首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence. After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes beneath the Dolomieu summit crater were still recorded at a rate of about one per minute. This unusual activity continued and increased in intensity over the next three weeks, ending with the formation of a pit crater within Dolomieu. Based on ground deformation, measured by rapid-static and continuous GPS and an extensometer, seismic data, and lava effusion patterns, the eruptive period is divided into five stages: 1) slow summit inflation and sporadic seismicity; 2) rapid summit inflation and a short seismic crisis; 3) rapid flank inflation, onset of summit deflation, sporadic seismicity, accompanied by stable effusion; 4) flank inflation, coupled with summit deflation, intense seismicity, and increased lava effusion; and finally 5) little deflation, intense shallow seismicity, and the end of lava effusion. We propose a model in which the pre-intrusive inflation of Stage 1 in the months preceding the eruption was caused by a magma body located near sea level. The magma reservoir was the source of an intrusion rising under the summit during Stage 2. In Stage 3, the magma ponded at a shallow level in the edifice while the lateral injection of a radial dike reached the surface on the eastern flank of the basaltic volcano, causing lava effusion. Pressure decrease in the magmatic plumbing system followed, resulting in upward migration of a collapse front, forming a subterranean column of debris by faulting and stoping. This caused intense shallow seismicity, increase in discharge of lava and volcanic tremor at the lateral vent in Stage 4 and, eventually the formation of a pit crater in Stage 5.  相似文献   

2.
Ten years after the last effusive eruption and at least 15 years of seismic quiescence, volcanic seismic activity started at Colima volcano on 14 February 1991, with a seismic crisis which reached counts of more than 100 per day and showed a diversity of earthquake types. Four other distinct seismic crises followed, before a mild effusive eruption in April 1991. The second crisis preceded the extrusion of an andesitic scoriaceous lava lobe, first reported on 1 March; during this crisis an interesting temporary concentration of seismic foci below the crater was observed shortly before the extrusion was detected. The third crisis was constituted by shallow seismicity, featuring possible mild degassing explosion-induced activity in the form of hiccups (episodes of simple wavelets that repeat with diminishing amplitude), and accompanied by increased fumarolic activity. The growth of the new lava dome was accompanied by changing seismicity. On 16 April during the fifth crisis which consisted of some relatively large, shallow, volcanic earthquakes and numerous avalanches of older dome material, part of the newly extruded dome, which had grown towards the edge of the old dome, collapsed, producing the largest avalanches and ash flows. Afterwards, block lava began to flow slowly along the SW flank of the volcano, generating frequent small incandescent avalanches. The seismicity associated with the stages of this eruptive activity shows some interesting features: most earthquake foci were located north of the summit, some of them relatively deep (7–11 km below the summit level), underneath the saddle between the Colima and the older Nevado volcanoes. An apparently seismic quiet region appears between 4 and 7 km below the summit level. In June, harmonic tremors were detected for the first time, but no changes in the eruptive activity could be correlated with them. After June, the seismicity decreasing trend was established, and the effusive activity stopped on September 1991.  相似文献   

3.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

4.
On January 30, 1974, an explosive eruption began on the western side of Etna. The activity evolved into two eruptive periods (January 30–February 17 and March 11–29). Two spatter cones (Mount De Fiore I and Mount De Fiore II) were formed at a height of about 1650 m a.s.l. and a distance of 6 km from the summit area. The effusive activity was very irregular with viscous lava flows of modest length.A seismic network of four stations was established around the upper part of the volcano on February 3. Moreover additional mobile stations were set up at several different sites in order to obtain more detailed informations on epicenter locations and spectral content of volcanic tremor.The volcanic activity is discussed in relation to the distribution of epicenters and the time-space distribution of the spectral characteristics of volcanic earthquakes and tremor. The characteristics of the seismic activity suggest that the flank eruption of Mount Etna was probably feed by a lateral branch of the main conduit yielding the activity at the Central Crater.  相似文献   

5.
A new Klyuchevskoy volcano eruptive cycle encompasses terminal (March 30, 1972 to August 23, 1974) and lateral (August 23, 1974 to December, 1974) eruption stages. The terminal eruption stage resulted in lava flows and parasitic cones that formed on the south-western flank of the volcano. Eruption products are moderately alkalic high-alumina olivine-bearing andesite-basalts. The terminal eruption stage was accompanied by volcanic earthquakes and volcanic tremor. The lateral eruption was accompanied by explosive earthquakes. Volcanic tremor was the most useful prognostic sign indicating the onset of the lateral eruption. Eruptive mechanisms are discussed.  相似文献   

6.
The July 17 – August 9, 2001 flank eruption of Mt. Etna was preceded and accompanied by remarkable changes in volcanic tremor. Based on the records of stations belonging to the permanent seismic network deployed on the volcano, we analyze amplitude and frequency content of the seismic signal. We find considerable changes in the volcanic tremor which mark the transition to different styles of eruptive activity, e.g., lava fountains, phreatomagmatic activity, Strombolian explosions. In particular, the frequency content of the signal decreases from 5 Hz to 3 Hz at our reference station ETF during episodes of lava fountains, and further decreases at about 2 Hz throughout phases of intense lava emission. The frequency content and the ratios of the signal amplitude allow us to distinguish three seismic sources, i.e., the peripheral dike which fed the eruption, the reservoir which fed the lava fountains, and the central conduit. Based on the analysis of the amplitude decay of the signal, we highlight the migration of the dike from a depth of ca. 5 km to about 1 km between July 10 and 12. After the onset of the effusive phase, the distribution of the amplitude decay at our stations can be interpreted as the overall result of sources located within the first half kilometer from the surface. Although on a qualitative basis, our findings shed some light on the complex feeding system of Mt. Etna, and integrate other volcanological and geophysical studies which tackle the problem of magma replenishment for the July–August, 2001 flank eruption. We conclude that volcanic tremor is fundamental in monitoring Mt. Etna, not only as a marker of the different sources which act within the volcano edifice, but also of the diverse styles of eruptive activity. An erratum to this article is available at .  相似文献   

7.
A multidisciplinary geological and compositional investigation allowed us to reconstruct the occurrence of flank eruptions on the lower NE flank of Stromboli volcano since 15 ka. The oldest flank eruption recognised is Roisa, which occurred at ~15 ka during the Vancori period, and has transitional compositional characteristics between the Vancori and Neostromboli phases. Roisa was followed by the San Vincenzo eruption that took place at ~12 ka during the early stage of Neostromboli period. The eruptive fissure of San Vincenzo gave rise to a large scoria cone located below the village of Stromboli, and generated a lava flow, most of which lies below sea level. Most of the flank eruptions outside the barren Sciara del Fuoco occurred in a short time, between ~9 and 7 ka during the Neostromboli period, when six eruptive events produced scoria cones, spatter ramparts and lava flows. The Neostromboli products belong to a potassic series (KS), and cluster in two differently evolved groups. After an eruptive pause of ~5,000 years, the most recent flank eruption involving the NE sector of the island occurred during the Recent Stromboli period with the formation of the large, highly K calc-alkaline lava flow field, named San Bartolo. The trend of eruptive fissures since 15 ka ranges from N30°E to N55°E, and corresponds to the magma intrusions radiating from the main feeding system of the volcano.  相似文献   

8.
Analysis of the historical records of Etnas eruptive activity for the past three centuries shows that, after the large 1669 eruption, a period of about 60 years of low-level activity followed. Starting from 1727, explosive activity (strombolian, lava fountaining and subplinian) at the summit crater increased exponentially to the present day. Since 1763, the frequency of flank eruptions also increased and this value remained high until 1960; afterward it further increased sharply. In fact, the number of summit and flank eruptions between 1961 and 2003 was four times greater than that of the pre-1960 period. This long-term trend of escalating activity rules out a pattern of cyclic behaviour of the volcano. We propose instead that the 1670–2003 period most likely characterises a single eruptive cycle which began after the large 1669 eruption and which is still continuing.On the basis of the eruptive style, two distinct types of flank eruptions are recognised: Class A and Class B. Class A eruptions are mostly effusive with associated weak strombolian activity; Class B eruptions are characterised by effusive activity accompanied by intense, long-lasting, strombolian and lava fountaining activity that produces copious tephra fallouts, as during the 2001 and 2002–2003 eruptions. Over the past three centuries, seven Class B eruptions have taken place with vents located mainly on the south-eastern flank, indicating that this sector of the volcano is a preferential zone for the intrusion of volatile-rich magma rising from the deeper region of the Etna plumbing system.Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: M. Carroll  相似文献   

9.
Mt. Etna, in Sicily (Italy) is well known for frequent effusive and explosive eruptions from both its summit and flanks. South-East Crater (SE Crater), one of the four summit craters, has been the most active in the last 20 years and often produces episodic lava fountains over periods lasting from a few weeks to months. The most striking of such eruptive phases was in 2000. Sixty four lava fountains, separated by quiescent intervals and sometimes associated with lava overflows, occurred that year between January and June, a time period during which we consider the volcano to have been in episodic eruption. This paper presents mainly results of petrochemical investigations carried out on both tephra and lavas collected during a number of the lava fountain episodes in 2000. The new data have been integrated with volcanological and seismic information in order to correlate the features of the eruptive activity with magma-gas dynamics in the plumbing system of SE Crater. The main findings allow us to characterise the 2000 episodic eruption in the framework of the recent SE Crater activity. In particular, we infer that the onset of the 2000 eruption was triggered by the ascent of new, more primitive and volatile-rich magma that progressively intruded into the SE Crater reservoir, where it mixed with the resident, more evolved magma. Furthermore, we argue that the 2000 SE Crater lava fountains largely resulted from the instability of a foam layer accumulated at the top of the underlying reservoir and rebuilt prior to each episode, in agreement with the collapsing foam model for lava fountains.  相似文献   

10.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   

11.
Mount Erebus is presently the only Antarctic volcano with sustained eruptive activity in the past few years. It is located on Ross Island and a convecting anorthoclase phonolite lava lake has occupied the summit crater of Mount Erebus from January 1973 to September 1984. A program to monitor the seismic activity of Mount Erebus named IMESS was started in December 1980 as an international cooperative program among Japan, the United States and New Zealand. A new volcanic episode began on 13 September, 1984 and continued until December.Our main observations from the seismic activity from 1982–1985 are as follows: (1) The average numbers of earthquakes which occurred around Mount Erebus in 1982, 1983 and January–August 1984 were 64, 134 and 146 events per day, respectively. Several earthquake swarms occurred each year. (2) The averag number of earthquakes in 1985 is 23 events per day, with only one earthquake swarm. (3) A remarkable decrease of the background seismicity is recognized before and after the September 1984 activity. (4) Only a few earthquakes were located in the area surrounding Erebus mountain after the September 1984 activity.A magma reservoir is estimated to be located in the southwest area beneath the Erebus summit, based on the hypocenter distributions of earthquakes.  相似文献   

12.
A set of grey-purple layered volcanic rocks are found widely distributed from the mountain flank to the main peak of Daliuchong volcano, but it's difficult to identify whether they are volcaniclastic rock or lava rock just by field investigation and the crystal structure observation under microscope. The study of matrix microstructure of the volcanic rocks can help to identify the volcanic facies. We recognize the eruptive facies rocks through observation of the matrix microstructure and pore shape with comparison to those of the volcanic vent facies, extrusive facies and effusive facies rocks under microscope, thus the mentioned layered volcanic rocks could be named as dacitic crystal fragment tuff. Combining the joint work of field investigation, systematic sampling, chemical analyzing and microscopic observation, we summary the Daliuchong volcanic facies as follows:1. The effusive facies lava constitutes the base of Daliuchong volcano and was produced by early eruption.2. The explosive facies is composed of dacite crystal fragment welded tuff and volcanic breccia and mainly distributes on the W, S and NE flank of the volcanic cone.3. The volcanic conduit with its diameter more than one hundred meters is located about 100 meters south of the main peak of the Daliuchong volcano.4. The extrusive facies rock is only exposed near the peak of Daliuchong volcano.Therefore, the volcanism of Daliuchong volcano can be speculated as:Large-scale lava overflowing occurred in the early eruption period; then explosive eruptions happened; at last, the volcanisms ceased marked with magma extrusion as lava dome and plug.  相似文献   

13.
3 ) erupted from circumferential vents near the summit. These flows are nearly an order of magnitude smaller in volume than the predominantly aa flows erupted from radial eruptive fissures near the break in slope (0.06–0.1 km3). The differences in volume and flow morphology with altitude are due to slower eruption rates from summit vents than from flank vents, which, in turn, are attributable to the different heights the magmas must ascend from shallow reservoirs. These observations support the contention that the steep upper flanks were constructed by the buildup of short lava flows rather than by the structural deformation of originally gently dipping flanks. In addition to the higher eruption rates, a subdued lower flank geometry is promoted by the deposition of lava deltas onto the shallow Galápagos platform on the western, northern, and eastern flanks of the volcano. 40Ar/39Ar geochronology and volume estimates show that, despite their morphologic differences, the growth of the western Galápagos shields has been nearly synchronous, precluding an evolutionary model for their development. The wide variations in elevation, volume, area, and the distribution of slope angles among the western volcanoes can be linked instead to different long-term eruption rates and, to a lesser degree, the position of each volcano relative to the edge of the Galápagos platform. Received: 24 September 1998 / Accepted: 7 August 1999  相似文献   

14.
A combination of photogeologic mapping, analysis of Viking Orbiter thermal inertia data, and numerical modelling of eruption conditions has permitted us to construct a new model for the evolution of the martian volcano Alba Patera. Numerous digitate channel networks on the flanks of the volcano are interpreted to be carved by sapping due to the release of non-juvenile water from unconsolidated flank deposits. Using the thermal inertia measurements, we estimate the particle size of these deposits to be 3–10 µm, which, together with theoretical modelling of the disperison of explosively derived volcanic materials, leads us to conclude that the flank deposits on Alba Patera are low-relief pyroclastic flows. The recognition of numerous late-stage summit and sub-terminal lava flows thus makes Alba Patera a unique martian volcano that is transitional between the older pyroclastic-dominated highland paterae and the more recent effusive central-vent volcanoes such as the Tharsis Montes.  相似文献   

15.
Abstract Tyatya Volcano, situated in Kunashir Island at the southwestern end of Kuril Islands, is a large composite stratovolcano and one of the most active volcanoes in the Kuril arc. The volcanic edifice can be divided into the old and the young ones, which are composed of rocks of distinct magma types, low‐ and medium‐K series, respectively. The young volcano has a summit caldera with a central cone. Recent eruptions have occurred at the central cone and at the flank vents of the young volcano. We found several distal ash layers at the volcano and identified their ages and sources, that is, tephras of ad 1856, ad 1739, ad 1694 and ca 1 Ka derived from three volcanoes of Hokkaido, Japan, and caad 969 from Baitoushan Volcano of China/North Korea. These could provide good time markers to reveal the eruptive history of the central cone, which had continued intermittently with Strombolian eruptions and lava flow effusions since before 1 Ka. Relatively explosive eruptions have occurred three times at the cone during the past 1000 years. We revealed that, topographically, the youngest lava flows from the cone are covered not by the tephra of ad 1739 but by that of ad 1856. This evidence, together with a report of dense smoke rising from the summit in ad 1812, suggests that the latest major eruption with lava effusion from the central cone occurred in this year. In 1973, after a long period of dormancy, short‐lived phreatomagmatic eruptions began to occur from fissure vents at the northern flank of the young volcano. This was followed by large eruptions of Strombolian to sub‐Plinian types occurring from several craters at the southern flank. The 1973 activity is evaluated as Volcanic Explosivity Index = 4 (approximately 0.2 km3), the largest eruption during the 20th century in the southwestern Kuril arc. The rocks of the central cone are strongly porphyritic basalt and basaltic andesite, whereas the 1973 scoria is aphyric basalt, suggesting that magma feeding systems are definitely different between the summit and flank eruptions.  相似文献   

16.
Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process.  相似文献   

17.
Fuego volcano, Guatemala is a high (3,800 m) composite volcano that erupts gas-rich, high-Al basalt, often explosively. It spends many years in an essentially open vent condition, but this activity has not been extensively observed or recorded until now. The volcano towers above a region with several tens of thousands of people, so that patterns in its activity might have hazard mitigation applications. We conducted 2 years of continuous observations at Fuego (2005–2007) during which time the activity consisted of minor explosions, persistent degassing, paroxysmal eruptions, and lava flows. Radiant heat output from MODIS correlates well with observed changes in eruptive behavior, particularly during abrupt changes from passive lava effusion to paroxysmal eruptions. A short-period seismometer and two low-frequency microphones installed during the final 6 months of the study period recorded persistent volcanic tremor (1–3 Hz) and a variety of explosive eruptions. The remarkable correlation between seismic tremor, thermal output, and daily observational data defines a pattern of repeating eruptive behavior: 1) passive lava effusion and subordinate strombolian explosions, followed by 2) paroxysmal eruptions that produced sustained eruptive columns, long, rapidly emplaced lava flows, and block and ash flows, and finally 3) periods of discrete degassing explosions with no lava effusion. This study demonstrates the utility of low-cost observations and ground-based and satellite-based remote sensing for identifying changes in volcanic activity in remote regions of underdeveloped countries.  相似文献   

18.
 Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the "Akutan tephra," is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly cohesive lahars in Hot Springs valley and Long valley could have formed from minor flank collapses of hydrothermally altered volcanic bedrock. These lahars may be unrelated to eruptive activity. Received: 31 August 1998 / Accepted: 30 January 1999  相似文献   

19.
Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971–2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996–2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996–2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This phase of intense summit activity has been followed, since the summer of 2001, by a period of increased structural instability of the volcano, marked by a series of important flank eruptions.  相似文献   

20.
The first sign of magma accumulating beneath Miyakejima, an island volcano in the northern Izu islands, Japan, came at around 18:00 on 26 June 2000, when a swarm of earthquakes was detected by a volcano seismic network on the island. Earthquakes occurred initially beneath the southwest flank near the summit and gradually migrated west of the island, where a submarine eruption occurred the next morning. Earthquakes then migrated further to the northwest between Miyakejima and Kozushima, another volcanic island and developed to the most intense earthquake swarm ever observed in and around Japanese archipelago. To better image how the initial magma intrusion occurred, we relocated hypocenters by using a station-correction method and a double-difference method. The relocated epicenters are generally concentrated near the upper bound of dyke intrusions inferred from geodetic studies throughout the initial stages of the 2000 eruption at Miyakejima from 26 to 27 June 2000. As for seismic activity westward off Miyakejima in the morning on 27 June, hypocenters from both a nationwide seismic network that were relocated by the double-difference method, and those from the volcano seismic network relocated by the station-correction method, formed a very shallow cluster that ascended slowly with time as it propagated northwestward from Miyakejima. This suggests that the dykes have both a radial and upward component of movement.Editorial responsibility: S. Nakada, T. Druitt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号