首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spatial pattern and seasonal variation of denitrification were investigated during 2010–2011 in the Jiulong River Estuary (JRE) in southeast China. Dissolved N2 was directly measured by changes in the N2:Ar ratio. The results showed that excess dissolved N2 ranged from ?9.9 to 76.4 μmol L?1. Tidal mixing leads to a seaward decline of dissolved gaseous concentrations and water–air fluxes along the river-estuary gradient. Denitrification at freshwater sites varied between seasons, associated with changes in N input and water temperature. The denitrification process was controlled by the nitrate level at freshwater sites, and the excess dissolved N2 observed at the tidal zone largely originated from upstream water transport. Compared to other estuaries, JRE has a relative low gaseous removal efficiency (Ed = 12% of [DIN]; annual N removal = 24% of DIN load), a fact ascribed to strong tidal mixing, coarse-textured sediment with shallow depth before bedrock and high riverine DIN input.  相似文献   

2.
《Marine pollution bulletin》2014,81(1-2):234-244
Dissolved inorganic nitrogen (DIN), phosphate (PO4) and silicic acid (Si(OH)4) loads from the Seybouse and the Mafragh estuaries into the Bay of Annaba, Algeria, were assessed at three stations of the Bay over three years. The Seybouse inputs had high levels of DIN and PO4, in contrast to the Mafragh estuary’s near-pristine inputs; Si(OH)4 levels were low in both estuaries. The DIN:PO4 molar ratios were over 30 in most samples and the Si(OH)4:DIN ratio was less than 0.5 in the Seybouse waters, but nearly balanced in the Mafragh. The specific fluxes of Si–Si(OH)4 (400–540 kg Si km2 yr1) were comparable in the two catchments, but those of DIN were several-fold higher in the Seybouse (373 kg N km2 yr1). The inner Bay affected by the Seybouse inputs had high levels of all nutrients, while the Mafragh plume and the outer marine station were less enriched.  相似文献   

3.
《Continental Shelf Research》2008,28(18):2594-2600
We analyzed the temporal and vertical distribution of biogenic (BSi) and lithogenic (LSi) silica, and diatom abundance in the upwelling center off Concepción, Chile, from April 2004 to May 2005. Measurements were performed at the FONDAP COPAS Time Series Station 18 (36°30.8′S, 73°07.7′W; 88 m water depth), and were combined with primary production estimates and river runoff data to assess the relationships between water column BSi and primary production, and between LSi and river runoff. Throughout the sampling period, water-column-integrated (0–80 m) BSi averaged 252±287 mmol m−2, and was about six times higher than average LSi (44±30 mmol m−2). The highest water column BSi observed during the upwelling season (786±281 mmol m−2) coincided with increments in total diatom abundance, and high integrated chlorophyll a concentration and primary production. In contrast, LSi was nearly two times higher in winter (85±43 mmol m−2) than the annual average, in agreement with the period of substantial discharges from the Itata and Bio-Bio rivers. The observed temporal patterns in BSi and LSi are coincident with primary production-related factors and riverine outflow, respectively, suggesting that the BSi and LSi pools are separate. With respect to the vertical distribution in the water column, most of the BSi and diatoms were found in surface waters (0–30 m depth), whereas LSi was most abundant at depth. Our study attempts to make an inventory of both BSi and LSi in the water column off Concepción, and gives the present-day background information necessary to assess potential future changes in the hydrological cycle that, in turn, may induce modifications in the Si path from the watersheds to the ocean.  相似文献   

4.
《Continental Shelf Research》2007,27(10-11):1584-1599
Historic data from the Russian-American Hydrochemical Atlas of Arctic Ocean together with data from the TRANSDRIFT II 1994 and TUNDRA 1994 cruises have been used to assess the spatial and inter-annual variability of carbon and nutrient fluxes, as well as air–sea CO2 exchange in the Laptev and western East Siberian Seas during the summer season. Budget computations using summer data of dissolved inorganic phosphate (DIP), dissolved inorganic nitrogen (DIN) and dissolved inorganic carbon (DIC) gives that the Laptev Sea shelf is a net sink of DIP and DIN of 2.5×106, 23.2×106 mol d−1, respectively, while it is a net source of DIC (excluding air–sea exchange) of 1249×106 mol d−1. In the East Siberian Seas the budget computations give 0.5×106, −11.4×106 and −173×106 mol d−1 (minus being a sink) for DIP, DIN, and DIC, respectively. In summers, the Laptev Sea Shelf is net autotrophic while the East-Siberian Sea Shelf is net heterotrophic, and both systems are weak net denitrifying. The Laptev Sea Shelf takes up 2.1 mmol CO2 m−2 d−1 from atmosphere, whereas the western part of the East-Siberian Sea Shelf loose 0.3 mmol CO2 m−2 d−1 to the atmosphere. The variability of DIP, DIN and DIC fluxes during summer in the different regions of the Laptev and East Siberian Seas depends on bottom topography, river runoff, exchange with surrounding seas and wind field.  相似文献   

5.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

6.
We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30′S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region.Depth-integrated gross primary production estimates were higher (0.4–3.8 g C m?2 d?1) in the productive season (October, February, and May), and lower (0.1–0.2 g C m?2 d?1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m?2 d?1 and 0.05 to 0.4 g C m?2 d?1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m?2 d?1 and 0.05 to 0.2 g C m?2 d?1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p<0.001; n=12), which suggests a high degree of coupling between the synthesis of organic matter and its usage by the planktonic community. Similarly, strong correlations were found between bacterioplankton secondary production and both gross primary production (Spearman, r=0.7, p<0.05, n=9) and community respiration (Spearman, r=0.8, p<0.05, n=9), indicating that bacterioplankton may be processing an important fraction (8–59%) of the organic matter produced by phytoplankton in Reloncaví Fjord. In winter, bacterial carbon utilization as a percentage of gross primary production was >100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of the locally produced organic carbon is recycled within the microbial loop. During the productive season, on the other hand, the area exhibited a great potential to export organic matter, be it to higher trophic levels or vertically towards the bottom.  相似文献   

7.
Data on the distribution of fCO2 were obtained during a cruise in the Aegean Sea during February 2006. The fCO2 of surface water (fCO2sw) was lower than the atmospheric fCO2 (fCO2atm) throughout the area surveyed and ΔfCO2 values varied from ?34 to ?61 μatm. The observed under-saturation suggests that surface waters in the Aegean represent a sink for atmospheric CO2 during the winter of 2006. Higher fCO2sw values were recorded in the ‘less warm’ and ‘less saline’ shallow northernmost part of the Aegean Sea implying that the lower seawater temperature and salinity in this area play a crucial role in the spatial distribution of fCO2sw.A first estimate of the magnitude of the air–sea CO2 exchange and the potential role of the Aegean Sea in the transfer of atmospheric CO2 was also obtained. The air–sea CO2 fluxes calculated using different gas transfer formulations showed that during February 2006, the Aegean Sea absorbs atmospheric CO2 at a rate ranging from ?6.2 to ?11.8 mmol m?2 d?1 with the shipboard recorded wind speeds and at almost half rate (?3.5 to ?5.5 mmol m?2 d?1) with the monthly mean model-derived wind speed. Compared to recent observations from other temperate continental shelves during winter period, the Aegean Sea acts as a moderate to rather strong sink for atmospheric CO2.Further investigations, including intensive spatial and temporal high-resolution observations, are necessary to elucidate the role of the Aegean Sea in the process of transfer of atmospheric CO2 into the deep horizons of the Eastern Mediterranean.  相似文献   

8.
《Marine pollution bulletin》2012,64(5-12):195-200
Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, 222Rn, and nutrient concentration measurements. Nitrate levels as high as 126 μM, or 1–2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May–October) than the dry season (November–April). Dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2 mmoles m−2 d−1, respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.  相似文献   

9.
The Chinese Continental Scientific Drilling (CCSD) project is located at the Sulu ultrahigh-pressure metamorphic (UHPM) belt. It offers a unique opportunity for studying the radiogenic heat production of both shallower and deeper rocks. Based on the concentrations of radiogenic elements U, Th and K on 349 samples from main hole of CCSD (CCSD MH), pilot holes and exposures, we determined radiogenic heat productions of all major rock types in the Sulu UHPM belt. Results show the mean values of orthogneiss and paragneiss are respectively 1.65 ± 0.81 and 1.24 ± 0.61 µW m? 3. Due to different composition and grade of retrogressive metamorphism, the eclogites display significant scatter in radiogenic heat production, ranging from 0.01 to 2.85 µW m? 3, with a mean of 0.44 ± 0.55 µW m? 3. The radiogenic heat production in ultramafic rocks also varies within a large range of 0.02 to 1.76 µW m? 3, and the average turns out to be 0.18 ± 0.31 µW m? 3. Based on the measurements and crustal petrologic model, the vertical distribution model of heat production in Sulu crust is established. The resulting mean heat production (0.76 µW m? 3) contributes 24 mW m? 2 to the surface heat flow. 1-D thermal model indicates that the temperature at the Moho reaches above 750 °C, and the thermal thickness of the lithosphere is ~ 75 km, in good agreement with the geophysical results. The high teat flow (~ 75 mW m? 2) together with thin lithosphere presents strong support for the extension events during the late Cretaceous and Cenozoic.  相似文献   

10.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

11.
Two research cruises (CIMAR 13 Fiordos) were conducted in the N–S oriented macrobasin of the Moraleda Channel (42–47°S), which includes the E–W oriented Puyuhuapi Channel and Aysen Fjord, during two contrasting productive seasons: austral winter (27 July–7 August 2007) and spring (2–12 November 2007). These campaigns set out to assess the spatio-temporal variability, defined by the local topography along Moraleda Channel, in the biological, physical, and chemical oceanographic characteristics of different microbasins and to quantify the carbon budget of the pelagic trophic webs of Aysen Fjord.Seasonal carbon fluxes and fjord-system functioning vary widely in our study area. In terms of spatial topography, two constriction sills (Meninea and Elefantes) define three microbasins along Moraleda Channel, herein the (1) north (Guafo-Meninea), (2) central (Meninea-Elefantes), and (3) south (Elefantes-San Rafael Lagoon) microbasins. In winter, nutrient concentrations were high (i.e. nitrate range: 21–14 μM) and primary production was low (153–310 mgC m?2 d?1), suggesting that reduced light radiation depressed the plankton dynamics throughout Moraleda Channel. In spring, primary production followed a conspicuous N–S gradient, which was the highest (5167 mgC m?2 d?1) in the north microbasin and the lowest (742 mgC m?2 d?1) in the south microbasin. The seasonal pattern of the semi-enclosed Puyuhuapi Channel and Aysen Fjord, however, revealed no significant differences in primary production (~800 mgC m?2 d?1), and vertical fluxes of particulate organic carbon were nearly twice as high in spring as in winter (266 vs. 168 mgC m?2 d?1).At the time-series station (St. 79), the lithogenic fraction dominated the total sedimented matter (seston). The role of euphausiids in the biological carbon pump of the Patagonian fjords was evident, given the predominance of zooplankton fecal material, mostly euphausiid fecal strings (46% of all fecal material), among the recognizable particles contributing to the particulate organic carbon flux.The topographic constriction sills partially modulated the exchange of oceanic waters (Subantarctic Surface Water) with freshwater river discharges along the Moraleda Channel. This exchange affects salinity and nutrient availability and, thus, the plankton structure. The north microbasin was dominated by a seasonal alternation of the classical (spring) and microbial (winter) food webs. However, in the south microbasin, productivity was low and the system was dominated year-round by large inputs of glacier-derived, silt-rich freshwater carrying predominantly small-sized diatoms (Skeletonema spp) and bacteria. When superimposed upon this scenario, highly variable (seasonal) solar radiation and photoperiods could exacerbate north–south differences along Moraleda Channel.  相似文献   

12.
In general, the rate and timing of calcite precipitation is in part affected by variations in cave air CO2 concentrations. Knowledge of cave ventilation processes is required to quantify the effect variations in CO2 concentrations have on speleothem deposition rates and thus paleoclimate records. In this study we use radon-222 (222Rn) as a proxy of ventilation to estimate CO2 outgassing from the cave to the atmosphere, which can be used to infer relative speleothem deposition rates. Hollow Ridge Cave, a wild cave preserve in Marianna, Florida, is instrumented inside and out with multiple micro-meteorological sensor stations that record continuous physical and air chemistry time-series data. Our time series datasets indicate diurnal and seasonal variations in cave air 222Rn and CO2 concentrations, punctuated by events that provide clues to ventilation and drip water degassing mechanisms. Average cave air 222Rn and CO2 concentrations vary seasonally between winter (222Rn = 50 dpm L? 1, where 1 dpm L? 1 = 60 Bq m? 3; CO2 = 360 ppmv) and summer (222Rn = 1400 dpm L? 1; CO2 = 3900 ppmv). Large amplitude diurnal variations are observed during late summer and autumn (222Rn = 6 to 581 dpm L? 1; CO2 = 360 to 2500 ppmv).We employ a simple first-order 222Rn mass balance model to estimate cave air exchange rates with the outside atmosphere. Ventilation occurs via density driven flow and by winds across the entrances which create a ‘venturi’ effect. The most rapid ventilation occurs 25 m inside the cave near the entrance: 45 h? 1 (1.33 min turnover time). Farther inside (175 m) exchange is slower and maximum ventilation rates are 3 h? 1 (22 min turnover time). We estimate net CO2 flux from the epikarst to the cave atmosphere using a CO2 mass balance model tuned with the 222Rn model. Net CO2 flux from the epikarst is highest in summer (72 mmol m? 2 day? 1) and lowest in late autumn and winter (12 mmol m? 2 day? 1). Modeled ventilation and net CO2 fluxes are used to estimate net CO2 outgassing from the cave to the atmosphere. Average net CO2 outgassing is positive (net loss from the cave) and is highest in late summer and early autumn (about 4 mol h? 1) and lowest in winter (about 0.5 mol h? 1). Modeling of ventilation, net CO2 flux from the epikarst, and CO2 outgassing to the atmosphere from cave monitoring time-series can help better constrain paleoclimatic interpretations of speleothem geochemical records.  相似文献   

13.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

14.
The seasonal cycle of chlorophyll concentration in the Bay of Biscay and western English Channel has been examined using satellite data (chlorophyll, sea surface temperature (SST), photosynthetically available radiation (PAR) and wind) along the line of the ferry Pride of Bilbao (Bilbao to Portsmouth). The spring phytoplankton bloom develops regularly in the oceanic region of the Bay of Biscay from mid March to the beginning of May with peak chlorophyll concentrations ranging 2–4 mg m?3. Low wind turbulence is a major factor allowing the development of productivity pulses in the Bay of Biscay during spring. Exceptional blooms of phytoplankton take place in summer (July–August) in the western English Channel with chlorophyll concentrations as high as 40 mg m?3. Some environmental factors (SST, wind, pressure and tide) are examined. Autumn blooms of phytoplankton (1–2 mg m?3) are also detected in the northern Bay of Biscay, shelf-break and Celtic Sea in October. A 11 years pluri-annual synthesis of SeaWiFS satellite measurements is presented.  相似文献   

15.
The UV camera is becoming an important new tool in the armory of volcano geochemists to derive high time resolution SO2 flux measurements. Furthermore, the high camera spatial resolution is particularly useful for exploring multiple-source SO2 gas emissions, for instance the composite fumarolic systems topping most quiescent volcanoes. Here, we report on the first SO2 flux measurements from individual fumaroles of the fumarolic field of La Fossa crater (Vulcano Island, Aeolian Island), which we performed using a UV camera in two field campaigns: in November 12, 2009 and February 4, 2010. We derived ~ 0.5 Hz SO2 flux time-series finding fluxes from individual fumaroles, ranging from 2 to 8.7 t d?1, with a total emission from the entire system of ~ 20 t d?1 and ~ 13 t d?1, in November 2009 and February 2010 respectively. These data were augmented with molar H2S/SO2, CO2/SO2 and H2O/SO2 ratios, measured using a portable MultiGAS analyzer, for the individual fumaroles. Using the SO2 flux data in tandem with the molar ratios, we calculated the flux of volcanic species from individual fumaroles, and the crater as a whole: CO2 (684 t d?1 and 293 t d?1), H2S (8 t d?1 and 7.5 t d?1) and H2O (580 t d?1 and 225 t d?1).  相似文献   

16.
Parallel factor analysis of fluorescence excitation emission matrices of surface water samples of a globally large river (Yangtze River, China) watershed identified three classes of fluorescent dissolved organic matter (FDOM) that had ex/em = 280/330 nm, 305/385 nm and 350/450 nm respectively, resembling “peak T”, “peak M” and “peak C” commonly identified in natural water, respectively. Peak T (a tyrosine/tryptophan-like FDOM) did not show correlations to peak M or C which were humic-like substances, while a positive correlation (r = 0.935, p < 0.001) was present between the natural log-transformed maximum fluorescence intensity (Fmax) of peaks T and M indicating a tight link during their production and processing. Fmax values (in Raman unit nm?1) normalized to dissolved organic carbon (DOC) concentration were low, varying in ranges 15.93–85.95, 29.83–83.54 and 19.73–51.05 × 10?5 nm?1 (μmol/L)?1 for peaks T, M and C, respectively, in line with the history of strong photobleaching of the water samples as indicated by fairly high absorption spectral slope ratios (0.75–1.53 with a mean 1.03). Intermediate fluorescence index (FI) (1.46–1.83 with a mean 1.61) and small specific absorption at 254 nm (0.64–1.93 with a mean 1.15 m?1 mg?1 L) of the water samples, indicated the presence of both aquatic microbial DOM (e.g. peak T) and soil DOM (e.g. peak C). Peak C could be substantially removed by UV-A (320–400 nm) irradiation, while peak M was slightly increased when a microbe-containing water was exposed to the same UV-A irradiation. Taken together, peak C was attributed to diffuse soil source while peak M was likely attributed to joint effects of microbial activities and solar irradiation on the chromophores in the sample.  相似文献   

17.
We investigated the provenance of organic matter in the inner fjord area of northern Patagonia, Chile (~44–47°S), by studying the elemental (organic carbon, total nitrogen), isotopic (δ13C, δ15N), and biomarker (n-alkanoic acids from vascular plant waxes) composition of surface sediments as well as local marine and terrestrial organic matter. Average end-member values of N/C, δ13C, and δ15N from organic matter were 0.127±0.010, ?19.8±0.3‰, and 9.9±0.5‰ for autochthonous (marine) sources and 0.040±0.018, ?29.3±2.1‰, and 0.2±3.0‰ for allochthonous (terrestrial) sources. Using a mixing equation based on these two end-members, we calculated the relative contribution of marine and terrestrial organic carbon from the open ocean to the heads of fjords close to river outlets. The input of marine-derived organic carbon varied widely and accounted for 13–96% (average 61%) of the organic carbon pool of surface sediments. Integrated regional calculations for the inner fjord system of northern Patagonia covered in this study, which encompasses an area of ~4280 km2, suggest that carbon accumulation may account for between 2.3 and 7.8×104 ton C yr?1. This represents a storage capacity of marine-derived carbon between 1.8 and 6.2×104 ton yr?1, which corresponds to an assimilation rate of CO2 by marine photosynthesis between 0.06 and 0.23×106 ton yr?1. This rate suggests that the entire fjord system of Patagonia, which covers an area of ~240,000 km2, may represent a potentially important region for the global burial of marine organic matter and the sequestration of atmospheric CO2.  相似文献   

18.
This study reports the results of a field experiment using benthic mesocosms that examined dose-dependent effects of mussel biodeposition on the benthic environment. Mesocosms were placed in the natural sea bottom and subjected to one of eight levels of biodeposition (from 0 to 1400 mussels m?2). Most analyses indicated non-linear (i.e., threshold) effects. Sediment characteristics changed significantly between 200 and 400 mussels m?2 as did multivariate community structure. Community structure effects were characterised by changes in abundances of species that are very sensitive or tolerant to organic loading. The multivariate AZTI Marine Biotic Index (M-AMBI) indicated that the benthic status changed from High to Good in all mesocosms receiving biodeposits. Sediments acted as a sink for oxygen (O2), but results suggest O2 sediment demand was not sensitive enough to evaluate organic loading impacts. Results from this and improved experiments can be used to determine the environmental carrying capacity of sites for bivalve culture.  相似文献   

19.
Stable cosmogenic isotopes such as 3He and 21Ne are useful for dating of diverse lithologies, quantifying erosion rates and ages of ancient surfaces and sediments, and for assessing complex burial histories. Although many minerals are potentially suitable targets for 3He and 21Ne dating, complex production systematics require calibration of each mineral–isotope pair. We present new results from a drill core in a high-elevation ignimbrite surface, which demonstrates that cosmogenic 3He and 21Ne can be readily measured in biotite and hornblende. 21Ne production rates in hornblende and biotite are similar, and are higher than that in quartz due to production from light elements such as Mg and Al. We measure 21Nehbl/21Neqtz = 1.35 ± 0.03 and 21Nebio/21Neqtz = 1.3 ± 0.02, which yield production rates of 25.6 ± 3.0 and 24.7 ± 2.9 at g? 1 yr? 1 relative to a 21Neqtz production rate of 19.0 ± 1.8 at g? 1 yr? 1. We show that nucleogenic 21Ne concentrations produced via the reaction 18O(α,n)21Ne are manageably small in this setting, and we present a new approach to deconvolve nucleogenic 21Ne by comparison to nucleogenic 22Ne produced from the reaction 19F(α,n)22Ne in F-rich phases such as biotite. Our results show that hornblende is a suitable target phase for cosmogenic 3He dating, but that 3He is lost from biotite at Earth surface temperatures. Comparison of 3He concentrations in hornblende with previously measured mineral phases such as apatite and zircon provides unambiguous evidence for 3He production via the reaction 6Li(n,α)3H  3He. Due to the atypically high Li content in the hornblende (~ 160 ppm) we estimate that Li-produced 3He represents ~ 40% of total 3He production in our samples, and must be considered on a sample-specific basis if 3He dating in hornblende is to be widely implemented.  相似文献   

20.
《Continental Shelf Research》2006,26(17-18):2241-2259
The Amazon River spawns a vast mobile mudbelt extending ∼1600 km from the equator to the Orinoco delta. Deposits along the Amazon–Guianas coastline are characterized by some of the highest Corg remineralization rates reported for estuarine, deltaic, or shelf deposits, however, paradoxically, except where stabilized by mangroves or intertidal algal mats, they are usually suboxic and nonsulfidic. A combination of tides, wind-driven waves, and coastal currents forms massive fluid muds and mobile surface sediment layers ∼0.5–2 m thick which are dynamically refluxed and frequently reoxidized. Overall, the seabed functions as a periodically mixed batch reactor, efficiently remineralizing organic matter in a gigantic sedimentary incinerator of global importance. Amazon River material entering the head of this dynamic dispersal system carries an initial terrestrial sedimentary Corg loading of ∼ 0.7 mg C m−2 particle surface area. Total Corg loading is lowered to ∼ 0.2 mg C m−2 in the proximal delta topset, ∼60–70% of which remains of terrestrial origin. Loading decreases further to 0.12–0.14 mg C m−2 (∼60% terrestrial) in mudbanks ∼600 km downdrift along French Guiana, values comparable to those found in the oligotrophic deepsea. DOC/ΣCO2 ratios in pore waters of French Guiana mudbanks indicate that >90% of metabolized organic substrates are completely oxidized. Within the Amazon delta topset at the head of the dispersal system, both terrestrial and marine organic matter contribute substantially to early diagenetic remineralization, although reactive marine substrate dominates (∼60–70%). The conditional rate constant for terrestrial Corg in the delta topset is ∼0.2 a−1. As sedimentary Corg is depleted during transit, marine sources become virtually the exclusive substrate for remineralization except very near the mangrove shoreline. The δ13C and Δ14C values of pore water ΣCO2 in mudbanks demonstrate that the primary source of remineralized organic matter within ∼1 km of shore is a small quantity of bomb signature marine plankton (+80‰). Thus, fresh marine organic material is constantly entrained into mobile deposits and increasingly drives early diagenetic reactions along the transit path. Relatively refractory terrestrial Corg is lost more slowly but steadily during sedimentary refluxing and suboxic diagenesis. Amazon Fan deposits formed during low sea level stand largely bypassed this suboxic sedimentary incinerator and stored material with up to ∼3X the modern high stand inner shelf Corg load (Keil et al., 1997b. Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 155. pp. 531–537). Sedimentary dynamics, including frequency and magnitude of remobilization, and the nature of dispersal systems are clearly key controls on diagenetic processes, biogeochemical cycling, and global C storage along the continental margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号