首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Information on the ocean/atmosphere state over the period spanning the Last Glacial Maximum – from the Late Pleistocene to the Holocene – provides crucial constraints on the relationship between orbital forcing and global climate change. The Pacific Ocean is particularly important in this respect because of its dominant role in exporting heat and moisture from the tropics to higher latitudes. Through targeting groundwaters in the Mojave Desert, California, we show that noble gas derived temperatures in California averaged 4.2 ± 1.1 °C cooler in the Late Pleistocene (from ~43 to ~12 ka) compared to the Holocene (from ~10 to ~5 ka). Furthermore, the older groundwaters contain higher concentrations of excess air (entrained air bubbles) and have elevated oxygen-18/oxygen-16 ratios (δ18O) – indicators of vigorous aquifer recharge, and greater rainfall amounts and/or more intense precipitation events, respectively. Together, these paleoclimate indicators reveal that cooler and wetter conditions prevailed in the Mojave Desert from ~43 to ~12 ka. We suggest that during the Late Pleistocene, the Pacific ocean/atmosphere state was similar to present-day El Nino-like patterns, and was characterized by prolonged periods of weak trade winds, weak upwelling along the eastern Pacific margin, and increased precipitation in the southwestern U.S.  相似文献   

2.
In order to contribute to our understanding of the linkage between climate and ocean circulation we have studied benthic foraminifera from near the northern end of the Faeroe–Shetland Channel covering isotope stages 6 to lower stage 3 (∼150–55 ka). Our records demonstrate shifts between recurring assemblages, which on millennial timescales monitor the outflow history of Norwegian Sea Deep Water. The records show that the outflow is closely linked to the climate of the region as documented in the Greenland ice cores. Outflow was relatively strong during all major warmer interstadials whereas there was no outflow during the colder stadials. During isotope substage 5e outflow was stable for ∼10–12 kyr with significant changes at the beginning and end only.  相似文献   

3.
通过对莱州湾南岸HLL02钻孔的孢粉分析,得出了其晚上新世以来的古植被演替及古环境变迁.孢粉结果显示:(1)在晚上新世-早更新世阶段,莱州湾南岸及其附近地区的植物群落主要是以蒿属、藜科及禾本科为主的草原,气候温暖偏干.极低的淡水藻类含量也指示研究区并没有大的河流注入,或大的湖泊形成,降水量较少;(2)在早更新世-中更新世阶段,莱州湾南岸及其附近地区的植物群落开始由草原向森林草原过渡,指示了温暖湿润的气候状况.淡水藻类的增加,指示莱州湾南岸及其附近地区可能有大的河流注入,或大的湖泊形成,降水量增加;(3)在中更新世-晚全新世阶段,莱州湾南岸及其附近地区的植被类型已经成为森林草原植被.淡水藻类含量数量达到整个钻孔的最高值,指示研究区的河流注入量持续增加,湖泊面积也开始扩张,气候变得寒冷偏干.此外,综合HLL02钻孔的海相沟鞭藻记录,发现研究区在中更新世-晚全新世阶段出现了较为明显的海侵事件.  相似文献   

4.
The interplay between the onshore and offshore areas during the Last Glacial Maximum and the deglaciation of the Scandinavian Ice Sheet is poorly known. In this paper we present new results on the glacial morphology, stratigraphy and chronology of Andøya, and the glacial morphology of the nearby continental shelf off Lofoten–Vesterålen. The results were used to develop a new model for the timing and extent of the Scandinavian Ice Sheet in the study area during the local last glacial maximum (LLGM) (26 to 16 cal. ka BP). We subdivided the LLGM in this area into five glacial events: before 24, c. 23 to 22.2, 22.2 to c. 18.6, 18 to 17.5, and 16.9–16.3 cal. ka BP. The extent of the Scandinavian Ice Sheet during these various events was reconstructed for the shelf areas off Lofoten, Vesterålen and Troms. Icecaps survived in coastal areas of Vesterålen–Lofoten after the shelf was deglaciated and off Andøya ice flowed landwards from the shelf. During the LLGM the relative sea level was stable until 18.5 cal. ka BP, and thereafter there was a sea‐level drop on Andøya. Thus, relative sea level (i.e. a sea level rise) does not seem to be a driving mechanism for ice‐margin retreat in this area but the fall in sea level may have had some importance for the grounding episodes on the banks during deglaciation. The positions of the grounding zone wedges (GZWs) in the troughs are related to the morphology as they are often located where the troughs narrow.  相似文献   

5.
The extensive shoreline deposits of Lake Chilwa, southern Malawi, a shallow water body today covering 600 km2 of a basin of 7500 km2, are investigated for their record of late Quaternary highstands. OSL dating, applied to 36 samples from five sediment cores from the northern and western marginal sand ridges, reveal a highstand record spanning 44 ka. Using two different grouping methods, highstand phases are identified at 43.7–33.3 ka, 26.2–21.0 ka and 17.9–12.0 ka (total error method) or 38.4–35.5 ka, 24.3–22.3 ka, 16.2–15.1 ka and 13.5–12.7 ka (Finite Mixture Model age components) with two further discrete events recorded at 11.01 ± 0.76 ka and 8.52 ± 0.56 ka. Highstands are comparable to the timing of wet phases from other basins in East and southern Africa, demonstrating wet conditions in the region before the LGM, which was dry, and a wet Lateglacial, which commenced earlier in the southern compared to northern hemisphere in East Africa. We find no evidence that wet phases are insolation driven, but analysis of the dataset and GCM modelling experiments suggest that Heinrich events may be associated with enhanced monsoon activity in East Africa in both timing and as a possible causal mechanism.  相似文献   

6.
《Quaternary Science Reviews》2007,26(5-6):773-792
New subsurface data reveal a nearly continuous stratigraphic record of Middle to Late Pleistocene loess sedimentation preserved beneath upland summits in eastern Nebraska, USA. Thickness and grain size trends, as well as pedologic evidence, indicate significant changes in loess sources, accumulation rates, and depositional environments. The newly defined Kennard Formation accumulated in the Middle Pleistocene, and may represent multiple thin increments of distal loess from nonglacial sources on the Great Plains. The overlying Loveland Loess, up to 18 m thick and deposited during Oxygen Isotope Stage 6 (OIS 6) (Illinoian glaciation), probably records the emergence of the Missouri River valley as a major glaciogenic loess source. The prominent Sangamon Geosol formed through long-term pedogenic alteration of the upper Loveland Loess during OIS 5 and 4. Thin loess of the Gilman Canyon Formation records slow loess accumulation and pedogenic alteration in OIS 3. The Peoria Loess (OIS 2) is similar in thickness to Loveland Loess, but may have accumulated more rapidly in an environment less favorable to bioturbation. More importantly, comparison of Peoria and Loveland loess thickness trends indicates much greater influx of nonglaciogenic loess from the Great Plains during OIS 2 than in OIS 6, suggesting colder and/or drier conditions in the Midcontinent during OIS 2 than in earlier glacial stages.  相似文献   

7.
8.
We report cosmogenic surface exposure 10Be ages of 21 boulders on moraines in the Jeullesh and Tuco Valleys, Cordillera Blanca, Peru (~10°S at altitudes above 4200 m). Ages are based on the sea-level at high-latitude reference production rate and scaling system of Lifton et al. (2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239, 140–161) in the CRONUS-Earth online calculator of Balco et al. (2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174–195). Using the Lifton system, large outer lateral moraines in the Jeullesh Valley have a 10Be exposure age of 12.4 ka, inside of which are smaller moraine systems dated to 10.8, 9.7 and 7.6 ka. Large outer lateral moraines in the Tuco Valley have a 10Be exposure age of 12.5 ka, with inner moraines dated to 11.3 and 10.7 ka. Collectively, these data indicate that glacier recession from the Last Glacial Maximum (LGM) in the Cordillera Blanca was punctuated by three to four stillstands or minor advances during the period 12.5–7.6 ka, spanning the Younger Dryas Chronozone (YDC; ~12.9–11.6 ka) and the cold event identified in Greenland ice cores and many other parts of the world at 8.2 ka. The inferred fluctuations of tropical glaciers at these times, well after their withdrawal from the LGM, indicate an increase in precipitation or a decrease in temperature in this region. Although palaeoenvironmental records show regional and temporal variability, comparison with proxy records (lacustrine sediments and ice cores) indicate that regionally this was a cold, dry period so we ascribe these glacier advances to reduced atmospheric temperature rather than increased precipitation.  相似文献   

9.
《Quaternary Science Reviews》2007,26(9-10):1332-1343
The growth of a well-dated stalagmite from Barbados records high infiltration rates into the karst aquifer and hence increased rainfall intensity between 6.7 and 3 ka BP in agreement with records from Lake Miragoane, Haiti [Hodell et al., 1991. Reconstruction of the Caribbean climate change over the past 10,500 years. Nature 352, 790–793], mainly reflecting the insolation maximum of the Northern Hemisphere. Both the lake record and the stable isotope record of the stalagmite reveal additional centennial variability of recharge. High oxygen isotope values in stalagmite calcite, corresponding to reduced recharge, are synchronous with periods of lower stable isotope values recorded in Lake Miragoane ostracods, previously attributed to enhanced precipitation. Accordingly, periods of increased recharge in Barbados correspond to 18O-enriched isotope values of ostracods, which were attributed to higher evaporation/precipitation ratios in the lakes. We ascribe this apparent discrepancy to changes in seasonality, i.e., winter periods of reduced temperature and relative humidity following summer months of increased precipitation. At present, such climate conditions occur during periods of enhanced Northern Atlantic Oscillation (NAO+). If enhanced seasonality is a consequence of a NAO+ situation, the apparent discrepancy of high isotope values in lakes (previously attributed to droughts) can be reconciled with lower winter temperatures in the lakes. Further, the correlation of solar intensity (derived from 14C and 10Be) with the isotopic signals recorded in the lacustrine sediments suggests a solar forcing of the NAO during the mid Holocene.  相似文献   

10.
The Ledo‐Paniselian Aquifer in Belgium offers unique opportunities to study periglacial groundwater recharge during the Last Glacial Maximum (LGM), as it was located close to the southern boundary of the ice sheets at that time. Groundwater residence times determined by 14C and 4He reveal a sequence of Holocene and Pleistocene groundwaters and a gap between about 14 and 21 ka, indicating permafrost conditions which inhibited groundwater recharge. In this paper, a dataset of noble gas measurements is used to study the climatic evolution of the region. The derived recharge temperatures indicate that soil temperatures in the periods just before and after the recharge gap were only slightly above freezing, supporting the hypothesis that permafrost caused the recharge gap. The inferred glacial cooling of 9.5°C is the largest found so far by the noble gas method. Yet, compared to other palaeoclimate reconstructions for the region, recharge temperatures deduced from noble gases for the cold periods tend to be rather high. Most likely, this is due to soil temperatures being several degrees higher than air temperatures during periods with extended snow cover. Thus the noble‐gas‐derived glacial cooling of 9.5°C is only a lower limit of the maximum cooling during the LGM. Some samples younger than the recharge gap are affected by degassing, possibly related to gas production during recharge in part of the recharge area, especially during times of melting permafrost. The findings of this study, such as the occurrence of a recharge gap and degassing related to permafrost and its melting, are significant for groundwater dynamics and geochemistry in periglacial areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The timing and causes of the last deglaciation in the southern tropical Andes is poorly known. In the Central Altiplano, recent studies have focused on whether this tropical highland was deglaciated before, synchronously or after the global last glacial maximum (~21 ka BP). In this study we present a new chronology based on cosmogenic 3He (3Hec) dating of moraines on Cerro Tunupa, a volcano that is located in the centre of the now vanished Lake Tauca (19.9°S, 67.6°W). These new 3Hec ages suggest that the Tunupa glaciers remained close to their maximum extent until 15 ka BP, synchronous with the Lake Tauca highstand (17–15 ka BP). Glacial retreat and the demise of Lake Tauca seem to have occurred rapidly and synchronously, within dating uncertainties, at ~15 ka BP. We took advantage of the synchronism of these events to combine a glacier model with a lake model in order to reconstruct precipitation and temperature during the Lake Tauca highstand. This new approach indicates that, during the Tauca highstand (17–15 ka BP), the centre of the Altiplano was characterized by temperature ~6.5 °C cooler and average precipitation higher by a factor ranging between ×1.6 and ×3 compared to the present. Cold and wet conditions thus persisted in a significant part of the southern tropical Andes during the Heinrich 1 event (17–15 ka BP). This study also demonstrates the extent to which the snowline of glaciers can be affected by local climatic conditions and emphasizes that efforts to draw global climate inferences from glacial extents must also consider local moisture conditions.  相似文献   

12.
The Vil-car-1 flowstone core from Villars cave (SW France) provides one of the first European speleothem records extending back to 180 ka, based on U–Th TIMS and MC-ICP-MS measurements. The core offers a continuous record of Termination II and the Last Interglacial. The penultimate deglaciation is characterized by a prominent 5‰ depletion in calcite δ18O. Determining which specific environmental factors controlled such a large oxygen isotopic shift offers the opportunity to assess the impact of various factors influencing δ18O variations in speleothem calcite.Oxygen isotope analyses of fluid inclusions indicate that drip water δ18O remained within a very narrow range of ±1‰ from Late MIS6 to the MIS5 δ18O optimum. The possibility of such a stable behaviour is supported by simple calculations of various effects influencing seepage water δ18O.Although this could suggest that the isotopic shift in calcite is mainly driven by temperature increase, attempts to quantify the temperature shift from Late MIS6 to the MIS5 δ18O optimum by assuming an equilibrium relationship between calcite and fluid inclusion δ18O yield unreasonably high estimates of ~20 °C warming and Late MIS6 cave temperatures below 0 °C; this suggests that the flowstone calcite precipitated out of thermodynamic equilibrium at this site.Using a method proposed by Guo et al. (submitted for publication) combining clumped isotope measurements, fluid inclusion and modern calcite δ18O analyses, it is possible to quantitatively correct for isotopic disequilibrium and estimate absolute paleotemperatures. Although the precision of these absolute temperature reconstructions is limited by analytical uncertainties, the temperature rise between Late MIS6 and the MIS5 optimum can be robustly constrained between 13.2 ± 2.6 and 14.6 ± 2.6 °C (1σ), consistent with existing estimates from Western Europe pollen and sea-surface temperature records.  相似文献   

13.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

14.
We review studies of the Holocene and Late Pleistocene stratigraphy of eastern Iran to infer past changes in the environment within this presently arid region. We build a scenario of widespread, and presumably climatically driven, evolution of the landscape through the Holocene. Six sites, covering a 10° range in latitude, indicate a regional abandonment of alluvial fan surfaces at ~10 ± 3 ka, with the younger (~9 ka) end of this age range supported by several of the best-constrained studies. Incision of rivers into the fan surfaces has occurred in discrete stages in the early to mid-Holocene (~9–7 ka) leading to the formation of flights of river terraces. Detailed records of lakebed deposition in the presently arid interior of Iran are rare, though the available data indicate lake highstand conditions at <7.8 ka at South Golbaf in SE Iran and at < 8.7 ± 1.1 ka at the Nimbluk plain in NE Iran. The major periods of Holocene landscape development hence correlate with a period of time where water was more abundant than at present, with incision of rivers into thick alluvial deposits possibly occurring due to a combination of decreased sediment supply and high levels of precipitation, and with the formation of inset river terraces possibly responding to century-scale fluctuations in precipitation. No major geomorphic changes are identified within the later part of the Holocene, from which we infer that increased aridity has slowed evolution of the landscape. A decrease in precipitation in the mid-Holocene may have had a detrimental effect on bronze age societies in eastern Iran as has been inferred elsewhere in the eastern Mediterranean region. The pre-Holocene environmental changes in eastern Iran are less well constrained, though there are suggestions of alluvial fan abandonment at 40–60 ka, at ~80 ka, and at ~120 ka.  相似文献   

15.
A sediment core from the Pearl River Estuary (PRE) was analyzed for grain size and organic geochemistry parameters (TOC and δ13Corg). The results showed that high mean grain-size value and increased sand content were correlated with the high TOC and negative δ13Corg. These results indicated high river runoff in the PRE area. Peak river discharge occurred during the periods 1900–1750, 1500–1600, 1400–1200, 1000–900 and 750–600 cal yr BP. The main changes recorded in grain-size distributions, TOC contents, and δ13Corg variations appear to be directly related to monsoon precipitation in the sediment source area. An increased East Asian summer monsoon rainfall (EASM) and/or an enhanced East Asian winter monsoon rainfall could result in the increasing of monsoon rainfall. Typhoon related rainfalls could act as positive influence on precipitation levels. The study of the correlations between the rainfall records and ENSO activities revealed a close relationship between the monsoon rainfall in the PRE and the tropical Pacific variations. The frequent occurrence of ENSO might result in the southern migration of the EASM rain belt and lead to more typhoon-derived rainfall in the PRD during the late Holocene.  相似文献   

16.
Analysis of oxygen isotope ratios (δ18O) by ion microprobe resolves a sub-annual climate record for the Eastern Mediterranean from a Soreq Cave stalagmite that grew between 2.2 and 0.9 ka. In contrast to conventional drill-sampling methods that yield a total variation of 1.0‰ in δ18Ocalcite values across our sample, the methods described here reveal up to 2.15‰ variation within single annual growth bands. Values of δ18O measured by ion microprobe vary in a regular saw-tooth pattern that correlates with annual, fluorescent growth banding where calcite grades from light to dark fluorescence. Modern records of precipitation and of cave dripwater indicate that variable δ18Ocalcite values record regular seasonal differences in δ18Orainfall modified by mixing in the vadose zone. Large differences in δ18O values measured across a single band (i.e., between the dark and light fluorescent calcite, or Δ18Odark-light) are interpreted to indicate wetter years, while smaller differences represent drier years. Oxygen isotopes record: 1) month-scale growth increments, 2) changes in Δ18Odark-light that represent seasonality, 3) a systematic, long-term decrease in maximum Δ18Odark-light values, and 4) an overall increase in average δ18Ocalcite values through time. These results suggest a drying of regional climate that coincides with the decline of the Roman and Byzantine Empires in the Levant region.  相似文献   

17.
This paper reports the results of an investigation of the Weichselian Upper Pleniglacial loess sequences of Nussloch (Rhine Valley, Germany) based on stratigraphy, palaeopedology, sedimentology, palynology, malacology and geochemistry (δ13C), supported by radiocarbon, TL and OSL dating. Grain-size and magnetic susceptibility records are taken at 5 cm intervals from the Upper Pleniglacial (UPG) loess. The data indicate cyclic variations in loess deposition between ca 34 and 17 ka, when the sedimentation rate is especially high (1.0–1.2 m per ka for more than 10 m). The grain-size index (GSI: ratio of coarse silt versus fine silt and clay) shows variations, which are assumed to be an indirect measurement of wind intensity. The sedimentation rate, interpreted from the profiles, indicates high values in loess (Loess events LE-1 to LE-7) and low or negligible values in tundra gley horizons G1 to G8. OSL ages from the loess and 14C dates from organic matter in the loess show that loess deposition was rapid but was interrupted by shorter periods of reduced aeolian sedimentation. Comparison between the data from Nussloch and other European sequences demonstrates a progressive coarsening of the loess deposits between ca 30 and 22 ka. This coarsening trend ends with a short but major grain-size decrease and is followed by an increase to a new maximum at 20 ± 2 ka (“W” shape). Correlation between the loess GSI and the Greenland ice-core dust records, suggests a global connection between North Atlantic and Western European global atmospheric circulation and wind regimes. In addition, the typical Upper Pleniglacial loess deposition begins at ca 30–31 ka, close to Heinrich event (HE) 3, and the main period of loess sedimentation at about 25 ± 2 ka is coeval to HE 2. Correlation of magnetic susceptibility and grain-size records shows that the periods, characterised by high GSI, coincide with an increase in the amount of ferromagnetic minerals reworked from the Rhine alluvial plain. They suggest enhancement in the frequency of the storms from N–NW. These results are integrated within a palaeogeographical model of dust transport and deposition in Western Europe for the Weichselian Upper Pleniglacial (or Late Pleniglacial).  相似文献   

18.
The palynological record from the Colle Curti and Cesi continental deposits has been examined in order to identify the main palaeofloristic and vegetational changes between 0.99 and 0.6–0.7 Ma. These data show a progressive increase in aridity, as well as a progressive decrease in temperature, which are associated with the transition in dominance from the 41 to 100 ka cyclicity in the Milankovitch orbital record during the Middle Pleistocene. The disappearance of Tsuga, recorded during the lower part of the Brunhes Chron, also has been related to a shift in global aridity. During the successive open vegetational phases (glacials), Chenopodiaceae and Artemisia progressively increase, whereas Cyperaceae decrease. Forest phases (interglacials) are successively dominated by Tsuga, Abies with Picea and, finally, Pinus; but all lack significant expansion of broad‐leaved deciduous taxa. Palynological and sedimentological data, in addition to taphonomic interpretations, demonstrate the occurrence of several hiatuses in the lower parts of the interglacials. These hiatuses are considered to represent the palaeoenvironmental response to climatic changes affecting local sedimentological and geomorphological conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Correlations between ecological and cultural changes occurred during a short period between the end of Subboreal and the beginning of Subatlantic in the Amblés Valley (Ávila, central Spain) are analyzed, taking into account palaeopalynological and archaeological data. Plant dynamics from pollen analyses, both from archaeological sites and peat bogs, have been interpreted in relation to human settlements and the transformation of economic practices. These provided a comprehensive hypothesis on human/climate interactions at the beginning of the 1st millennium cal BC. There was an ecological crisis in the region that lasted for a century (ca. 850–760 cal BC). This was especially sharp due to both the geographical constraints of the area and its previous agrarian history. This event implied a sudden and abrupt climatic change from xeric and warm conditions (Subboreal) to more humid and cooler ones (Subatlantic). Environmental stress derived from climatic crisis could be an important factor in the explanation of the historical process, whose main consequences were both the origin of the Iron Age peasant villages and the end of the ‘dehesa’ type landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号