landforms are not unknown, they have not received the same level of investigation as the glacial features, resulting in a limited appreciation of their spatial distribution and significance in reshaping the landscape. This article outlines the characteristics and origins of some slope failure types, and demonstrates that there is still much to learn about the Lake District landscape.  相似文献   

8.
Paleoseismicity denotes past (pre-instrumental) earthquakes as recorded by bedrock structures, morphological features and sedimentological criteria. Glacial varves. eskers and deltas are excellent records of paleoseismic events. Data from Sweden are presented. Faults, fractures and various types of sedimentary disturbances of Late Pleistocene and Holocene age frequently occur. It is concluded that the seismic activity was very intensive in connection with the peak rates of glacial isostatic uplift, and that this was a natural effect of the geodynamic processes operating.  相似文献   

9.
Subglacial erosional forms are commonly found on bedrock substrates inside the Late Weichselian ice margin in County Donegal, northwest Ireland, and can be used to provide detailed information on subglacial processes and environments. The erosional forms occur on spatial scales from whalebacks (tens of metres in scale), to asymmetric and channelized bedrock-cut scours (tens of cm in scale) and striations (mm scale). Processes responsible for development of subglacial erosional forms occur along a continuum, from free meltwater existing as a laterally extensive sheet at the ice-bed interface, to abrasion by basal ice. Channelized bedrock-cut scours are particularly common in County Donegal, and show asymmetric and meandering thalwegs, U-shaped cross-profiles and steep lateral margins. Innermost parts of the scours are highly polished and have striations that follow thalweg direction. In places, bedrock surfaces are overlain by a delicate polish and thin calcite cement, and are buried beneath glacial till. Based on their morphology, the bedrock scours are interpreted as s-forms caused by high-pressure subglacial meltwater erosion. Striations within the scoured channels reflect periods of ice-bed coupling and subglacial abrasion. The range of features observed here was used to consider relationships between subglacial topography, hydraulic processes and ice-bed coupling. Precipitation of calcite cement took place in depressions on the bedrock surface by CO2 degassing. Infilling of depressions by glacial till formed a new type of 'sticky spot' related to spatial variations in subglacial water pressure. The temporal evolution of sticky spots reflects interactions within the subglacial environment between subglacial relief, hydraulic regime and ice-bed coupling.  相似文献   

10.
Tills are described which occur in ridges and mounds arranged both parallel and transverse to the flow direction of the depositing glacier. Field localities are drawn from the English Midlands, Western Canada, and South Victoria Land, Antarctica. The tills retain textural and structural properties associated with glacial transport, and have suffered a minimum of redistribution suhsequent to their release from glacier ice. It is shown that ridges and mounds cannot he explained in terms of preferential till accretion. An alternative mechanism is presented in which form and structurc are a result of redistribution of debris in transport by secondary flows in ice.
Flutings are longitudinal forms which are related to helicoidal flow cells. Fabric distributions, patterns of till thickness, and internal structure support the helicoidal flow hypothesis.
Debris entrainment by Antarctic cold-based glaciers is explained by consideration of the morphology and sedimentology of the ice margin and the pattern of glacier flow. Deposition by sublimation and melt-out produces an upwards succession of (1) undisturbed proglacial deposits; (2) a complex of poorly sorted flow deposits intercalated with sorted and stratified water-lain deposits; (3) foliated till with sub-horizantal jointing and isolated clasts. A section shobbing this succession is described from Taylor Valley, Antarctica.
Transverse asymmetric ridges are related to till stacking by over-folding in the marginal compressive zone of cold-based glaciers. Plastic deformation of the debris-laden ice may be enhanced by incorporated salts. The folding process is illustrated by structures within Taylor glacier, and is used to explain Pleistocene landforms and structures in Shropshirc, England and Taylor Valley, Antarctica.  相似文献   

11.
A new digital map of glacial geomorphic features and interpreted glacial landsystems was produced for an area covering ~415 000 km2 in the Keewatin Sector of the Laurentide Ice Sheet (LIS) in Nunavut. The map integrates information from previous surficial geology maps and >14 000 field stations, and is significantly improved by the detailed inventory of ~152 000 glacigenic features using high-resolution ArcticDEM data and Landsat 8 imagery. From this, we identify and map coherent patterns of landform development (landsystems) between the Manitoba border and the Arctic coast, many of which are entirely new and others that are significantly modified or updated. In particular, we recognize six separate ice streams, including one probable remnant ice stream, and we delineate numerous palimpsest streamlined landscapes with associated ice-flow trends and relative ages. A continuum of relict terrains with varying basal ice thermal conditions is mapped for the first time in the ice divide migration zone between Baker Lake and Wager Bay. In addition, deglacial cold-based retreat terrains and preserved warm-based landscapes unaffected by younger glacial events have been identified. These new georeferenced, multi-scale data sets and interpreted glacial landsystems provide a comprehensive framework to strengthen reconstructions of the glacial history and dynamics of one of the largest ice domes of the LIS, identify distinct glacial sediment transport paths for applications to mineral exploration, and test numerical modelling of the LIS in support of climate change studies and long-term evolution of modern ice sheets.  相似文献   

12.
Buried palaeo‐valley systems have been identified widely beneath lowland parts of the UK including eastern England, central England, south Wales and the North Sea. In the Midland Valley of Scotland palaeo‐valleys have been identified yet the age and genesis of these enigmatic features remain poorly understood. This study utilizes a digital data set of over 100 000 boreholes that penetrate the full thickness of deposits in the Midland Valley of Scotland. It identified 18 buried palaeo‐valleys, which range from 4 to 36 km in length and 24 to 162 m in depth. Geometric analysis has revealed four distinct valley morphologies, which were formed by different subglacial and subaerial processes. Some palaeo‐valleys cross‐cut each other with the deepest features aligning east–west. These east–west features align with the reconstructed ice‐flow direction under maximum conditions of the Main Late Devensian glaciation. The shallower features appear more aligned to ice‐flow direction during ice‐sheet retreat, and were therefore probably incised under more restricted ice‐sheet configurations. The bedrock lithology influences and enhances the position and depth of palaeo‐valleys in this lowland glacial terrain. Faults have juxtaposed Palaeozoic sedimentary and igneous rocks and the deepest palaeo‐valleys occur immediately down‐ice of knick‐points in the more resistant igneous bedrock. The features are regularly reused and the fills are dominated by glacial fluvial and glacial marine deposits. This suggests that the majority of infilling of the features happened during deglaciation and may be unrelated to the processes that cut them.  相似文献   

13.
The greatest natural threats to the integrity of the geological barriers to nuclear wastes isolated in cavities mined at depths between 400 and 800 m are likely during rapid retreats of future ice sheets. The next major glacial retreat is expected at ca 70 ka, well within the lifetime of high grade nuclear waste, but it is not yet clear how long man's greenhouse effect may delay it.

This contribution discusses the potential problems posed to European waste isolation sites during erosion by ice and over-pressurizing of meltwater and gasses in a lithosphere flexed by major ice sheets. These depend on the target rocks and the location of the site with respect to the ice-streams and margins of future ice sheets of particular size.

No sites are planned under the centres of future ice sheets in Europe where end-glacial earthquakes can be expected to reactivate major faults, nor where ice can be expected to deepen and lengthen fjords along the Atlantic coast. Sites in the Alps may be vulnerable to radical changes in the patterns of glacial troughs. The stability and geohydrology of sites in coastal areas beyond future ice margins are threatened by river gorges when sea level falls ca 125 m or, in enclosed basins like the Mediterranean, ever lower. The greatest problems are likely in lowland regions exposed by the rapid retreat of thick ice fronts where large lakes on or under thick warm-based ice are dammed by more distal cold-based ice. Groundwater in subhorizontal fractures dilated by glacial unloading may reach over-pressures capable of hydraulically lifting megablocks of bedrock with fracture permeability and/or the ice damming them so that less permeable substrates are susceptible to incisions eroded to depths of ca 360 at locations controlled mainly by ice topography, kinematics and history.  相似文献   


14.
《Earth》2007,80(1-2):47-73
Relict non-glacial surfaces occur within many formerly glaciated landscapes and contain important information on past surface processes and long-term landscape evolution. Relict non-glacial surfaces are distinguishable from glacial surfaces by large-scale morphologies, including rounded summits, fluvial valleys, and cryoplanation terraces and pediments, and the presence of tors, blockfields, and/or saprolites. Preservation during glaciation occurs either through coverage by non-erosive, cold-based, ice or as nunataks. Although surface morphologies and denudation rates indicate a continuous non-glacial surface history since preglacial times, relict non-glacial surfaces are dynamic features that have evolved during the Quaternary. Depending on spatial variables such as lithology, slope, regolith depth and the abundance of fine matrix and water some surfaces are denuding very slowly, while others display more rapid denudation. High spatial variability in denudation rates results in changing surface morphologies over time. Denudation rates also display high temporal variability, with much surface evolution having perhaps occurred soon after the initial onset of glaciation or during paraglacial phases. While some parts of non-glacial landscapes are currently active, others may be largely inactive relicts of past higher energy regimes. Although non-glacial surfaces are dynamic much remains to be determined regarding surface denudation rates and the magnitude of morphological changes over time.  相似文献   

15.
冰川槽谷横剖面定量化研究方法及其影响因素   总被引:2,自引:2,他引:0  
姚盼  王杰 《冰川冻土》2015,37(4):1028-1040
冰川槽谷(“U”形谷)是冰川与下伏基岩相互作用的结果, 是典型的冰蚀地形, 对其定量化研究是了解冰川作用过程以及冰川槽谷演化过程的重要途径. 二次多项式(y=A+Bx+Cx2)和幂函数(y=axb)是定量描述冰川槽谷形态的两种较普遍的方法, 二次多项式可以描述冰川槽谷的整体形态且不需要考虑高程基准面的选择, 但是该方法不能用于槽谷间的比较且其只能较准确地描述接近抛物线的横剖面; 幂函数不但可以反映不同作用过程形成的谷地, 还能在不同横剖面间进行比较, 但幂函数在应用过程过会受到坐标原点选取、 对数变化、 后期堆积以及横剖面不对称的影响, 其运用过程更加复杂. 此外, 相同的幂函数指数b可能指示不同的槽谷形态, 形态比率FR的引入并与指数b结合起来使对槽谷形态的描述更加全面. 从冰川动力和外部环境方面出发, 影响槽谷形态的因素主要有冰川作用时间、 基岩的抗侵蚀能力、 岩性的分布以及裂隙、 冰量、 气候、 构造和冰川性质, 后三者对槽谷形态的定量化影响需要进一步进行探讨. 运用不同地区槽谷形态参数所做b~FR图探讨了山地冰川槽谷的发育模式, 发现山地冰川槽谷存在对应于两种不同冰川性质的相反的发育模式, 但是由于岩性、 气候等其他因素的影响, 造成了冰川槽谷发育模式有时出现了不对应的情况.  相似文献   

16.
Previous attention has been called to the morphology of the glaciated Appalachian Plateau, including periglacial phenomena (Coates, 1970; Conners, 1969). This paper deals with an unusually well-developed hierarchy of small landforms in the Great Bend area of the Susquehanna River. Essential properties of these features include: (1) concentration in N-S valleys, (2) till composition, (3) concavo-convex form, sometimes ending in a hill on the valley floor, (4) alternation with steep, truncated bedrock spurs, (5) a col in the interfluve at their head. These characteristics could be explained by the following sequence of events. A prior fluvial landscape was eroded with tributary streams forming lateral valleys that head in cols along the divides. The main stream flowed south between interlocking spurs. Ice then widened the valley, leaving truncated spurs and a straightened stream. Deposition of locally derived till filled tributary valleys, similar to till shadows (Coates, 1966). In periglacial conditions, while nivation was widening the tributary valley heads, solifluction in the unstable till was forming the concavo-convexities that alternate with the truncated bedrock spurs. The hierarchy of forms range from minor convexities to small hills on the main valley floor. Thus, the features are primarily of periglacial origin, but owe their development and position to prior subaerial and glacial events. The cycle may have occurred during more than a single glacial episode. The recession of bedrock spurs and the valley floor convexity of the till features have caused a reversal in stream sinuosity of the main valley.  相似文献   

17.
札达盆地及周缘高山区的第四纪冰川遗迹分布广泛,类型齐全、发育连续.特征的冰碛及冰水堆积地貌有:冰水堆积平原或冰水堆积平台、冰碛丘陵等.挤压构造遗迹有:褶皱、断裂表皮构造、压坑、压裂构造、变形砾石等.ESR年代测定结果表明,冰碛形成的最大年龄为2.33Ma.依据冰碛、冰水堆积的特征、分布和形成年代等,区域冰川发育由老到新可划分出:7次冰期、6次间冰期、1次冰缘期、1次新冰期.该区是目前所知青藏高原第四纪冰川遗迹发现最多、保存最全和发育最连续的地区,为青藏高原地区的第四纪冰川演化研究、冰期的划分和对比、古气候古环境的研究,提供了重要的实际资料和依据.   相似文献   

18.
《Quaternary Science Reviews》2007,26(17-18):2185-2200
Taiwan, located at the junction of the Pacific Ocean, the Eurasian continent, and the South China marginal Sea, is of particular interest for reconstructing paleoclimate periods in Eastern Asia. This study reports the first cosmic ray exposure dating (CRE) of glacial features in Taiwan. Among the areas where glacial relicts have been described in Taiwan, the Nanhuta Shan range is probably the place where glacial landforms are best preserved. We consequently focused on this area combining glacial geomorphology observations together with CRE dating using in situ produced 10Be of erratic boulders and ice-sculpted surfaces. When combined with the geomorphic characteristics of the sampled areas, the obtained minimum CRE ages suggest that the glacial retreat in the Nanhuta Shan commenced about 10±3 ka ago and retreat was complete by 7±1 ka ago. This is consistent with the Holocene warming trend deduced from other biological and physico-chemical paleoclimatic records for the region. Estimates of local bedrock surface denudation rates either directly from in situ produced 10Be measurements or from geomorphic considerations are employed to determine the preservation of such glacial features within the highly dynamic setting of Taiwan.  相似文献   

19.
《Quaternary Science Reviews》2007,26(5-6):598-626
Ice-free areas Antarctica reveal a multi-million year history of landscape evolution, but most attention up to now has focused on the Transantarctic Mountains. The Amery Oasis in the northern Prince Charles Mountains borders the Lambert Glacier—Amery Ice Shelf System that drains 1 million km2 of the East Antarctic Ice Sheet, and therefore provides a record of fluctuations of both local and regional ice since the ice sheet first formed in early Oligocene time. This glacial record has been deciphered by (i) geomorphological mapping from aerial photographs and on the ground, (ii) documenting the relationship between thick well-dated, uplifted glaciomarine strata and the underlying palaeolandscape, (iii) examining surficial sediment facies, and (iv) surface-exposure dating using 10Be and 26Al. The SE Amery Oasis records at least 10 million years of landscape evolution beginning with a pre-late Miocene phase of glacial erosion, followed by deposition of glaciomarine strata of the Battye Glacier Formation (Pagodroma Group) in late Miocene time. A wet-based ice sheet next expanded over the SE Amery Oasis, following which deposition of the glaciomarine Pliocene Bardin Bluffs Formation (Pagodroma Group) took place. Both formations were uplifted; by at least 500 and 200 m, respectively. Their tops are characterised by geomorphological surfaces upon which intensive periglacial activity took place. Higher-level bedrock areas were subjected to deep weathering and tor-formation. Early Pleistocene time was characterised by expansion of a cold-based ice sheet across the whole area, but it left little more than patches of sandy gravel and erratic blocks. Late Pleistocene expansion of local ice (the Battye Glacier) saw deposition of moraine-mound complexes on low ground around Radok Lake and ice-dammed lake phenomena. Subglacial drainage of the lake escaped to the east exhuming the sediment-filled gorges. Holocene landscape modification has been relatively superficial. Overall, the landscape of the Amery Oasis evolved primarily under the influence of wet-based (probably polythermal) glaciers in Miocene and Pliocene times, whereas the Quaternary Period was characterised mainly by cold-based glaciers that had comparatively little impact on the landscape.  相似文献   

20.
庐山早更新世冰川作用构造特征与辨析   总被引:3,自引:0,他引:3  
庐山地区,在下述地点发现早更新世冰川作用构造:1.庐山东南麓瓷土矿采区,有巨砾犁入基岩、基岩剪切包裹体和小型倒转褶皱构造;2.庐山西北麓羊角岭,有剪切拖曳构造与注入构造;3.花山北坡,有注入挤压型构造。对这些构造的成因,有冰川说与非冰川说之别。笔者根据各种外营力构造变形模式的分析与类比,认为前一种认识是合理的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号