首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper contributes to the emerging picture of late Pleistocene and Holocene environmental change in the Bonneville basin, western North America, through analysis of pollen and sediments from the Blue Lake marsh system, a major wetland area located on the western margin of the Great Salt Lake desert. Analyses of data obtained from the upper 4 m of the Blue Lake core suggest that during the latest Pleistocene, when Lake Bonneville covered the Blue Lake site, pine and sagebrush dominated terrestrial plant communities. These steppe-woodland taxa declined in abundance after ~12 cal ka BP. Wetland plant communities developed at or nearby Blue Lake by ~11.9 cal ka BP and bulrush-dominated marshes were established no later than 10.8 cal ka BP. The Blue Lake wetlands largely desiccated during a dry and warm early middle Holocene ~8.3–6.5 cal ka BP. Climatic amelioration starting ~6.5 cal ka BP is marked principally by a local return of marshes at the expense of playa and grass meadow communities, and a regional increase in sagebrush relative to other dryland shrubs. Singleleaf pinyon pine migrated into the nearby Goshute Mountains after ~8 cal ka BP. Late Holocene fluctuations include cool intervals from ~4.4 to 3.4 and ~2.7 to 1.5 cal ka BP and warmer conditions from 3.4 to 2.7 cal BP and after 1.5 cal ka BP.  相似文献   

2.
Pollen, chironomid, and ostracode records from a lake located at alpine treeline provide regional paleoclimate reconstructions from the southwest Yukon Territory, Canada. The pollen spectra indicate herbaceous tundra existed on the landscape from 13.6–11 ka followed by birch shrub tundra until 10 ka. Although Picea pollen dominated the assemblages after 10 ka, low pollen accumulation rates and Picea percentages indicate minimal treeline movement through the Holocene. Chironomid accumulation rates provide evidence of millennial-scale climate variability, and the chironomid community responded to rapid climate changes. Ostracodes were found in the late glacial and early Holocene, but disappeared due to chemical changes of the lake associated with changes in vegetation on the landscape. Inferred mean July air temperature, total annual precipitation, and water depth indicate a long-term cooling with increasing moisture from the late glacial through the Holocene. During the Younger Dryas (12.9–11.2 ka), cold and dry conditions prevailed. The early and mid-Holocene were warm and dry, with cool, wet conditions after 4 ka, and warm, dry conditions since the end of the Little Ice Age.  相似文献   

3.
We use a series of tests to evaluate two competing hypotheses about the association of climate and vegetation trends in the northeastern United States over the past 15 kyrs. First, that abrupt climate changes on the scale of centuries had little influence on long-term vegetation trends, and second, that abrupt climate changes interacted with slower climate trends to determine the regional sequence of vegetation phases. Our results support the second. Large dissimilarity between temporally close fossil pollen samples indicates large vegetation changes within 500 years across >4° of latitude at ca 13.25–12.75, 12.0–11.5, 10.5, 8.25, and 5.25 ka. The evidence of vegetation change coincides with independent isotopic and sedimentary indicators of rapid shifts in temperature and moisture balance. In several cases, abrupt changes reversed long-term vegetation trends, such as when spruce (Picea) and pine (Pinus) pollen percentages rapidly declined to the north and increased to the south at ca 13.25–12.75 and 8.25 ka respectively. Abrupt events accelerated other long-term trends, such as a regional increase in beech (Fagus) pollen percentages at 8.5–8.0 ka. The regional hemlock (Tsuga) decline at ca 5.25 ka is unique among the abrupt events, and may have been induced by high climatic variability (i.e., repeated severe droughts from 5.7 to 2.0 ka); autoregressive ecological and evolutionary processes could have maintained low hemlock abundance until ca 2.0 ka. Delayed increases in chestnut (Castanea) pollen abundance after 5.8 and 2.5 ka also illustrate the potential for multi-century climate variability to influence species' recruitment as well as mortality. Future climate changes will probably also rapidly initiate persistent vegetation change, particularly by acting as broad, regional-scale disturbances.  相似文献   

4.
This study contributes to the paleoenvironmental reconstruction of the loess–paleosol sequence of Nussloch, Germany, by using n-alkanes as plant leaf-wax-derived lipid biomarkers. We found that n-alkane patterns and concentrations in the Saalian loess and the last interglacial Eemian paleosol of Nussloch point to very strong degradation and prevailing deciduous vegetation. Degradation effects in the overlying paleosols and loess layers are less pronounced and allow for the application of an end-member mixing model to estimate vegetation changes semi-quantitatively. Our findings highlight the potential for the interpretation of degradation-corrected n-alkane ratios. n-Alkane modelling results for loess layers, paleosols and an in-filled paleochannel dated to ~ 60–32 ka suggest that up to ~ 50% of the n-alkanes were derived from deciduous trees or shrubs. This finding is in agreement with the abundant occurrence of wood fragments and indicates a highly variable and dynamic landscape dominated by tundra shrubland. On the other hand, deciduous trees or shrubs did not contribute significantly to the soil organic matter in the late Weichselian loess layers and the intercalated Gelic Gleysols (~ 32–18 ka).  相似文献   

5.
《Quaternary Science Reviews》2003,22(10-13):961-966
Luminescence dating of loess has generally been restricted to a maximum of 100–150 ka, due primarily to the anomalous fading behaviour of feldspar. Recent studies have shown that the far-red luminescence from feldspar does not suffer from anomalous fading, and as such may have the potential to extend the age range of the luminescence dating method. The purpose of the present project is to further develop luminescence dating techniques using red and far-red emissions to date loess older than 100–150 ka. We present results demonstrating the presence of a far-red (λ>665 nm) IRSL emission in Chinese loess, and describe a series of basic experiments which seek to characterise aspects of this emission. These include an examination of sensitivity change, and dose reconstruction tests via the employment of a modified single aliquot regeneration (SAR) protocol. It is demonstrated that (a) far-red IRSL can be observed from Chinese loess; (b) far-red IRSL signal is highly reproducible; and (c) a range of laboratory doses from 100 up to 600 Gy can be accurately recovered using a modified SAR procedure.  相似文献   

6.
Evidence from Liang Bua, a limestone cave on the island of Flores in East Indonesia, provides a unique opportunity to explore the long term relationship between hominins and their environment. Occupation deposits at the site span ~95 ka and contain abundant stone artefacts, well preserved faunal remains and evidence for an endemic species of hominin: Homo floresiensis. Work at the site included detailed geomorphological and environmental analysis, which has enabled comparisons to be drawn between changes in the occupational intensity in the cave, using stone tool and faunal counts, and changes in the environmental conditions, using the characteristics of the sedimentary layers in the cave and speleothem records. These comparisons demonstrate that H. floresiensis endured rapidly fluctuating environmental conditions over the last ~100 ka, which influenced the geomorphological processes in the cave and their occupational conditions. The intensity of occupation in the cave changed significantly between 95 and 17 ka, with peaks in occupation occurring at 100–95, 74–61 and 18–17 ka. These correlate with episodes of channel formation and erosion in the cave, which in turn correspond with high rainfall, thick soils and high bio-productivity outside. In contrast, periods of low occupational intensity correlate with reduced channel activity and pooling associated with drier periods from 94 to 75 and 36 to 19 ka. This apparent link between intensity of hominin use of the cave and the general conditions outside relates to the expansion and contraction of the rainforest and the ability of H. floresiensis to adapt to habitat changes. This interpretation implies that these diminutive hominins were able to survive abrupt and prolonged environmental changes by changing their favoured occupation sites. These data provide the basis for a model of human–environment interactions on the island of Flores. With the addition of extra data from other sites on Flores, this model will provide a greater understanding of H. floresiensis as a unique human species.  相似文献   

7.
The pollen record of the long succession of marine and continental deposits filling the subsident north-Adriatic foredeep basin (NE Italy) documents the history of vegetation, the landscape evolution and the climate forcing during the last 215 ka at the south-eastern Alpine foreland. The chronology relies on several 14C determinations as well as on estimated ages of pollen-stratigraphical and sea-level event tie-points derived from comparison with high-resolution marine records, speleothemes and ice cores.Mixed temperate rainforests persisted throughout MIS 7a–7c, being replaced by conifer forests after the local glacioeustatic regression during early MIS 6. The Alpine piedmont facing the Adriatic foredeeep was glaciated at the culmination of the penultimate glaciation, as directly testified by in situ fluvioglacial aggradation related to the building of a large morainic amphitheatre. The pollen record allows correlation with other European records and with the IRD from N-Atlantic and off Iberia, thus the duration of the penultimate glacial culmination at the southalpine fringe is estimated less than 13 ka between 148 ± 1 and >135 ka. The site was not reached by the Last Interglacial maximum sea transgression and enregistered a typical, though incomplete, Eemian forest record, lacking Mediterranean evergreen trees. A complex sequence of stadial–interstadial episodes is reconstructed during the Early and Middle Würm: major xerophyte peaks match IRD maxima occurred during Heinrich events in deep-sea cores offshore Iberia and in the N-Atlantic and allows to frame lumps of interstadial phases, marked by Picea peaks, each one including several DO warm events. Broad-leaved thermophilous forests disappeared from the north-eastern plain of Italy at the end of the Early Würm, whereas reduced populations of Abies and Fagus probably sheltered even during the Last Glacial Maximum. A renewed fluvioglacial in situ deposition between 30.4 ± 0.4 and 21.6 ± 0.5 ka cal BP sets the time and duration of the last glacial culmination in the pedemontane morainic amphitheatre. Palynomorphs from Plio-Pleistocene marine successions were reworked by glacier erosion and deposited in the lowland during both the penultimate and the last deglaciation phases. This explains a bias affecting previous pollen records from the region.  相似文献   

8.
The last glacial-interglacial transition (LGIT; 19–9 ka) was characterized by rapid climate changes and significant ecosystem reorganizations worldwide. In western Colorado, one of the coldest locations in the continental US today, mountain environments during the late-glacial period are poorly known. Yet, archaeological evidence from the Mountaineer site (2625 m elev.) indicates that Folsom-age Paleoindians were over-wintering in the Gunnison Basin during the Younger Dryas Chronozone (YDC; 12.9–11.7 ka). To determine the vegetation and fire history during the LGIT, and possible explanations for occupation during a period thought to be harsher than today, a 17-ka-old sediment core from Lily Pond (3208 m elev.) was analyzed for pollen and charcoal and compared with other high-resolution records from the southern Rocky Mountains. Widespread tundra and Picea parkland and low fire activity in the cold wet late-glacial period transitioned to open subalpine forest and increased fire activity in the BøllingAllerød period as conditions became warmer and drier. During the YDC, greater winter snowpack than today and prolonged wet springs likely expanded subalpine forest to lower elevations than today, providing construction material and fuel for the early inhabitants. In the early to middle Holocene, arid conditions resulted in xerophytic vegetation and frequent fire.  相似文献   

9.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

10.
This study seeks to quantify the rate and timing of regolith generation in the Critical Zone at the Susquehanna Shale Hills Critical Zone Observatory (SSHO). Meteoric 10Be depth profiles were determined using measurements from 30 hillslope soil and bedrock core samples in an effort to constrain 10Be inventories. The SSHO is located in the temperate climate zone of central Pennsylvania and comprises a first-order watershed developed entirely on a Fe-rich, organic-poor, Silurian-aged shale. Two major perturbations to the landscape have occurred at SSHO in the geologically recent past, including significant and sustained periglacial activity until after the retreat of the Laurentide ice sheet (~21 ka) and deforestation during early colonial land-use. Bulk soil samples (n = 16) were collected at three locations along a planar hillslope on the southern ridge of the catchment, representing the ridge top, mid-slope and valley floor. Rock chip samples (n = 14) were also collected from a 24 m deep core drilled into the northern ridge top. All meteoric 10Be concentration profiles show a declining trend with depth, with most of the 10Be retained in the uppermost decimeters of the soil. Meteoric 10Be inventories are higher at the mid-slope and valley floor sample sites, at 3.71 ± 0.02 × 1010 at/cm2 and 3.69 ± 0.02 × 1010 at/cm2, than at the ridge top site (1.90 ± 0.01 × 1010 at/cm2). The 10Be inventory at the convex ridge top site implies a minimum residence time of ~10.6 ka, or if erosion is steady, an erosion rate of 19.4 ± 0.2 m/My.  相似文献   

11.
The establishment of a chronology of landscape-forming events in lowland and mid-altitude Tasmania, essential for assessing the relative importance of climatic and human influences on erosion, and for assessing present erosion risk, has been limited by the small number of ages obtained and limitations of dating methods. In this paper we critically assess previous Tasmanian studies, list published radiocarbon ages considered to be dependable, present new radiocarbon and thermoluminescence (TL) ages for 25 sites around Tasmania, and consider the evidence for the hypotheses that erosion processes at low and mid altitudes have been: (1) purely climatically controlled; and (2) influenced both by climatic and anthropogenic (increased fire frequency) effects. A total of 94 dependable finite ages (calibrated for radiocarbon and ‘as measured’ for TL and optically stimulated luminescence (OSL) determinations) are listed for deposits comprising dunes, colluvium, alluvium and loess-like aeolian deposits. Two fall in the >100 ka period, 15 fall in the period 65–35 ka, and 77 fall in the period 35–0.3 ka. There was a sustained increase in erosion recorded in the period 35–15 ka, as reflected by a greater number of dated aeolian deposits during this period.We considered three possible biases that may have affected the age distribution obtained: the limitations of radiocarbon dating, sampling bias, and preservation bias. Sampling bias may have favoured more recent dune strata, but radiocarbon dating and preservation biases are unlikely to have significantly distorted the age distribution obtained.Long but intermittent aeolian deposition is recorded at two sites (Southwood B; c. 59–28 ka and Dunlin Dune; c. 29–14 ka) but there is no evidence of regional loess deposits such as found in New Zealand. The timing of increased erosion in Tasmania between 35 and 30 ka approximately coincides with the intermittent ten-fold increase of dust accumulation between 33 and 30 ka in the Antarctic Dome C ice core. The absence of widespread erosion before 35 ka, the abrupt increase of erosion around this time, the frequent association of erosion products with charcoal, the arrival of people in Tasmania at c. 40 cal ka, and the known use of fires by Aborigines to maintain areas of non-climax vegetation suggest that ecosystem disturbance by anthropogenic fires, in a drier climate than that presently prevailing, may have contributed to erosion in lowland and mid-altitude Tasmania after 35 ka. Thus the Tasmanian erosion record provides circumstantial support for the proposition that human dispersal in southeast Australia was accompanied by significant ecological change.  相似文献   

12.
Glacial isostatic adjustment and multiple earthquake deformation cycles produce temporal and spatial variability in the records of relative sea-level change across south-central Alaska. Bering Glacier had retreated inland of the present coast by 16 ka BP and north of its present terminus by ~14 ka BP. Reconnaissance investigations in remote terrain provide new but limited insights of post-glacial relative sea-level change and the palaeoseismology of the region. Relative sea-level was above present ~9.2 ka BP to at least 5 ka BP before falling to below present. It was above present by the early 20th century, before land uplift in the 1964 M 9.2 earthquake. The pattern of relative sea-level change differs what may be expected in comparison with model predictions for other seismic and non-seismic locations. Buried mud–peat couplets show a great earthquake ~900 cal BP, including evidence of a tsunami. Correlation with other sites suggest simultaneous rupture of adjacent segments of the Aleutian megathrust and the Yakutat microplate.  相似文献   

13.
This paper reports the main sedimentary characteristics, soil micromorphology and optically-stimulated luminescence (OSL) ages, and details the pedosedimentary reconstruction, of the Hudson site situated in the northern Pampas of Buenos Aires province. It also provides the OSL chronology and a reinterpretation of previously reported micromorphological features for the nearby site of Gorina. Finally, the stratigraphic records of both sites are compared and the main environmental events discussed in a regional context.At Hudson, situated at a low altitude environment close to the coastal plain, the basal fine-grained paludal deposits were unconformably covered by coastal marine sediments with an OSL age of ca. 128 ka supporting its correlation with the high stand of sea level of marine isotope stage 5e. A paleosol developed on the marine deposits and the underlying paludal sediments. OSL ages suggest that soil development and its subsequent erosion occurred over some period between ca. 128 and 54 ka. Fine sediment accumulation in a paludal environment continued until prior to ca. 23 ka when the accumulation of the uppermost loess mantle started. It continued until the early Holocene when present soil development began. At Gorina, OSL ages suggest that the upper part of the pedocomplex formed at some stage between ca. 194 and 56 ka. Loess then accumulated followed by an erosional phase; loess deposition restarted by ca. 29 ka and continued until the beginning of the Holocene (ca. 9 ka) when the present land surface was established.The stratigraphic and paleoenvironmental differences exhibited by the Hudson and Gorina records result from their contrasting geomorphological settings. The OSL geochronology suggests that the last interglacial (MIS 5) at Hudson is marked by the accumulation of marine deposits (MIS 5e) and the subsequent development of a paleosol. The equivalent soil-forming interval at Gorina is represented by the upper part of the buried pedocomplex. Both at Gorina and Hudson, loess accumulation was dominant especially during MIS 2. Loess accumulation continued during MIS 1 until the early Holocene with apparently somewhat higher sedimentation rates in Hudson. Pedogenesis has been predominant during the rest of the Holocene, resulting in the formation of the surface soil profiles.  相似文献   

14.
The climates on the eastern Tibetan Plateau are strongly influenced by direct insolation heating as well as monsoon-derived precipitation change. However, the moisture and temperature influences on regional vegetation and climate have not been well documented in paleoclimate studies. Here we present a well-dated and high-resolution loss-on-ignition, peat property and fossil pollen record over the last 10,000 years from a sedge-dominated fen peatland in the central Zoige Basin on the eastern Tibetan Plateau and discuss its ecological and climatic interpretations. Lithology results indicate that organic matter content is high at 60–80% between 10 and 3 ka (1 ka = 1000 cal yr BP) and shows large-magnitude fluctuations in the last 3000 years. Ash-free bulk density, as a proxy of peat decomposition and peatland surface moisture conditions, oscillates around a mean value of 0.1 g/cm3, with low values at 6.5–4.7 ka, reflecting a wet interval, and an increasing trend from 4.7 to 2 ka, suggesting a drying trend. The time-averaged mean carbon accumulation rates are 30.6 gC/m2/yr for the last 10,000 years, higher than that from many northern peatlands. Tree pollen (mainly from Picea), mostly reflecting temperature change in this alpine meadow-forest ecotonal region, has variable values (from 3 to 34%) during the early Holocene, reaches the peak value during the mid-Holocene at 6.5 ka, and then decreases until 2 ka. The combined peat property and pollen data indicate that a warm and wet climate prevailed in the mid-Holocene (6.5–4.7 ka), representing a monsoon maximum or “optimum climate” for the region. The timing is consistent with recent paleo-monsoon records from southern China and with the idea that the interplays of summer insolation and other extratropical large-scale boundary conditions, including sea-surface temperature and sea-level change, control regional climate. The cooling and drying trend since the mid-Holocene likely reflects the decrease in insolation heating and weakening of summer monsoons. Regional synthesis of five pollen records along a south–north transect indicates that this climate pattern can be recognized all across the eastern Tibetan Plateau. The peatland and vegetation changes in the late Holocene suggest complex and dramatic responses of these lowland and upland ecosystems to changes in temperature and moisture conditions and human activities.  相似文献   

15.
n-Alkane biomarker distributions in sediments from Swamp Lake (SL), in the central Sierra Nevada of California (USA), provide evidence for an increase in mean lake level ~ 3000 yr ago, in conjunction with widespread climatic change inferred from marine and continental records in the eastern North Pacific region. Length distributions of n-alkane chains in modern plants growing at SL were determined and compared to sedimentary distributions in a core spanning the last 13 ka. As a group, submerged and floating aquatic plants contained high proportions of short chain lengths (< nC25) compared to emergent, riparian and upland terrestrial species, for which chain lengths > nC27 were dominant. Changes in the sedimentary n-alkane distribution over time were driven by variable inputs from plant sources in response to changing lake level, sedimentation and plant community composition. A shift toward shorter chain lengths (nC21, nC23) occurred between 3.1 and 2.9 ka and is best explained by an increase in the abundance of aquatic plants and the availability of shallow-water habitat in response to rising lake level. The late Holocene expansion of SL following a dry mid-Holocene is consistent with previous evidence for increased effective moisture and the onset of wetter conditions in the Sierra Nevada between 4.0 and 3.0 ka.  相似文献   

16.
Data from eastern England, Scotland, the northern North Sea and western Norway have been compiled in order to outline our current knowledge of the Middle and Late Weichselian glacial history of this region. Radiometric dates and their geological context from key sites in the region are presented and discussed. Based on the available information the following conclusions can be made: (i) Prior to 39 cal ka and most likely after ca 50 cal ka Scotland and southern Norway were extensively glaciated. Most likely the central North Sea was not glaciated at this time and grounded ice did not reach the shelf edge. (ii) During the time interval between 29 and 39 ka periods with ameliorated climate (including the Ålesund, Sandnes and Tolsta Interstadials) alternated with periods of restricted glaciation in Scotland and western Norway. (iii) Between 29 and 25 ka maximum Weichselian glaciation of the region occurred, with the Fennoscandian and British ice sheets coalescing in the central North Sea. (iv) Decoupling of the ice sheets had occurred at 25 ka, with development of a marine embayment in the northern North Sea (v) Between 22 and 19 ka glacial ice expanded westwards from Scandinavia onto the North Sea Plateau in the Tampen readvance. (vi) The last major expansion of glacial ice in the offshore areas was between 17.5 and 15.5 ka. At this time ice expanded in the north-western part of the region onto the Måløy Plateau from Norway and across Caithness and Orkney and to east of Shetland from the Moray Firth. The Norwegian Channel Ice Stream (NCIS), which drained major parts of the south-western Fennoscandian Ice Sheet, was active at several occasions between 29 and 18 ka.  相似文献   

17.
Charcoal and fossil wood taken from palaeosols, sediments and artificial structures were analysed in order to evaluate the regional pedoanthracological potential and to obtain information on Holocene environmental changes, particularly on possible past tree occurrences in southern Tibet. This research was initiated by the question to what extent this area is influenced by past human impact. Even recent evaluations have perceived the present treeless desertic environment of southern Tibet as natural, and the previous Holocene palaeoenvironmental changes detected were predominantly interpreted to be climate-determined. The material analysed – comprising a total of 53 botanical spectra and 55 radiocarbon datings from 46 sampling sites (c. 3500–4700 m a.s.l.) – represents the largest systematically obtained data set of charcoal available from Tibet so far. 27 taxa were determined comprising trees, (dwarf-) shrubs and herbs as well as grasses. The predominant tree taxa were Juniperus, Hippophae, Salix and Betula. According to their present-day occurrence in the region, the genera Juniperus and Hippophae can be explicitly attributed to tree species. Further, less frequently detected tree taxa were Populus, Pinus, Quercus, Taxus and Pseudotsuga. Charcoal of Juniperus mainly occurred on southern exposures, whereas Betula was associated with northern exposures. In contrast, the (partly) phreatophytic taxa Hippophae and Salix showed no prevalent orientation. The distribution of radiocarbon ages on charcoal revealed a discontinuous record of burning events cumulating in the Late Holocene (c. 5700–0 cal BP). For southern Tibet, these results indicated a Late Holocene vegetation change from woodlands to the present desertic pastures. As agrarian economies in southern and south-eastern Tibet date back to c. 3700 and 5700 cal BP, respectively, and the present-day climate is suitable for tree growth up to c. 4600 m a.s.l., we concluded that the Late Holocene loss or thinning out of woodlands had been primarily caused by humans.  相似文献   

18.
The Holocene and late Pleistocene environmental history of the teri (‘sandy waste’ in local parlance) red sands in the southeast coastal Tamil Nadu was examined using remote sensing, stratigraphy, and optically stimulated luminescence (OSL) dating. Geomorphological surveys enabled the classification of the teri red sands as, 1) inland fluvial teri, 2) coastal teri and, 3) near-coastal teri dunes. The inland teri sediments have higher clay and silty-sand component than the coastal and near-coastal teri, suggesting that these sediments were deposited by the fluvial process during a stronger winter monsoon around > 15 ka. The coastal teri dunes were deposited prior to 11.4 ± 0.9 ka, and the near-coastal dunes aggraded at around 5.6 ± 0.4 ka. We interpret that the coastal dunes were formed during a period of lower relative sea level and the near-coastal dunes formed during a period of higher sea level. Dune reddening is post deposition occurred after 11.4 ± 0.9 ka for the coastal teri dunes and after 5.6 ± 0.4 ka for the near-coastal teri dunes. Presence of microlithic sites associated with the coastal dunes suggest that the cultures existed in the region during 11.4 ± 0.9 ka and 5.6 ± 0.4 ka.  相似文献   

19.
Hydrography of the Bay of Bengal is highly influenced by the river runoff and rainfall during the southwest monsoon. We have reconstructed δ18Osw, sea surface salinity and sea surface temperature (SST) changes in the Bay of Bengal by using paired measurements of δ18O and Mg/Ca in a planktonic foraminifera species Globigerinoides ruber from core SK218/1 in the western Bay of Bengal in order to understand the rainfall variability associated with southwest monsoon over the past 32 kyr. Our SST reconstructions reveal that Bay of Bengal was ~3.2 °C cooler during the LGM as compared to present day temperature and a ~3.5 °C rise in SST is documented from 17 to 10 ka. Both SST and δ18Osw exhibit greater amplitude fluctuations during MIS 2 which is attributable to the variability of NE monsoon rainfall and associated river discharge into the Bay of Bengal in association with strong seasonal temperature contrast. On set of strengthening phase of SW monsoon was started during Bølling/Allerød as evidenced by the low δ18Osw values ~14.7 ka. δ18Osw show consistently lower values during Holocene (with an exception around 5 ka), which suggests that the freshening of Bay of Bengal due to heavy precipitation and river discharge caused by strong SW monsoon. Results of this study signify that the maximum fluctuations of the NE monsoon rainfall during MIS 2 appear to be controlled by the strong seasonality and boundary conditions.  相似文献   

20.
Proglacial lake sediments at Goting in the Higher Central Himalaya were analyzed to reconstruct the summer monsoon variability during the Last Glacial to early Holocene. Sedimentary structures, high resolution mineral magnetic and geochemical data suggest that the lacustrine environment experienced fluctuating monsoonal conditions. Optically stimulated luminescence (OSL) dating indicates that the lake sedimentation occurred before 25 ka and continued after 13 ka. During this period, Goting basin witnessed moderate to strengthened monsoon conditions around 25 ka, 23.5 ka–22.5 ka, 22 ka–18 ka, 17 ka–16.5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at ~11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen.A close correspondence at the millennial scale between our data and that of continental and marine records from the Indian sub-continent suggests that Goting basin responded to periods of strengthened monsoon during the Last Glacial to early Holocene. We attribute the millennial scale monsoon variability to climatic instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号