首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Quaternary Science Reviews》2007,26(3-4):494-499
Cosmogenic surface-exposure ages from boulders on a terminal moraine complex establish the timing of the local last glacial maximum (LGM) in the Taylor River drainage basin, central Colorado. Five zero-erosion 10Be ages have a mean of 19.5±1.8 ka while that for three 36Cl ages is 20.7±2.3 ka. Corrections for modest rates (∼1 mm ka−1) of boulder surface erosion result in individual and mean ages that are generally within 2% of their zero-erosion values. Both the means and the range in ages of individual boulders are consistent with those reported for late Pleistocene moraines elsewhere in the southern and middle Rocky Mountains, and thus suggest local LGM glacier activity was regionally synchronous. Two anomalously young (?) zero-erosion 10Be ages (mean 14.4±0.8 ka) from a second terminal moraine are tentatively attributed to the boulders having been melted out during a late phase of ice stagnation.  相似文献   

2.
《Quaternary Science Reviews》2007,26(11-12):1638-1649
Surface-exposure (10Be) ages have been obtained on boulders from three post-Pinedale end-moraine complexes in the Front Range, Colorado. Boulder rounding appears related to the cirque-to-moraine transport distance at each site with subrounded boulders being typical of the 2-km-long Chicago Lakes Glacier, subangular boulders being typical of the 1-km-long Butler Gulch Glacier, and angular boulders being typical of the few-hundred-m-long Isabelle Glacier. Surface-exposure ages of angular boulders from the Isabelle Glacier moraine, which formed during the Little Ice Age (LIA) according to previous lichenometric dating, indicate cosmogenic inheritance values ranging from 0 to ∼3.0 10Be ka.1 Subangular boulders from the Butler Gulch end moraine yielded surface-exposure ages ranging from 5 to 10.2 10Be ka. We suggest that this moraine was deposited during the 8.2 cal ka event, which has been associated with outburst floods from Lake Agassiz and Lake Ojibway, and that the large age range associated with the Butler Gulch end moraine is caused by cosmogenic shielding of and(or) spalling from boulders that have ages in the younger part of the range and by cosmogenic inheritance in boulders that have ages in the older part of the range. The surface-exposure ages of eight of nine subrounded boulders from the Chicago Lakes area fall within the 13.0–11.7 10Be ka age range, and appear to have been deposited during the Younger Dryas interval. The general lack of inheritance in the eight samples probably stems from the fact that only a few thousand years intervened between the retreat of the Pinedale glacier and the advance of the Chicago Lakes glacier; in addition, bedrock in the Chicago Lakes cirque area may have remained covered with snow and ice during that interval, thus partially shielding the bedrock from cosmogenic radiation.  相似文献   

3.
Fourteen samples obtained from Torridon sandstone boulders on four moraines marking the limit of the Wester Ross Readvance (WRR) in NW Scotland yielded tightly clustered 10Be exposure ages confirming contemporaneous or penecontemporaneous moraine deposition. Collectively, the 14 samples yield mean ages of 13.5 ± 1.2 ka to 14.0 ± 1.7 ka, depending on choice of geomagnetic scaling and sampling surface erosion rates. All fourteen moraine ages are significantly younger than an age of ca 16.3 ka previously proposed for the WRR, and also younger than most samples obtained from rock outcrops within the WRR limits. The ages obtained for the WRR moraines appear to confirm that a substantial cover of glacier ice persisted over low ground in NW Scotland during at least the early part of the Lateglacial Interstade (≈Greenland Interstade 1). We infer that the WRR probably occurred in response to rapid short-lived cooling during the Older Dryas climatic reversal (≈Greenland Interstade 1d), though the possibilities that the WRR represents ice-margin response to a later climatic reversal during the Lateglacial Interstade or stabilization and readvance of the ice margin following rapid offshore calving cannot be discounted.  相似文献   

4.
Plio-Pleistocene deposits of the Lower Colorado River (LCR) and tributary alluvial fans emanating from the Black Mountains near Golden Shores, Arizona record six cycles of Late Cenozoic aggradation and incision of the LCR and its adjacent alluvial fans. Cosmogenic 3He (3Hec) ages of basalt boulders on fan terraces yield age ranges of: 3.3–2.2 Ma, 2.2–1.1 Ma, 1.1 Ma to 110 ka, < 350 ka, < 150 ka, and < 63 ka. T1 and Q1 fans are especially significant, because they overlie Bullhead Alluvium, i.e. the first alluvial deposit of the LCR since its inception ca. 4.2 Ma. 3Hec data suggest that the LCR began downcutting into the Bullhead Alluvium as early as 3.3 Ma and as late as 2.2 Ma. Younger Q2a to Q4 fans very broadly correlate in number and age with alluvial terraces elsewhere in the southwestern USA. Large uncertainties in 3Hec ages preclude a temporal link between the genesis of the Black Mountain fans and specific climate transitions. Fan-terrace morphology and the absence of significant Plio-Quaternary faulting in the area, however, indicate regional, episodic increases in sediment supply, and that climate change has possibly played a role in Late Cenozoic piedmont and valley-floor aggradation in the LCR valley.  相似文献   

5.
We report cosmogenic surface exposure 10Be ages of 21 boulders on moraines in the Jeullesh and Tuco Valleys, Cordillera Blanca, Peru (~10°S at altitudes above 4200 m). Ages are based on the sea-level at high-latitude reference production rate and scaling system of Lifton et al. (2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239, 140–161) in the CRONUS-Earth online calculator of Balco et al. (2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174–195). Using the Lifton system, large outer lateral moraines in the Jeullesh Valley have a 10Be exposure age of 12.4 ka, inside of which are smaller moraine systems dated to 10.8, 9.7 and 7.6 ka. Large outer lateral moraines in the Tuco Valley have a 10Be exposure age of 12.5 ka, with inner moraines dated to 11.3 and 10.7 ka. Collectively, these data indicate that glacier recession from the Last Glacial Maximum (LGM) in the Cordillera Blanca was punctuated by three to four stillstands or minor advances during the period 12.5–7.6 ka, spanning the Younger Dryas Chronozone (YDC; ~12.9–11.6 ka) and the cold event identified in Greenland ice cores and many other parts of the world at 8.2 ka. The inferred fluctuations of tropical glaciers at these times, well after their withdrawal from the LGM, indicate an increase in precipitation or a decrease in temperature in this region. Although palaeoenvironmental records show regional and temporal variability, comparison with proxy records (lacustrine sediments and ice cores) indicate that regionally this was a cold, dry period so we ascribe these glacier advances to reduced atmospheric temperature rather than increased precipitation.  相似文献   

6.
The Rabigh area, a coastal region north of Jeddah city, Saudi Arabia contains raised Quaternary coral reefal terraces and reworked coral fragments mixed with sand and gravel. This area has a thin exposure Lower Miocene shallow marine carbonate rocks that laterally pass into evaporites. The Miocene carbonate and evaporite rocks conformably overly the Lower Miocene siliciclastic sequence, are in turn capped by the Harrat basaltic boulders. The Miocene carbonates are made up of dolomitic packstone, wackestone and mudstone, whereas the overlying Quaternary reefal terraces are composed of coral boundstone and grainstones.The Quaternary reefal terraces of Rabigh area have been dated using the uranium-series dating method to obtain precise dates for these corals. The calculated ages (128, 212 and 235 ka) indicate that deposition took place during high sea level stands associated with interglacial times during Oxygen Isotope Stages (OIS) 5 and 7. The youngest age (128 ka) clearly corresponds to stage 5e of the last interglacial period. The obtained ages correlate well with those of the emerged reefs on the Sudanese and Egyptian coasts at the western side of the Red Sea. The broad distribution of wet climate, pluvial deposits on the continents and high sea level stands indicate a wide geographical range of the interglacial events of the Oxygen Isotope Stages (OIS) 5 and 7.The oxygen and carbon isotopic composition of the Miocene and Quaternary carbonate rocks in Rabigh area show a broad range of δ13C and δ18O. The Quaternary carbonate rocks have significantly higher δ13C than the Miocene ones, but low δ13C values of the Miocene samples likely indicate a high contribution of carbon from organic sources at the time of deposition. Linear trends are evident in both groups of samples supporting the likelihood of secondary alteration.  相似文献   

7.
《Quaternary Science Reviews》2003,22(10-13):1207-1211
The time-integrated slip rate in fault zones can be determined if the deformed deposits are reliably dated. Here, we report optically stimulated luminescence (OSL) ages of Late Pleistocene fluvial deposits cut by the Wangsan fault, southeastern Korea, which displaces a hanging wall block of about 28 m. Five sandy samples of the deformed Quaternary deposits were dated by quartz OSL using the single aliquot regenerative-dose (SAR) protocol. Three samples taken from the footwall block show stratigraphically consistent OSL ages of 54±7, 76±5 and 90±6 ka, from top to bottom. Two samples collected from the same layer in the hanging wall block show reproducible OSL ages of 81±5 and 82±5 ka, which are also in good agreement with the stratigraphic relationships. Our OSL ages yield an average sedimentation rate of the Quaternary deposits as around 0.04 mm a−1, and a minimum value of time-integrated slip rate as 0.52 mm a−1. This minimum slip rate is considerably higher than those reported earlier for Quaternary faults in southeastern Korea. The youngest OSL age (54±7 ka) constrains the maximum value of the recurrence interval of the fault movement.  相似文献   

8.
The High Himalaya is a key area for tectonic, geomorphological and climate studies, because of its extreme relief and location at the transition zone between areas with abundant monsoonal precipitation and the arid/semiarid Tibetan Plateau. We present 10Be surface exposure ages on 22 boulders from the Annapurna area in Nepal. The ages improve understanding of the Late Quaternary landscape history and the geomorphological processes operating in this part of the Himalaya.Although our study is reconnaissance in nature, it highlights the importance of catastrophic events, such as landslides and debris flows, for denudation of high mountains. Holocene exposure ages for the Dhampu–Chooya landslide (~4.1 ± 0.6 ka) and for 600 m of alluviation in Kali Gandaki Valley (~2.1 ± 0.6 ka), for example, indicate the frequent occurrence and extent of catastrophic events and their implications for natural hazards. We also offer an explanation for the differences in Late Quaternary glacial chronologies at closely spaced study sites in the Nepal Himalaya. Topographically controlled and spatially variable precipitation in the Himalaya determines the sensitivity of glaciers to changes in temperature and precipitation. Accordingly, some glaciers advanced in-phase with Northern Hemisphere ice sheets, whereas others reached their maximum extent at times of increased monsoonal precipitation during Marine Isotope Stage 3 and the early Holocene.  相似文献   

9.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

10.
《Quaternary Science Reviews》2005,24(1-2):211-222
Determinations of cosmogenic 3He exposure ages and erosion rates in volcanic rocks older than a few hundred thousand years are complicated by the presence of radiogenic He in addition to the magmatic and cosmogenic He, in phenocryst minerals. However, by analysing microphenocrysts (that crystallised on or immediately prior to eruption) that have not trapped magmatic He, the three-component problem can be eliminated and accurate determinations of cosmogenic 3He made. In this study, we perform three experiments using pyroxene microphenocrysts in basaltic clasts in the Pliocene Ayacata Formation breccias, Gran Canaria, that demonstrate they are free of magmatic He. Exposure ages and erosion rates calculated from the cosmogenic 3He concentrations are combined with a geomorphological study, to produce a tentative interpretation of landscape evolution in the mountainous interior of Gran Canaria. Long-term steady-state erosion rates of 14–24 mm ka−1 are recorded from bedrock erosional surfaces on a high plateau. Headwall retreat rates for a major drainage system of 1.6 m ka−1 have been constrained from the ca 225 ka exposure age of a boulder emplaced on slopes beneath the headwall. Strath terraces and boulders in a small canyon system yield much younger exposure ages of 47–43 ka.  相似文献   

11.
The sensitivity of Tibetan glacial systems to North Atlantic climate forcing is a major issue in palaeoclimatology. In this study, we present surface exposure ages of erratic boulders from a valley system in the Hengduan Mountains, southeastern Tibet, showing evidence of an ice advance during Heinrich event 1. Cosmogenic nuclide analyses (10Be and 21Ne) revealed consistent exposure ages, indicating no major periods of burial or pre-exposure. Erosion-corrected (3 mm/ka) 10Be exposure ages range from 13.4 to 16.3 ka. This is in agreement with recalculated exposure ages from the same valley system by [Tschudi, S., Schäfer, J.M., Zhao, Z., Wu, X., Ivy-Ochs, S., Kubik, P.W., Schlüchter, C., 2003. Glacial advances in Tibet during the Younger Dryas? Evidence from cosmogenic 10Be, 26Al, and 21Ne. Journal of Asian Earth Sciences 22, 301–306.]. Thus this indicates that local glaciers advanced in the investigated area as a response to Heinrich event 1 cooling and that periglacial surface adjustments during the Younger Dryas overprinted the glacial morphology, leading to deceptively young exposure ages of certain erratic boulders.  相似文献   

12.
Mylonite textures in granodiorite boulders are responsible for higher rates of surface denudation of host rocks and the progressive development of unusual rock weathering features, termed weathering posts. These textures are characterized by smaller grain sizes, higher biotite content, and a higher biotite axial ratio in host rocks relative to weathering posts. Elemental concentrations do not show a significant difference between weathering posts and the host rocks in which they are found, and this reflects the absence of a weathering residue on the rock surfaces. Chemical weathering loosens the bonds between mineral grains through the expansion of biotite, and the loosened grains fall off or are blown off the boulder surface and continue their chemical alteration in the surrounding soil. The height of weathering posts on late Quaternary moraines increases at a linear rate of ~ 1.45 ± 0.45 cm (1000 yr)? 1 until post heights reach the diameter of host rocks. Such a rate of boulder denudation, if unrecognized, would generate significant errors (> 20%) in cosmogenic exposure ages for Pleistocene moraines. Given the paucity of boulders with diameters that significantly exceed 1.5 m, the maximum age of utility of weathering posts as a numeric age indicator is ~ 100 ka.  相似文献   

13.
《Quaternary Science Reviews》2007,26(22-24):2897-2912
The Late Cenozoic development of the River Tana in Kenya has been reconstructed for its central reach near its confluence with the River Mutonga, which drains the Mount Kenya region. Age control for this system has been provided by K–Ar and Ar–Ar dating. Between 3.21 and 2.65 Ma a major updoming occurred, in relation to the formation of the Kenyan rift valley. The tilting related to this doming has been reconstructed from lava flows that preserve former river gradients. Linear projection of these trends to the current rift valley rim suggests a net updoming of the eastern Gregory Rift valley by at least ∼1 km during 3.21–2.65 Ma. In contrast, since 2.65 Ma the Tana system has been mainly subject to relatively minor epeirogenic uplift. Changing climatic conditions combined with continuing uplift yielded a typical staircase of strath terraces with at least 10 distinct levels. A more detailed reconstruction of the incision rates since 215 ka has been made, by correlating mineralogically fingerprinted volcaniclastic Tana deposits with dated tephras in a lake record. These volcaniclastic sediments were deposited during glacial periods, contemporaneous with lahars. The reconstructed incision rates for the three youngest terraces are ∼0.1–0.2 mm a−1, thus considerably faster than the overall average rate of valley incision since the Mid-Pliocene, of 0.06 mm a−1. A plausible uplift history has been reconstructed using the estimated ages of the Tana terraces and marine terraces on the Indian Ocean coastline. The result suggests an increase in the rate of incision by the River Tana at ∼0.9 Ma, an observation typical in most European river terrace staircases. The reconstructed Late Quaternary development of Tana valley indicates that a similar Quaternary uplift mechanism has operated in both Europe and East Kenya, suggesting a globally applicable process.  相似文献   

14.
在云南石鼓"长江第一湾"附近河段两岸发现了10多处典型的第四纪湖相沉积物露头,它们构成了金沙江第二、三、四级阶地的基座。热释光(TL)和U系法年龄测定及磁性地层学研究结果表明,该套湖相沉积物中上部的时代属于243.3~88.0kaBP的中更新世晚期至晚更新世早期,上覆的第四级阶地沉积物的年龄为88.0~80.9kaBP。湖相沉积物的粒度、地球化学和粘土矿物分析结果表明,其沉积环境有由温湿向湿热转化的趋势。根据对玉龙雪山更新世冰川作用的研究,石鼓古湖最初应是玉龙雪山西麓中更新世早期玉龙冰期冰碛物堰塞金沙江河谷而成的,中更新世晚期丽江冰期的冰水沉积物进一步加以堰塞,直至8万多年前被金沙江侵蚀而再次贯通。  相似文献   

15.
Coral terrace surveys and U-series ages of coral yield a surface uplift rate of ∼0.5 m/ka for Kisar Island, which is an emergent island in the hinterland of the active Banda arc–continent collision. Based on this rate, Kisar first emerged from the ocean as recently as ∼450 ka. These uplifted terraces are gently warped in a pattern of east–west striking folds. These folds are strike parallel to more developed thrust-related folds of similar wavelength imaged by a seismic reflection profile just offshore. This deformation shows that the emergence of Kisar is influenced by forearc closure along the south-dipping Kisar Thrust. However, the pinnacle shape of Kisar and the protrusion of its metamorphic rocks through the forearc basin sediments also suggest a component of extrusion along shear zones or active doming.Coral encrusts the island coast in many locations over 100 m above sea level. Terrace morphology and coral ages are best explained by recognizing major surfaces as mostly growth terraces and minor terraces as mostly erosional into older terraces. All reliable and referable coral U-series ages determined by MC-ICP-MS correlate with marine isotope stage (MIS) 5e (118–128 ka). The only unaltered coral samples are found below 6 m elevation; however an unaltered Tridacna (giant clam) shell in growth position at 95 m elevation yields a U-series age of 195 ± 31 ka, which corresponds to MIS 7. This age agrees with the best-fit uplift model for the island. Loose deposits of unaltered coral fragments found at elevations between 8 and 20 m yield U-series ages of <100 years and may represent paleotsunami deposits from previously undocumented tectonic activity in the region.  相似文献   

16.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

17.
《Quaternary Science Reviews》2003,22(10-13):1067-1076
This study is concerned with the Late Quaternary climatic chronology of the Strzelecki Desert dunefields in central Australia. The sand ridges comprise layers of quartz sand, some of which include palaeosol horizons with carbonated rootlets providing excellent opportunity for dating of alternations of dune building and stability by using optically stimulated luminescence (OSL). Deduced from the OSL age of the oldest aeolian layer dated, we conclude that the onset of aridity dates back to at least ∼65 ka. Older phases of aeolian activity though, following a fluvial depositional phase 160 ka ago, cannot be excluded, although no aeolian layers giving evidence for this have been found in the two dunes dated here. Unconsolidated dune sands in the upper part of one section with Late Holocene (4 ka to modern) depositional ages indicate a reactivation of the dunefield in recent times.From the crosscheck of 14C ages of the carbonated rootlets with OSL results it is concluded that under the given environmental conditions radiocarbon dating of the calcareous rootlets is not able to provide reliable ages for the phase of soil development.  相似文献   

18.
Glacial landforms and outwash terraces in the Nenana River valley, Reindeer Hills and Monahan Flat in the central Alaska Range were dated with 60 10Be exposure ages to determine the timing of Late Pleistocene glaciation. In the Nenana River valley, glaciation occurred at 104–180 ka (Lignite Creek glaciation), ca. 55 ka (Healy glaciation), and ca. 16 ka (Carlo Creek phase); glaciers retreated in the Reindeer Hills and Monahan Flat by ca. 14 ka and ca. 13 ka, respectively. The Carlo Creek moraine is similar in age to at least six other moraines in the Alaska Range, Ahklun Mountains and Brooks Range. The new data suggest that post‐depositional geological processes limit the usefulness of 10Be methods to the latter part (≤60 ka) of the late Quaternary in central Alaska. Ages on Healy and younger landforms cluster well, with the exception of Riley Creek moraines and Monahan Flat‐west sites, where boulders were likely affected by post‐depositional processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The ReSaKo project undertook extended fieldwork across southern Cameroon to explore the palaeoenvironmental information recorded in the alluvial sediments of equatorial African rivers. 160 hand-corings reaching maximum depths of 550 cm were carried out on alluvial ridges and floodplains of major Cameroonian fluvial systems. These multilayered, sandy to clayey alluvia contain sedimentary form-units and palaeosurfaces, which provide excellent additional proxy data archives for the reconstruction of palaeoenvironmental conditions in western equatorial Africa. Coring transects and sedimentary profiles document grain-size shifts and distinguishable sedimentary units in the stratigraphic record, which evidence (fluvial-)morphological adjustments of the fluvial systems in response to external forcing and (river-) intrinsic variability. 76 14C-(AMS)-dated samples from organic sediment and macro-rests (fossil organic remains like wood, leafs, etc.) embedded in these sedimentary units indicate Late Pleistocene to recent ages (uncalibrated 14C-ages: 48–0.2 ka BP). The tentative interpretation of the alluvial record yields excellent additional information on the complex feedbacks between climate, ocean, fluvial as well as ecological systems and human activity in a little-studied region with high sensitive tropical ecosystems. δ13C-values (?35.5 to ?18.0‰) of the dated samples indicate the persistence of C3-dominated gallery forests across the rivers (‘fluvial rain forest refuges’) despite several climatic fluctuations (aridifications, e.g. Last Glacial Maximum around 20 ka BP, Younger Dryas 13–11 ka BP). This research complements earlier results from additional terrestrial and marine proxy data archives on the Late Quaternary history of monsoonal western equatorial Africa.  相似文献   

20.
The competing roles of bedrock uplift and climatic change in the formation of fluvial terraces remain uncertain. Most of recent studies have attributed terrace formation to climatic changes and held that, even in tectonically active settings, climate variations control cycles of terrace planation and abandonment. Based on field investigations of loess-paleosol sequences, magnetostratigraphy and optically stimulated luminescence (OSL) dating, we develop a new chronology for a spectacular flight of terraces along the Yellow River near Lanzhou, China over past 1.24 Ma. All the terraces are strikingly similar in that they have several meters of paleosol developed directly above fluvial deposits on the terrace treads, suggesting that the abandonment of each terrace due to river incision occurs during the transition from glacial to interglacial climates. However, the ages of terraces cluster in two relatively short time periods (1.24–0.86 Ma and 0.13 Ma – present). During the intervening time between 0.86 Ma and 0.13 Ma, terraces either did not form or were not preserved. We suggest that this record indicates that rock uplift rates varied through time and influenced terrace formation/preservation. Thus, our results demonstrate the utility of deep chronologic records from fluvial terraces for deconvolving the effects of tectonics and climate on fluvial incision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号