首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaternary Science Reviews》2007,26(5-6):759-772
Quantitative reconstruction of the climatic history of the Chinese Loess Plateau is important for understanding present and past environment and climate changes in the Northern Hemisphere. Here, we reconstructed mean annual temperature (MAT) and mean annual precipitation (MAP) trends during the last 136 ka based on the analysis of phytoliths from the Weinan loess section (34°24′N, 109°30′E) near the southern part of the Loess Plateau in northern China. The reconstructions have been carried out using a Chinese phytolith–climate calibration model based on weighted averaging partial least-squares regression. A series of cold and dry events, as indicated by the reconstructed MAT and MAP, are documented in the loess during the last glacial periods, which can be temporally correlated with the North Atlantic Heinrich events. Our MAT and MAP estimations show that the coldest and/or driest period occurred at the upper part of L2 unit (Late MIS 6), where MAT dropped to ca 4.4 °C and MAP to ca 100 mm. Two other prominent cold-dry periods occurred at lower Ll-5 (ca 77–62 ka) and L1-1 (ca 23–10.5 ka) where the MAT and MAP decreased to about 6.1–6.5 °C and 150–370 mm, respectively, ca 6.6–6.2 °C and 400–200 mm lower than today. However, the highest MAT (average 14.6 °C, max. 18.1 °C) and MAP (average 757 mm, max. 1000 mm) occurred at Sl interval (MIS 5). During the interstadial of L1-4–L1-2 (MIS 3) and during the Holocene warm-wet period, the MAT was about 1–2 °C and MAP 100–150 mm higher than today in the Weinan region. The well-dated MAT and MAP reconstructions from the Chinese Loess Plateau presented in this paper are the first quantitatively reconstructed proxy record of climatic changes at the glacial–interglacial timescale that is based on phytolith data. This study also reveals a causal link between climatic instability in the Atlantic Ocean and climate variability in the Chinese Loess Plateau.  相似文献   

2.
Stratigraphical, mineralogical, geochemical and optical dating methods were used to reconstruct paleo-hydrological changes in two playas (Phulera, 500 mm/a and Pokharan, 200 mm/a) in near extremum climatic regions of the Thar Desert. Sediment successions in shallow profiles from Phulera and Pokharan contain three and four stratigraphic units, respectively, each with characteristic geochemical properties. These units reflect changes in chemical weathering, detrital input, salinity and provide a measure of the changes in precipitation (i.e. monsoon) through time.Sediments from Pokharan suggest short rainfall events during ca. 6.6–4 ka, relatively stable fresh water (higher and persistent rainfall) regime during 4–2.3 ka, and a hyper saline (low rainfall) condition during 2.3–1.1 ka. Sediments at Phulera, record hyper saline (low rainfall) lacustrine conditions during <2.3 ka to >1.4 ka. Higher abundance of gypsum in Pokharan (2.3–1.1 ka) and proto-dolomite in Phulera (2.3–1.4 ka) are nearly synchronous and reflect enhancement of salinity. Selenite crystals in Pokharan and large desiccation cracks in buried horizons at Phulera reflect desiccation of playas at ca. 2 ka. Both playas progressively became less saline after 1.4 ka. Given the regional nature of this record, these changes are attributed to fluctuation of the monsoon over the Indian sub continent.  相似文献   

3.
《Quaternary Science Reviews》2003,22(10-13):999-1010
The loess/palaeosol sequence of Kurtak, situated at the western bank of the upper Yenisei in Middle Siberia, represents one of the best developed Middle and Upper Pleistocene sediment records in Yenisei Siberia. More than 40 m thick loess and loess-like sediments intercalated by at least four pedocomplexes are exposed at a steep erosional slope at the bank of the Krasnoyarsk Water Reservoir. Infrared optically stimulated luminescence (IRSL) and thermoluminescence (TL) dating techniques have been applied on 38 fine grain samples from the upper 23 m of the profile, representing the penultimate and last interglacial–glacial cycle. The IRSL and TL age estimates are in good agreement with the geological estimates up to the last interglacial soil horizon (oxygen isotope substage (OIS) 5e). The luminescence ages show that the lowermost truncated palaeosol of kastanosjem-type is likely to have formed during the penultimate interglacial upon subaerial deposits. Three weak reddish brown palaeosols intercalated by reworked loess-like sediments correlate with early Upper Pleistocene interstadials (OIS5dion of -a), and a succession of humic horizons alternated by cryoturbation processes (Kurtak pedocomplex) is linked with OIS 3. Thick loess deposits between the pedocomplexes show now significant age increase with depth, indicating high accumulation rates at around 23 ka (OIS 2) and 60 ka (OIS 4).  相似文献   

4.
Geochemical characteristics of marine sediment from the southern Drake Passage were analyzed to reconstruct variations in sediment provenance and transport paths during the late Quaternary. The 5.95 m gravity core used in this study records paleoenvironmental changes during the last approximately 600 ka. Down-core variations in trace element, rare earth element, and Nd and Sr isotopic compositions reveal that sediment provenance varied according to glacial cycles. During glacial periods, detrital sediments in the southern Drake Passage were mostly derived from the nearby South Shetland Islands and shelf sediments. In contrast, interglacial sediments are composed of mixed sediments, derived from both West Antarctica and East Antarctica. The East Antarctic provenance of the interglacial sediments was inferred to be the Weddell Sea region. Sediment input from the Weddell Sea was reduced during glacial periods by extensive ice sheets and weakened current from the Weddell Sea. Sediment supply from the Weddell Sea increased during interglacial periods, especially those with higher warmth such as MIS 5, 9, and 11. This suggests that the influence of deep water from the Weddell Sea increases during interglacial periods and decreases during glacial periods, with the degree of influence increasing as interglacial intensity increases.  相似文献   

5.
Ancient cave systems in the Northern Calcareous Alps, today located well above the timberline at altitudes of 2400–2500 m, host U-rich speleothems that preserved growth layers on the microscopic scale of presumably annual origin. Two flowstone samples were dated to 2.019 + 0.037/?0.069 Ma and 1.730 + 0.032/?0.068 Ma, respectively, using U–Pb isochron techniques. These ages are corroborated by the Late Pliocene to Early Pleistocene pollen spectrum extracted from one of the samples. We use a multiproxy approach and exploit laminated speleothem sequences to tie high-resolution stable isotope data to a floating lamina-counted chronology. O isotope values of growth intervals when calcite deposition was close to isotopic equilibrium are low compared to modern and Holocene speleothems from other alpine caves and are inconsistent with the current altitudinal setting of the caves. A vegetated but geomorphologically stable alpine catchment (i.e. ~2000 m asl., no (peri)glacial processes) combined with a deep-seated cave (the thickness of the vadose zone might have exceeded 1000 m) is required in order to reconcile the isotopic data with the pollen record and the petrographic evidence. Furthermore, the data can be used to constrain the rate for Quaternary rock-uplift to ≤0.8 mm/annum for this frontal part of the European Alps. Collectively, the data suggest that these speleothems formed both during interglacials (MIS 59 or 61) and interglacial–glacial transitions (MIS 75/74 or 77/76), but the seasonal precipitation pattern was arguably markedly different from today's. Provided that the highly regular microscopic laminae are indeed annual, lamina counts suggest a minimum length of ca 6 ka for interglacials during the earliest Pleistocene.  相似文献   

6.
Curaçao has reef terraces with the potential to provide sea-level histories of interglacial periods. Ages of the Hato (upper) unit of the “Lower Terrace” indicate that this reef dates to the last interglacial period, Marine Isotope Stage (MIS) 5.5. On Curaçao, this high sea stand lasted at least 8000 yr (~ 126 to ~ 118 ka). Elevations and age of this reef show that late Quaternary uplift rates on Curaçao are low, 0.026–0.054 m/ka, consistent with its tectonic setting. Ages of ~ 200 ka for corals from the older Cortalein unit of the Lower Terrace correlate this reef to MIS 7, with paleo-sea level estimates ranging from ? 3.3 m to + 2.3 m. The estimates are in agreement with those for MIS 7 made from other localities and indicate that the penultimate interglacial period was a time of significant warmth, on a par with the present interglacial period. The ~ 400 ka (MIS 11) Middle Terrace I on Curaçao, dated by others, may have formed from a paleo-sea level of + 8.3 to + 10.0 m, or (less likely) + 17 m to + 20 m. The lower estimates are conservative compared to previous studies, but still require major ice sheet loss from Greenland and Antarctica.  相似文献   

7.
The sediments of Lago Grande di Monticchio, southern Italy, extend continuously from the present back to the penultimate glacial stage and have an independent lamination-based chronology of high precision and accuracy. Results are presented here from a detailed palynological investigation of that part of the sediment sequence that extends from the last millennia of the penultimate glacial stage to the first stadial following the Last Interglacial (LI). Quantitative palaeovegetation and palaeoclimate reconstructions made from the palynological data are also presented. The onset of the LI is dated to 127.20 ka BP, a date that is consistent with other recent estimates; the duration of the LI is estimated to have been 17.70 ka. The palaeovegetation record indicates a transition period of 3.35 ka at the end of the penultimate glacial stage prior to the onset of the LI; no Younger Dryas-like oscillation is recorded, although the transition was interrupted by a brief event, lasting ca 250 years, during which pollen of woody taxa was reduced in abundance. Steppe vegetation dominated during the latter part of the penultimate full-glacial stage, but was replaced progressively by wooded steppe during the transition. Although the development of forest cover marked the onset of the LI, the forests were relatively open or discontinuous during the first 2.65 ka, closing progressively thereafter and generally dominating between 123.00 and 109.50 ka BP. The end of the LI is dated to 109.50 ka BP, after which date forest cover became discontinuous and wooded steppe or steppe dominated during the 1.90 ka of the subsequent stadial. As might be expected, given the location of the lake, the composition of the LI forests differs markedly from those recorded from northern Europe, as well as from those recorded at other localities in southern Europe. The palaeoclimate reconstructions reveal complex changes in seasonality, the maximum coldest month mean temperatures being between 125.70 ka BP and 123.00 ka BP, whereas maxima for both annual temperature sum and the ratio of actual to potential evapotranspiration were between 120.60 ka BP and 115.80 ka BP. Reconstructed zonal mean values for all three climatic variables in the zones in which they peak exceed values at the locality today. Comparison with other palaeovegetation records of the LI from Europe reveals that forest cover generally opened up north of the Alpine region probably ca 115 ka BP, coinciding with a marked decrease in sea surface temperatures in the Nordic Seas; this probably corresponds to a marked shift in forest composition at Lago Grande di Monticchio at 115.80 ka BP with an associated reconstructed decrease of ca 5 °C in coldest month mean temperature. Nonetheless, forest continued to dominate at Lago Grande di Monticchio until 109.50 ka BP. Such comparisons also reveal considerable complexity in the geographical and altitudinal patterns of change in palaeovegetation during the LI; such complexity is to be expected given the parallel complexity of Holocene changes. Systematic comparisons between reconstructions of palaeoclimate are hampered by a lack of consistency in approach and in the variables reconstructed. Further insight into this complexity of palaeoclimate development during the LI requires a synthesis of the available data and application of a consistent reconstruction approach that also provides robust estimates of the uncertainty in the reconstructed values.  相似文献   

8.
This study forms part of a wider investigation of late Quaternary environments in the Southern Hemisphere. We here review the terrestrial and near-shore proxy data from Australia, Indonesia, Papua New Guinea (PNG), New Zealand and surrounding oceans during 35–10 ka, an interval spanning the lead-up to the Last Glacial Maximum (LGM), the LGM proper (21 ± 2 ka), and the ensuing deglaciation. Sites selected for detailed discussion have a continuous or near continuous sedimentary record for this time interval, a stratigraphically consistent chronology, and one or more sources of proxy climatic data. Tropical Australia, Indonesia and PNG had LGM mean annual temperatures 3–7 °C below present values and summer precipitation reduced by at least 30%, consistent with a weaker summer monsoon and a northward displacement of the Intertropical Convergence Zone. The summer monsoon was re-established in northwest Australia by 14 ka. Precipitation in northeast Australia was reduced to less than 50% of present values until warmer and wetter conditions resumed at 17–16 ka, followed by a second warmer, wetter phase at 15–14 ka. LGM temperatures were up to 8 °C lower than today in mainland southeast Australia and up to 4 °C cooler in Tasmania. Winter rainfall was much reduced throughout much of southern Australia although periodic extreme flood events are evident in the fluvial record. Glacial advances in southeast Australia are dated to 32 ± 2.5, 19.1 ± 1.6 and 16.8 ± 1.4 ka, with periglacial activity concentrated towards 23–16 ka. Deglaciation was rapid in the Snowy Mountains, which were ice-free by 15.8 ka. Minimum effective precipitation in southern Australia was from 14 to 12 ka. In New Zealand the glacial advances date to ~28, 21.5 and 19 ka, with the onset of major cooling at ~28 ka, or well before the LGM. There is no convincing evidence for a Younger Dryas cooling event in or around New Zealand, but there are signs of the Antarctic Cold Reversal in and around New Zealand and off southern Australia. There remain unresolved discrepancies between the climates inferred from pollen and those inferred from the beetle and chironomid fauna at a number of New Zealand sites. One explanation may be that pollen provides a generalised regional climatic signal in contrast to the finer local resolution offered by beetles and chironomids. Sea surface temperatures (SSTs) were up to 5 °C cooler during the LGM with rapid warming after 20 ka to attain present values by 15 ka. The increase in summer monsoonal precipitation at or before 15 ka reflects higher insolation, warmer SSTs and steeper thermal gradients between land and sea. The postglacial increase in winter rainfall in southern Australia is probably related to the southward displacement of the westerlies as SSTs around Antarctica became warmer and the winter pack ice and Antarctic Convergence Zone retreated to the south.  相似文献   

9.
Modern global warming is likely to cause future melting of Earth's polar ice sheets that may result in dramatic sea-level rise. A possible collapse of the West Antarctic Ice Sheet (WAIS) alone, which is considered highly vulnerable as it is mainly based below sea level, may raise global sea level by up to 5–6 m. Despite the importance of the WAIS for changes in global sea level, its response to the glacial–interglacial cycles of the Quaternary is poorly constrained. Moreover, the geological evidence for the disintegration of the WAIS at some time within the last ca. 750 kyr, possibly during Marine Isotope Stage (MIS) 11 (424–374 ka), is ambiguous. Here we present physical properties, palaeomagnetic, geochemical and clay mineralogical data from a glaciomarine sedimentary sequence that was recovered from the West Antarctic continental margin in the Amundsen Sea and spans more than the last 1 Myr. Within the sedimentary sequence, proxies for biological productivity (such as biogenic opal and the barium/aluminum ratio) and the supply of lithogenic detritus from the West Antarctic hinterland (such as ice-rafted debris and clay minerals) exhibit cyclic fluctuations in accordance with the glacial–interglacial cycles of the Quaternary. A prominent depositional anomaly spans MIS 15–MIS 13 (621–478 ka). The proxies for biological productivity and lithogenic sediment supply indicate that this interval has the characteristics of a single, prolonged interglacial period. Even though no proxy suggests environmental conditions much different from today, we conclude that, if the WAIS collapsed during the last 800 kyr, then MIS 15–MIS 13 was the most likely time period. Apparently, the duration rather than the strength of interglacial conditions was the crucial factor for the WAIS drawdown. A comparison with various marine and terrestrial climate archives from around the world corroborates that unusual environmental conditions prevailed throughout MIS 15–MIS 13. Some of these anomalies are observed in the pelagic Southern Ocean and the South Atlantic and might originate in major ice-sheet drawdown in Antarctica, but further research is required to test this hypothesis.  相似文献   

10.
An abrupt climatic change during the MIS 5a/4 transition is evident in the loess records of China (S1/L1). Proxies including geochemical elements, grain size, soil color, magnetic susceptibility and carbonate (CaCO3) content indicate a warming interval, which lasted approximately 3 ka, during the MIS 5a/4 transition in both the Wangguan and Shagou loess sections, located in Sanmenxia (Henan Province) and Wuwei (Gansu Province), respectively. Both the winter and summer monsoon proxies demonstrate that this warming interval occurred at the same time in both sections (nearly 70.5–73.6 ka BP), with maximum warming from 71.4 to 72.0 ka BP. This study suggests a universal abrupt warming interval in the East Asia monsoon region at this time. Comparisons with marine, terrestrial and ice-core records indicate this event was very likely an abrupt global warming interval during the last glacial–interglacial transition.  相似文献   

11.
Palynological and sedimentological studies of a series of slimes collected from a 284 m-long drill-well from the Kathmandu Basin reveal paleoclimatic records and environmental changes within the Kathmandu Valley during the last 2.5 myr. The slimes are composed of fluvio-deltaic and lacustrine sediments comprising sand beds of 66.3 m and mud beds of 218 m in length. Pollen analyses show Quercus and Cyclobalanopsis are predominant, with frequencies exceeding 70%. Pinus, Alnus and Gramineae are the next dominant taxa. Three fossil pollen zones were discriminated; each zone reflects major climatic change: Zone I, the oldest stage, indicates a cool and rather wet climate during 400 kyr from ca. 2.5 to 2.1 Ma; Zone II, the middle stage, reflects a warm and relatively dry climate without remarkable fluctuation; Zone III is characterized by seven cycles of warm-and-wet and cold-and-dry climate, which reflect the alternation of glacial and interglacial periods. The last cold maximum, 11 m deep, corresponds to the last glacial age around 20 kyr bp, judging from the 14C dating of the uppermost part of the lacustrine sediments.The Paleo-Kathmandu Lake is likely to have been initiated at around 2.1 Ma and to have been filled with black organic mud, the Kalimati Clay. The top of the Kalimati Clay is eroded and was overlain by fluvial sand after the last glacial age. The abrupt appearance of a 4 m-thick fossiliferous sand bed at the top of the middle member suggests a lowering of water level at around 1 Ma.  相似文献   

12.
Data from eastern England, Scotland, the northern North Sea and western Norway have been compiled in order to outline our current knowledge of the Middle and Late Weichselian glacial history of this region. Radiometric dates and their geological context from key sites in the region are presented and discussed. Based on the available information the following conclusions can be made: (i) Prior to 39 cal ka and most likely after ca 50 cal ka Scotland and southern Norway were extensively glaciated. Most likely the central North Sea was not glaciated at this time and grounded ice did not reach the shelf edge. (ii) During the time interval between 29 and 39 ka periods with ameliorated climate (including the Ålesund, Sandnes and Tolsta Interstadials) alternated with periods of restricted glaciation in Scotland and western Norway. (iii) Between 29 and 25 ka maximum Weichselian glaciation of the region occurred, with the Fennoscandian and British ice sheets coalescing in the central North Sea. (iv) Decoupling of the ice sheets had occurred at 25 ka, with development of a marine embayment in the northern North Sea (v) Between 22 and 19 ka glacial ice expanded westwards from Scandinavia onto the North Sea Plateau in the Tampen readvance. (vi) The last major expansion of glacial ice in the offshore areas was between 17.5 and 15.5 ka. At this time ice expanded in the north-western part of the region onto the Måløy Plateau from Norway and across Caithness and Orkney and to east of Shetland from the Moray Firth. The Norwegian Channel Ice Stream (NCIS), which drained major parts of the south-western Fennoscandian Ice Sheet, was active at several occasions between 29 and 18 ka.  相似文献   

13.
Fossil arctic ground squirrel (Spermophilus parryii) middens were recovered from ice-rich loess sediments in association with Sheep Creek-Klondike and Dominion Creek tephras (ca 80 ka) exposed in west-central Yukon. These middens provide plant and insect macrofossil evidence for a steppe-tundra ecosystem during the Early Wisconsinan (MIS 4) glacial interval. Midden plant and insect macrofossil data are compared with those previously published for Late Wisconsinan middens dating to ~25–2914C ka BP (MIS 3/2) from the region. Although multivariate statistical comparisons suggest differences between the relative abundances of plant macrofossils, the co-occurrence of steppe-tundra plants and insects (e.g., Elymus trachycaulus, Kobresia myosuroides, Artemisia frigida, Phlox hoodii, Connatichela artemisiae) provides evidence for successive reestablishment of the zonal steppe-tundra habitats during cold stages of the Late Pleistocene. Arctic ground squirrels were well adapted to the cold, arid climates, steppe-tundra vegetation and well-drained loessal soils that characterize cold stages of Late Pleistocene Beringia. These glacial conditions enabled arctic ground squirrel populations to expand their range to the interior regions of Alaska and Yukon, including the Klondike, where they are absent today. Arctic ground squirrels have endured numerous Quaternary climate oscillations by retracting populations to disjunct “interglacial refugia” during warm interglacial periods (e.g., south-facing steppe slopes, well-drained arctic and alpine tundra areas) and expanding their distribution across the mammoth-steppe biome during cold, arid glacial intervals.  相似文献   

14.
Paleoenvironmental records extending well into the last glacial period are scarce in the steppe regions of southern South America. Here, we present a continuous record for the past 55 ka from the maar lake Laguna Potrok Aike (51°58′ S, 70°23′ W, southern Patagonia, Argentina). Previous studies on a sedimentary core from a lake level terrace near the northern margin of the lake covered parts of Oxygen Isotope Stage (OIS) 3 (59–29 ka) whereas a second core from the centre of the basin comprised the last 16 ka. Tephrostratigraphical constraints and OSL ages from a third core located below the lake level terrace provide the crucial piece to close the gap between the previous coring sites. High-resolution XRF and magnetic susceptibility as well as grain size data indicate a positive hydrological balance alongside with relatively high aeolian activity during the glacial which is contemporaneous with increased dust fluxes in Antarctica. This is therefore the first evidence for contemporaneity of aeolian deposition in both the target area (Antarctica) and in the major source area of Patagonia. During the Holocene climatic conditions driving sediment deposition seem to have been more variable and less dominated by wind compared to glacial times. The identification of a minor lake level lowering at approximately 4 cal ka BP allows to refine earlier paleoenvironmental reconstructions for the Holocene. Within error margins the OSL ages are consistent with published radiocarbon-dated records offering hence a valuable tool for further studies of the sediments from Laguna Potrok Aike. The new chronology confirms the age of three tephra layers up to now only found in Laguna Potrok Aike sediments and ascribed to OIS 3.  相似文献   

15.
《Quaternary Science Reviews》2007,26(9-10):1236-1300
Multidisciplinary investigations of the sequence at Beeches Pit, West Stow (Suffolk, UK), have a direct bearing the age of the Hoxnian Interglacial and its correlation with the continental Holsteinian and with the global marine record. At this site, glacial deposits (till and outwash gravels) referable to the Anglian Lowestoft Formation fill a subglacial channel cut in Chalk bedrock. Above these glacial deposits a series of interglacial sediments occurs, consisting of limnic, tufaceous and colluvial silts, lacking pollen but rich in shells, ostracods and vertebrates. Lower Palaeolithic flint artefacts of Acheulian character have also been recovered, including refitting examples. Charred material is abundant at certain horizons and many of the bones have been burned. Several discrete areas of burnt sediment are interpreted as hearths. The molluscan fauna comprises some 78 taxa and includes species of considerable zoogeographical and biostratigraphical importance. The land snail assemblage from the tufa consists of woodland taxa with no modern analogue, including species that are either extinct (e.g. Zonitoides sepultus) or which no longer live in Britain (e.g. Platyla polita, P. similis, Neniatlanta pauli). This is also the type locality of Retinella (Lyrodiscus) skertchlyi, which belongs to a subgenus of zonitid land snail now living only on the Canary Islands. There are indications from this fauna (‘the Lyrodiscus biome’) that the climate was wetter and perhaps warmer than the present day. The vertebrate fauna is also noteworthy with species of open habitats, such as rabbit (Oryctolagus cf. cuniculus), and of closed forest, such as squirrel (Sciurus sp.) and garden dormouse (Eliomys quercinus) present at different times. The occurrence of southern thermophiles, such as Aesculapian snake (Zamenis longissimus), indicates temperatures warmer than those of eastern England today. The upper levels include much material reworked from the interglacial sediments, although there is clear faunal evidence for climatic deterioration. Both the molluscan and vertebrate faunas suggest correlation of the interglacial sediments with the Hoxnian. Uranium series dates from the tufa (∼455 ka BP), TL dates from burnt flints (414±30 ka BP) and a range of amino acid racemization data all support correlation of this interglacial with MIS 11. However, four OSL dates from sand beneath the interglacial sequence yield a mean age of 261±31 ka BP, far younger than all other age determinations and far younger than implied by the biostratigraphy. Archaeologically the site is unusual in showing prolonged human occupation within closed deciduous forest and evidence for controlled use of fire in a Lower Palaeolithic context. Biostratigraphical correlations with other Lower Palaeolithic sites support the suggestion that Acheulian and Clactonian industries both occurred in southern Britain during the same substage of the Hoxnian, although not necessarily at precisely the same time. The characteristics of the MIS 11 interglacial in Britain are discussed in the light of evidence from Beeches Pit and elsewhere.  相似文献   

16.
Extensive coastal dunes occur in the Great Lakes region of North America, including northwestern Michigan where some are perched on high (~ 100 m) bluffs. This study focuses on such a system at Arcadia Dunes and is the first to systematically generate optical ages from stratigraphic sections containing buried soils. Dune growth began ca. 4.5 ka during the Nipissing high lake stand and continued episodically thereafter, with periods of increased sand supply at ca. 3.5 ka and ca. 1.7 ka. The most volumetrically dominant phase of dune growth began ca. 1.0 ka and continued intermittently for about 500 years. It may have begun due to the combined effects of a high lake phase, potential changes in lake hydrodynamics with final isostatic separation of Lake Superior from Lakes Michigan and Huron, and increased drought and hydrologic variability associated with the Medieval Warm Period. Thus, this latest eolian phase likely reflects multiple processes associated with Great Lakes water level and climate variability that may also explain older eolian depositional events. Comparison of Arcadia ages and calendar corrected 14C ages from previous studies indicate broad chronological agreement between events at all sites, although it appears that dune growth began later at Arcadia.  相似文献   

17.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

18.
Irene Zembo 《Sedimentary Geology》2010,223(3-4):206-234
The sedimentary record of the Val d'Agri basin is of great importance for understanding the Quaternary tectonic activity and climatic variability in the Southern Apennines. Changes in tectonic controls, sediment supply and climatic input have been identified. The interval from ~ 56 to ~ 43 ka was associated with asymmetric subsidence restricted to the north-eastern actively faulted margin of the basin and development of axial braided river and transverse alluvial fan systems. Short-lasting Mediterranean-type pedogenesis between ~ 43 and ~ 32 ka (MIS Stage 3) coexisted with progradation–aggradation of the southern alluvial fan deposits and southwards tilting of the basin floor. Aggradation ended with consumption of accommodation space after 32 ka. During a subsequent stage of decline of vegetation cover, possibly as a consequence of climatic cooling (probably MIS Stage 2), active progradation of alluvial fans occurred. Breakthrough of the basin threshold and entrenchment of the drainage network must therefore be attributed to a latest Pleistocene to Holocene age. The first stages of basin opening and fill, predating ~ 56 ka have only been inferred by stratigraphic considerations: the earliest lacustrine sedimentation should be middle Pleistocene or older in age. The following south-eastward basin widening allowed progradation of alluvial fan systems, which completely filled the lacustrine area (tentatively late middle Pleistocene). Pedogenesis in “Mediterranean-like” climate conditions caused the final development of a highly mature fersiallitic paleosol at the top of the fan surfaces, in areas of morpho-tectonic stability, plausibly during MIS Stage 5. The study results demonstrate the potential of applying a multidisciplinary approach in an intermontane continental settings marked by a relative rapid and constant tectonic subsidence and a high rate of sediment supply during the Pleistocene glacial–interglacial cycles.  相似文献   

19.
Continuous high-resolution mass accumulation rates (MAR) and X-ray fluorescence (XRF) measurements from marine sediment records in the Bay of Biscay (NE Atlantic) have allowed the determination of the timing and the amplitude of the ‘Fleuve Manche’ (Channel River) discharges during glacial stages MIS 10, MIS 8, MIS 6 and MIS 4–2. These results have yielded detailed insight into the Middle and Late Pleistocene glaciations in Europe and the drainage network of the western and central European rivers over the last 350 kyr. This study provides clear evidence that the ‘Fleuve Manche’ connected the southern North Sea basin with the Bay of Biscay during each glacial period and reveals that ‘Fleuve Manche’ activity during the glaciations MIS 10 and MIS 8 was significantly less than during MIS 6 and MIS 2. We correlate the significant ‘Fleuve Manche’ activity, detected during MIS 6 and MIS 2, with the extensive Saalian (Drenthe Substage) and the Weichselian glaciations, respectively, confirming that the major Elsterian glaciation precedes the glacial MIS 10. In detail, massive ‘Fleuve Manche’ discharges occurred at ca 155 ka (mid-MIS 6) and during Termination I, while no significant discharges are found during Termination II. It is assumed that a substantial retreat of the European ice sheet at ca 155 kyr, followed by the formation of ice-free conditions between the British Isles and Scandinavia until Termination II, allowed meltwater to flow northwards through the North Sea basin during the second part of the MIS 6. We assume that this glacial pattern corresponds to the Warthe Substage glacial maximum, therefore indicating that the data presented here equates to the Drenthe and the Warthe glacial advances at ca 175–160 ka and ca 150–140 ka, respectively. Finally, the correlation of our records with ODP site 980 reveals that massive ‘Fleuve Manche’ discharges, related to partial or complete melting of the European ice masses, were synchronous with strong decreases in both the rate of deep-water formation and the strength of the Atlantic thermohaline circulation. ‘Fleuve Manche’ discharges over the last 350 kyr probably participated, with other meltwater sources, in the collapse of the thermohaline circulation by freshening the northern Atlantic surface water.  相似文献   

20.
New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号