首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Victoria Island lies at the north-western limit of the former North American (Laurentide) Ice Sheet in the Canadian Arctic Archipelago and displays numerous cross-cutting glacial lineations. Previous work suggests that several ice streams operated in this region during the last (Wisconsinan) glaciation and played a major role in ice sheet dynamics and the delivery of icebergs into the Arctic Ocean. This paper produces the first detailed synthesis of their behaviour from the Last Glacial Maximum through to deglaciation (~21–9.5 cal ka BP) based on new mapping and a previously published radiocarbon-constrained ice sheet margin chronology. Over 70 discrete ice flow events (flow-sets) are ‘fitted’ to the ice margin configuration to allow identification of several ice streams ranging in size from large and long-lived (thousands of years) to much smaller and short-lived (hundreds of years). The reconstruction depicts major ice streams in M'Clure Strait and Amundsen Gulf which underwent relatively rapid retreat from the continental shelf edge at some time between ~15.2 and 14.1 cal ka BP: a period which encompasses climatic warming and rapid sea level rise (meltwater pulse-1a). Following this, overall retreat was slower and the ice streams exhibited asynchronous behaviour. The Amundsen Gulf Ice Stream continued to operate during ice margin retreat, whereas the M'Clure Strait Ice Stream ceased operating and was replaced by an ice divide within ~1000 years. This ice divide was subsequently obliterated by another short-lived phase of ice streaming in M'Clintock Channel ~13 cal ka BP. The timing of this large ice discharge event coincides with the onset of the Younger Dryas. Subsequently, a minor ice divide developed once again in M'Clintock Channel, before final deglaciation of the island shortly after 9.5 cal ka BP. It is concluded that large ice streams at the NW margin of the Laurentide Ice Sheet, equivalent in size to the Hudson Strait Ice Stream, underwent major changes during deglaciation, resulting in punctuated delivery of icebergs into the Arctic Ocean. Published radiocarbon dates constrain this punctuated delivery, as far as is possible within the limits imposed by their precision, and we note their coincidence with pulses of meltwater delivery inferred from numerical modelling and ocean sediment cores.  相似文献   

2.
We constrain a three-dimensional thermomechanical model of Greenland ice sheet (GrIS) evolution from the Last Glacial Maximum (LGM, 21 ka BP) to the present-day using, primarily, observations of relative sea level (RSL) as well as field data on past ice extent. Our new model (Huy2) fits a majority of the observations and is characterised by a number of key features: (i) the ice sheet had an excess volume (relative to present) of 4.1 m ice-equivalent sea level at the LGM, which increased to reach a maximum value of 4.6 m at 16.5 ka BP; (ii) retreat from the continental shelf was not continuous around the entire margin, as there was a Younger Dryas readvance in some areas. The final episode of marine retreat was rapid and relatively late (c. 12 ka BP), leaving the ice sheet land based by 10 ka BP; (iii) in response to the Holocene Thermal Maximum (HTM) the ice margin retreated behind its present-day position by up to 80 km in the southwest, 20 km in the south and 80 km in a small area of the northeast. As a result of this retreat the modelled ice sheet reaches a minimum extent between 5 and 4 ka BP, which corresponds to a deficit volume (relative to present) of 0.17 m ice-equivalent sea level. Our results suggest that remaining discrepancies between the model and the observations are likely associated with non-Greenland ice load, differences between modelled and observed present-day ice elevation around the margin, lateral variations in Earth structure and/or the pattern of ice margin retreat.  相似文献   

3.
《Quaternary Science Reviews》2003,22(2-4):289-308
The Rerewhakaaiutu Tephra erupted from Okataina Volcanic Centre, North Island, New Zealand, at 14,700±95 14C yr BP (ca 17,600 cal yr BP) at a time of rapid re-organisation of Earth's climate system at the end of the Last Glacial (Termination I). It provides a distinctive isochron in a range of different environments in North Island and in adjacent South Pacific Ocean sediments. Terrestrial evidence, based on fluvial aggradation and downcutting relationships, loess accumulation rates, palaeovegetation patterns, and buried soil development and mineralogy, shows that marked amelioration of climate occurred shortly before the Rerewhakaaitu Tephra was deposited. Similarly, marine evidence from around this time shows major changes in accumulation rates of sediment and aeolian quartz and in the abundance of various marine organisms, while foraminiferal oxygen and carbon isotope records indicate that the arrival of the glacial meltwater signal occurred close to or just after the deposition of the Rerewhakaaitu Tephra. These changes are discussed in relation to controls on climate by oceanic and atmospheric mechanisms. The re-organisation of climate commencing at ca 15,000–14,500 14C yr BP (ca 18,000–17,400 cal yr BP) is detected elsewhere in the Southern Hemisphere and evidently was linked to orbitally forced warming which is thought to have initiated ice retreat in both hemispheres.  相似文献   

4.
Ice streams are the fast-flowing zones of ice sheets that can discharge a large flux of ice. The glaciated western Svalbard margin consists of several cross-shelf troughs which are the former ice stream drainage pathways during the Pliocene–Pleistocene glaciations. From an integrated analysis of high-resolution multibeam swath-bathymetric data and several high-resolution two-dimensional reflection seismic profiles across the western and northwestern Svalbard margin we infer the ice stream flow directions and the deposition centres of glacial debris that the ice streams deposited on the outer margin. Our results show that the northwestern margin of Svalbard experienced a switching of a major ice stream. Based on correlation with the regional seismic stratigraphy as well as the results from ODP 911 on Yermak Plateau and ODP 986 farther south on the western margin of Spitsbergen, off Van Mijenfjord, we find that first a northwestward flowing ice stream developed during initial northern hemispheric cooling (starting ~2.8–2.6 Ma). A switch in ice stream flow direction to the present-day Kongsfjorden cross-shelf trough took place during a glaciation at ~1.5 Ma or probably later during an intensive major glaciation phase known as the ‘Mid-Pleistocene Revolution’ starting at ~1.0 Ma. The seismic and bathymetric data suggest that the switch was abrupt rather than gradual and we attribute it to the reaching of a tipping point when growth of the Svalbard ice sheet had reached a critical thickness and the ice sheet could overcome a topographic barrier.  相似文献   

5.
The geomorphic, stratigraphic and sedimentological characteristics of glaciolacustrine sediments in the metropolitan Detroit, Michigan area were studied to determine environments of deposition and make paleogeographic reconstructions. Nine lithofacies were identified and paleoenvironments interpreted based on their morphostratigraphic relationships with relict landforms. The sediments studied are found southeast of the Defiance and Birmingham moraines lying beneath a lowland characterized by a low morainal swell (Detroit moraine) and a series of lacustrine terraces that descend progressively in elevation southeastward. The glaciolacustrine sediments were deposited approximately 14.3–12.4 kA BP during the Port Bruce and Port Huron glacial phases of late Wisconsinan time, and are related to proglacial paleolakes Maumee, Arkona, Whittlesey, Warren, Wayne, Grassmere, Lundy and Rouge. The glaciolacustrine section is typically 2–4 m thick and consists of a basal unit of wavy-bedded clayey diamicton overlain by a surficial deposit of stratified and cross-stratified sand and gravel. The basal unit is comprised of subaqueous debris flow deposits that accumulated as subaqueous moraine in paleolake Maumee along the retreating front of the Huron lobe. The surficial deposits of sand and gravel were formed by traction, resulting from lacustrine wave activity and fluvial processes, in lakebed plain, beach ridge and deltaic depositional settings. Much of the lake-margin sand and gravel was derived from clayey diamicton by lacustrine wave action and winnowing, and that associated with paleolakes of the Port Huron phase is largely reworked Port Bruce sediment. Paleogeographic reconstructions show that the Defiance, Birmingham and Detroit moraines, Defiance and Rochester channels, and the Rochester delta, were deposited penecontemporaneously as paleolake Maumee expanded northward across the map area. A unique type of wavy bedform is characteristic of clayey diamicton deposited by subaqueous mass flow in the study area that is useful for differentiating sediment: 1) deposited by mass flow in subaqueous vs. subaerial settings, and 2) deposited by subaqueous mass flow vs. basal till. These bedforms are a useful tool for identifying subglacial meltwater deposits, and facilitate the mapping and correlation of glacial sediments based on till sheets. The map area provides a continental record of ice sheet dynamics along the southern margin of the Laurentide ice sheet during Heinrich event H-1. The record reveals rapid glacial retreat (~ 0.8 km/yr) contemporaneous with the discharge of a large volume of meltwater. Evidence in the study area for subglacial meltwater is problematic, but indications that periglacial conditions persisted in the map area until ~ 12.7 kA BP, and extended for 200 km or more south of the ice front suggest that a frozen substrate may have contributed to instability of the LIS.  相似文献   

6.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

7.
For the past half-century, reconstructions of North American ice cover during the Last Glacial Maximum have shown ice-free land distal to the Laurentide Ice Sheet, primarily on Melville and Banks islands in the western Canadian Arctic Archipelago. Both islands reputedly preserve at the surface multiple Laurentide till sheets, together with associated marine and lacustrine deposits, recording as many as three pre-Late Wisconsinan glaciations. The northwest corner of Banks Island was purportedly never glaciated and is trimmed by the oldest and most extensive glaciation (Banks Glaciation) considered to be of Matuyama age (>780 ka BP). Inside the limit of Banks Glaciation, younger till sheets are ascribed to the Thomsen Glaciation (pre-Sangamonian) and the Amundsen Glaciation (Early Wisconsinan Stade). The view that the western Canadian Arctic Archipelago remained largely ice-free during the Late Wisconsinan is reinforced by a recent report of two woolly mammoth fragments collected on Banks and Melville islands, both dated to ~22 ka BP. These dates imply that these islands constitute the northeast extremity of Beringia.A fundamental revision of this model is now warranted based on widespread fieldwork across the adjacent coastlines of Banks and Melville islands, including new dating of glacial and marine landforms and sediments. On Dundas Peninsula, southern Melville Island, AMS 14C dates on ice-transported marine molluscs within the most extensive Laurentide till yield ages of 25–49 ka BP. These dates require that Late Wisconsinan ice advanced northwestward from Visount Melville Sound, excavating fauna spanning Marine Isotope Stage 3. Laurentide ice that crossed Dundas Peninsula (300 m asl) coalesced with Melville Island ice occupying Liddon Gulf. Coalescent Laurentide and Melville ice continued to advance westward through M'Clure Strait depositing granite erratics at ≥235 m asl that require grounded ice in M'Clure Strait, as do streamlined bedforms on the channel floor. Deglaciation is recorded by widespread meltwater channels that show both the initial separation of Laurentide and Melvile ice, and the successive retreat of Laurentide ice southward across Dundas Peninsula into Viscount Melville Sound. Sedimentation from these channels deposited deltas marking deglacial marine limit. Forty dates on shells collected from associated glaciomarine rhythmites record near-synchronous ice retreat from M'Clure Strait and Dundas Peninsula to north-central Victoria Island ~11.5 ka BP. Along the adjacent coast of Banks Island, deglacial shorelines also record the retreat of Laurentide ice both eastward through M'Clure Strait and southward into the island's interior. The elevation and age (~11.5 ka BP) of deglacial marine limit there is fully compatible with the record of ice retreat on Melville Island. The last retreat of ice from Mercy Bay (northern Banks Island), previously assigned to northward retreat into M'Clure Strait during the Early Wisconsinan, is contradicted by geomorphic evidence for southward retreat into the island's interior during the Late Wisconsinan. This revision of the pattern and age of ice retreat across northern Banks Island results in a significant simplification of the previous Quaternary model. Our observations support the amalgamation of multiple till sheets – previously assigned to at least three pre-Late Wisconsinan glaciations – into the Late Wisconsinan. This revision also removes their formally named marine transgressions and proglacial lakes for which evidence is lacking. Erratics were also widely observed armouring meltwater channels originating on the previously proposed never-glaciated landscape. An extensive Late Wisconsinan Laurentide Ice Sheet across the western Canadian Arctic is compatible with similar evidence for extensive Laurentide ice entering the Richardson Mountains (Yukon) farther south and with the Innuitian Ice Sheet to the north. Widespread Late Wisconsinan ice, in a region previously thought to be too arid to sustain it, has important implications for paleoclimate, ice sheet modelling, Arctic Ocean ice and sediment delivery, and clarifying the northeast limit of Beringia.  相似文献   

8.
《Quaternary Science Reviews》2007,26(15-16):1999-2011
A multi proxy sediment core record on the continental margin off western Svalbard, European Arctic, reflects large climatic and oceanographic oscillations at the Lateglacial–early Holocene transition. Based on studies of planktonic foraminifera, their stable oxygen and carbon isotopic composition and ice rafted debris, we have reconstructed the last 14 cal. ka BP. The period 14–13.5 cal. ka BP was characterized by highly unstable climatic conditions. Short-lived episodes of warming alternated with meltwater pulses and enhanced iceberg rafting. This period correlates to a regional warming of the northern North Atlantic. An overall decrease in meltwater took place during the deglaciation (14–10.8 cal. ka BP). The late Younger Dryas and subsequent transition into the early Holocene is characterized by a reduced flux of planktonic foraminifera and increased iceberg rafting. A major warming took place from 10.8 to 9.7 cal. ka BP, the influence of meltwater ceased and the flux of warm Atlantic Water increased. From 9.7 to 8.8 cal. ka BP, the western Svalbard margin surface waters were significantly warmer than today. This warm period, the thermal maximum, was followed by an abrupt cooling at 8.8. cal. ka BP, caused by an increased influence of Arctic Water from the Arctic Ocean. The results document that the European Arctic was very sensitive to climatic and oceanographic changes at the end of the last glacial and during the Holocene.  相似文献   

9.
High-resolution 2D seismic data from the western side of Dogger Bank (North Sea) has revealed that the glacigenic sediments of the Dogger Bank Formation record a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonism. The resulting complex assemblage of glacial landforms and sediments record the interplay between two separate ice masses revealing that Late Devensian ice sheet dynamics across Dogger Bank were far more complex than previously thought, involving the North Sea lobe of the British and Irish Ice Sheet, advancing from the west, interacting with the Dogger Bank lobe which expanded from the north. The active northward retreat of the Dogger Bank lobe resulted in the development of a complex assemblage of arcuate thrust-block moraines (≤ 15 km wide, > 30 km long) composed of highly folded and thrust sediments, separated by sedimentary basins and meltwater channels filled by outwash. The impact of the North Sea lobe was restricted to the western margin of Dogger Bank and led to deep-seated (100–150 m thick) glacitectonism in response to ice-push from the west. During the earlier expansion of the North Sea lobe, this thrust and fold complex initially occupied a frontal marginal position changing to a more lateral ice-marginal position as the ice sheet continued to expand to the south. The complex structural relationships between the two glacitectonic complexes indicates that these ice masses interacted along the western side of Dogger Bank, with the inundation of this area by ice probably occurring during the last glaciation when the ice sheets attained their maximum extents.  相似文献   

10.
This study seeks to quantify the rate and timing of regolith generation in the Critical Zone at the Susquehanna Shale Hills Critical Zone Observatory (SSHO). Meteoric 10Be depth profiles were determined using measurements from 30 hillslope soil and bedrock core samples in an effort to constrain 10Be inventories. The SSHO is located in the temperate climate zone of central Pennsylvania and comprises a first-order watershed developed entirely on a Fe-rich, organic-poor, Silurian-aged shale. Two major perturbations to the landscape have occurred at SSHO in the geologically recent past, including significant and sustained periglacial activity until after the retreat of the Laurentide ice sheet (~21 ka) and deforestation during early colonial land-use. Bulk soil samples (n = 16) were collected at three locations along a planar hillslope on the southern ridge of the catchment, representing the ridge top, mid-slope and valley floor. Rock chip samples (n = 14) were also collected from a 24 m deep core drilled into the northern ridge top. All meteoric 10Be concentration profiles show a declining trend with depth, with most of the 10Be retained in the uppermost decimeters of the soil. Meteoric 10Be inventories are higher at the mid-slope and valley floor sample sites, at 3.71 ± 0.02 × 1010 at/cm2 and 3.69 ± 0.02 × 1010 at/cm2, than at the ridge top site (1.90 ± 0.01 × 1010 at/cm2). The 10Be inventory at the convex ridge top site implies a minimum residence time of ~10.6 ka, or if erosion is steady, an erosion rate of 19.4 ± 0.2 m/My.  相似文献   

11.
This study presents a high-resolution multi-proxy investigation of sediment core MD03-2601 and documents major glacier oscillations and deep water activity during the Holocene in the Adélie Land region, East Antarctica. A comparison with surface ocean conditions reveals synchronous changes of glaciers, sea ice and deep water formation at Milankovitch and sub-Milankovitch time scales. We report (1) a deglaciation of the Adélie Land continental shelf from 11 to 8.5 cal ka BP, which occurred in two phases of effective glacier grounding-line retreat at 10.6 and 9 cal ka BP, associated with active deep water formation; (2) a rapid glacier and sea ice readvance centred around 7.7 cal ka BP; and (3) five rapid expansions of the glacier–sea ice systems, during the Mid to Late Holocene, associated to a long-term increase of deep water formation. At Milankovich time scales, we show that the precessionnal component of insolation at high and low latitudes explains the major trend of the glacier–sea ice–ocean system throughout the Holocene, in the Adélie Land region. In addition, the orbitally-forced seasonality seems to control the coastal deep water formation via the sea ice–ocean coupling, which could lead to opposite patterns between north and south high latitudes during the Mid to Late Holocene. At sub-Milankovitch time scales, there are eight events of glacier–sea ice retreat and expansion that occurred during atmospheric cooling events over East Antarctica. Comparisons of our results with other peri-Antarctic records and model simulations from high southern latitudes may suggest that our interpretation on glacier–sea ice–ocean interactions and their Holocene evolutions reflect a more global Antarctic Holocene pattern.  相似文献   

12.
The Norwegian Channel Ice Stream (NCIS) is one the defining features of the Fennoscandian icesheet. Still little is known of the detailed dynamics of this ice stream in relation to regional changes in ice cover, paleoceanographic and climatic changes. Sedimentological data from core MD99-2283 in combination with seismic data allow a detailed chronological reconstruction of the outbuilding of the margin and the ice extent in southern Scandinavia through the last 150 ka. An integrated stratigraphy of the margin is presented and compared to the glacial history. Changes in the regional ice cover are reflected in the accumulation rates, the clay mineralogy, the coarse chalk fraction and the number of IRD >2 mm in core MD99-2283, while the sedimentation on the North Sea Fan as derived from seismic data provides direct evidence for the glacial activity at the shelf edge. Tentative evidence was found for two Early Weichselian glacial advances in southern Scandinavia and possibly Scotland at around 110 and 80 ka BP. From 42 cal ka BP the ice cover expanded in southern Fennoscandia and led to increased deposition on the margin and the occurrence of local melt water outbursts. Significantly increased accumulation rates, coarse chalk, local meltwater output and smectite occur during the ice expansion in the North Sea from around 34 cal ka BP. The main outbuilding phase of the NSF during the last glacial cycle occurred after 30 cal ka BP. From around 24 cal ka BP the NCIS became highly active and advanced at least three times prior to the final retreat from the shelf edge around 19.0 cal ka BP.  相似文献   

13.
We present results from a suite of forward transient numerical modelling experiments of the British and Irish Ice Sheet (BIIS), consisting of Scottish, Welsh and Irish accumulation centres, spanning the last Glacial period from 38 to 10 ka BP. The 3D thermomechanical model employed uses higher-order physics to solve longitudinal (membrane) stresses and to reproduce grounding-line dynamics. Surface mass balance is derived using a distributed degree-day calculation based on a reference climatology from mean (1961–1990) precipitation and temperature patterns. The model is perturbed from this reference state by a scaled NGRIP oxygen isotope curve and the SPECMAP sea-level reconstruction. Isostatic response to ice loading is computed using an elastic lithosphere/relaxed asthenosphere scheme. A suite of 350 simulations were designed to explore the parameter space of model uncertainties and sensitivities, to yield a subset of experiments that showed close correspondence to offshore and onshore ice-directional indicators, broad BIIS chronology, and the relative sea-level record. Three of these simulations are described in further detail and indicate that the separate ice centres of the modelled BIIS complex are dynamically interdependent during the build up to maximum conditions, but remain largely independent throughout much of the simulation. The modelled BIIS is extremely dynamic, drained mainly by a number of transient but recurrent ice streams which dynamically switch and fluctuate in extent and intensity on a centennial time-scale. A series of binge/purge, advance/retreat, cycles are identified which correspond to alternating periods of relatively cold-based ice, (associated with a high aspect ratio and net growth), and wet-based ice with a lower aspect ratio, characterised by streaming. The timing and dynamics of these events are determined through a combination of basal thermomechanical switching spatially propagated and amplified through longitudinal coupling, but are modulated and phase-lagged to the oscillations within the NGRIP record of climate forcing. Phases of predominant streaming activity coincide with periods of maximum ice extent and are triggered by abrupt transitions from a cold to relatively warm climate, resulting in major iceberg/melt discharge events into the North Sea and Atlantic Ocean. The broad chronology of the modelled BIIS indicates a maximum extent at ~20 ka, with fast-flowing ice across its western and northern sectors that extended to the continental shelf edge. Fast-flowing streams also dominate the Irish Sea and North Sea Basin sectors and impinge onto SW England and East Anglia. From ~19 ka BP deglaciation is achieved in less than 2000 years, discharging the freshwater equivalent of ~2 m global sea-level rise. A much reduced ice sheet centred on Scotland undergoes subsequent retrenchment and a series of advance/retreat cycles into the North Sea Basin from 17 ka onwards, culminating in a sustained Younger Dryas event from 13 to 11.5 ka BP. Modelled ice cover is persistent across the Western and Central Highlands until the last remnant glaciers disappear around 10.5 ka BP.  相似文献   

14.
The seaboard of western Scotland is a classic fjord landscape formed by glaciation over at least the last 0.5 Ma. We examine the glacial geology preserved in the fjords (or sea lochs) of the Summer Isles region of NW Scotland using high-resolution seismic data, multibeam swath bathymetry, seabed sediment cores, digital terrain models, aerial photographs, and field investigations. Detailed analyses include seismic facies and lithofacies interpretations; sedimentological and palaeoenvironmental analyses; and radiocarbon dating of selected microfauna. Our results indicate that the Pleistocene sediments of the Summer Isles region, on- and offshore, can be subdivided into several lithostratigraphic formations on the basis of seismic character, geomorphology and sedimentology. These are: subglacial tills; ice-distal and glacimarine facies; ice-proximal and ice-contact facies; moraine assemblages; and Holocene basin fill. The submarine landscape is also notable for its large-scale mass-movement events – the result of glaciodynamic, paraglacial or seismotectonic processes. Radiocarbon dating of marine shells indicate that deglaciation of this part of NW Scotland was ongoing between 14 and 13 ka BP – during the Lateglacial Interstadial (Greenland Interstadial 1) – consistent with cosmogenic surface-exposure ages from previous studies. A sequence of numerous seafloor moraine ridges charts oscillatory retreat of the last ice sheet from a buoyant calving margin in The Minch to a firmly grounded margin amongst the Summer Isles in the early part of Lateglacial Interstadial (GI-1) (pre-14 ka BP). Subsequent, punctuated, frontal retreat of the ice mass occurred in the following ~1000 years, during which time ice-cap outlet glaciers became topographically confined and restricted to the fjords. A late-stage readvance of glaciers into the inner fjords occurred soon after 13 ka BP, which calls into question the accepted limits of ice extent during the Younger Dryas Stadial (Greenland Stadial 1). We examine the wider implications of our chronostratigraphic model, discussing the implications for British Ice Sheet deglaciation, Lateglacial climate change, and the style and rates of fjord sedimentation.  相似文献   

15.
A field-based reconstruction of the deglacial paleogeography in the Fort McMurray area permits: 1) constraining the timing of meltwater routing to the Arctic from the present Hudson Bay drainage basin; and 2) minimum-age estimates for ice-margin positions that can be used to constrain ice-sheet modeling results. A downslope recession of the Laurentide Ice Sheet resulted in a series of proglacial lakes forming between the ice margin and higher land to the southwest. The paleogeography of these lakes is poorly constrained in part from the masking effect of boreal forest vegetation and map-scale issues. However, recent space-shuttle based DEMs increase the number and spatial extent of moraines identified within the study area resulting in a coherent pattern of ice margin retreat focused on the Athabasca River valley. An intensive lake-coring program resulted in a minimum ten-fold increase in the radiocarbon database used to limit moraine ages. Results indicate that deglaciation in this region was younger than previously reported, and it is likely that the meltwater could not drain northward to the Arctic Ocean from any source southeast of the Fort McMurray area until approximately 9850–9660 14C BP.  相似文献   

16.
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabi1ted the Sannai-Maruyama site from 5.9 to 4.2 ± 0.1 cal kyr BP However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4–7.9, 7.0–5.9, 5.1–4.1, and 2.3–1.4 cal kyr BP) and four of low (?8.4, 7.9–7.0, 5.9–5.1, and 4.1–2.3 cal kyr BP) SST. Thus, each SST cycle lasted 1.0–2.0 kyr, and the amplitude of fluctuation was about 1.5–2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal kyr BP, but was clearly increased between 5.9 and 4.0 cal kyr BP, because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 ± 0.1 cal kyr BP), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal kyr BP, in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 ± 0.1 cal kyr BP, abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in the pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0–4.3 cal kyr BP) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.  相似文献   

17.
The evolution and dynamics of the last British–Irish Ice Sheet (BIIS) have hitherto largely been reconstructed from onshore and shallow marine glacial geological and geomorphological data. This reconstruction has been problematic because these sequences and data are spatially and temporally incomplete and fragmentary. In order to enhance BIIS reconstruction, we present a compilation of new and previously published ice-rafted detritus (IRD) flux and concentration data from high-resolution sediment cores recovered from the NE Atlantic deep-sea continental slope adjacent to the last BIIS. These cores are situated adjacent to the full latitudinal extent of the last BIIS and cover Marine Isotope Stages (MIS) 2 and 3. Age models are based on radiocarbon dating and graphical tuning of abundances of the polar planktonic foraminifera Neogloboquadrina pachyderma sinistral (% Nps) to the Greenland GISP2 ice core record. Multiple IRD fingerprinting techniques indicate that, at the selected locations, most IRD are sourced from adjacent BIIS ice streams except in the centre of Heinrich (H) layers in which IRD shows a prominent Laurentide Ice Sheet provenance. IRD flux data are interpreted with reference to a conceptual model explaining the relations between flux, North Atlantic hydrography and ice dynamics. Both positive and rapid negative mass balance can cause increases, and prominent peaks, in IRD flux. First-order interpretation of the IRD record indicates the timing of the presence of the BIIS with an actively calving marine margin. The records show a coherent latitudinal, but partly phased, signal during MIS 3 and 2. Published data indicate that the last BIIS initiated during the MIS 5/4 cooling transition; renewed growth just before H5 (46 ka) was succeeded by very strong millennial-scale variability apparently corresponding with Dansgaard–Oeschger (DO) cycles closely coupled to millennial-scale climate variability in the North Atlantic region involving latitudinal migration of the North Atlantic Polar Front. This indicates that the previously defined “precursor events” are not uniquely associated with H events but are part of the millennial-scale variability. Major growth of the ice sheet occurred after 29 ka with the Barra Ice Stream attaining a shelf-edge position and generating turbiditic flows on the Barra–Donegal Fan at ~27 ka. The ice sheet reached its maximum extent at H2 (24 ka), earlier than interpreted in previous studies. Rapid retreat, initially characterised by peak IRD flux, during Greenland Interstadial 2 (23 ka) was followed by readvance between 22 and 16 ka. Readvance during H1 was only characterised by BIIS ice streams draining central dome(s) of the ice sheet, and was followed by rapid deglaciation and ice exhaustion. The evidence for a calving margin and IRD supply from the BIIS during Greenland Stadial 1 (Younger Dryas event) is equivocal. The timing of the initiation, maximum extent, deglacial and readvance phases of the BIIS interpreted from the IRD flux record is strongly supported by recent independent data from both the Irish Sea and North Sea sectors of the ice sheet.  相似文献   

18.
《Quaternary Science Reviews》1999,18(10-11):1205-1212
A high-resolution East Asian winter monsoon proxy record reconstructed from the Baoji loess section in China shows two major shifts in climate modes over the past 2.5 Ma, one occurring at about 1.7–1.6 Ma BP and the other at about 0.8–0.5 Ma BP. The 1.7–1.6 Ma shift is characterized by a rather abrupt transition of winter monsoon variability from various periodicities to dominant 41-ka cycles, and accompanied by a substantial increase in intensity of winter monsoon winds as manifested by an increase in average loess grain size. The 0.8–0.5 Ma event shows a relatively gradual transition from constant 41-ka cycles to predominant 100-ka climatic oscillations with a significant increase in amplitude. The 0.8–0.5 Ma shift matches that registered in deep-sea δ18O records, whereas the 1.7–1.6 Ma shift is absent in global ice volume changes. This comparison suggests that at about 1.6 Ma BP, the ice sheets in the Northern Hemisphere may have reached a critical size, sufficient to modulate changes in the global climate system. The discrepancy of climate cyclicity between loess and deep-sea records over the 2.5–1.6 Ma interval suggests that the older Matuyama climate evolution cannot be understood simply by a regular 41 ka cycle model on a global scale. More long proxy records derived from continental deposits are needed.  相似文献   

19.
During the last glacial interval, the North Atlantic ice sheets expanded and contracted in approximate synchronicity with orbitally forced global climate change. Variation in ice rafted detritus content in North Atlantic marine sediment cores record the waxing and waning of glaciers, as well as the abrupt temperature changes at millennial time scales. The background variations of ice rafting are punctuated by Heinrich layers, which appear to record the catastrophic collapse of the Laurentide ice sheet through the Hudson Strait. The objective of this paper is to document the evolution of glaciation on Laurentia during the last 43 14C kyr. We present a provenance study based on 40Ar/39Ar dates of individual hornblende grains from 57 samples taken at 2 cm spacing between 4 and 134 cm from core V23-14 (43.4°N, 45.25°W, 3177 m). Sedimentation rates outside of the Heinrich layers are very low in this core, but the Heinrich layers are easily identified. Laurentide glaciation did not extend into the ocean south of 55°N until about 26 14C kyr, and retreated to the coastline or beyond by 14 14C kyr. Documenting the history of this major ice sheet has significant implications for understanding ice rafting sources in more distal locations where mixing among different ice sheets is likely.  相似文献   

20.
The Atkan Formation in the Ayan-Yuryakh anticlinorium, Magadan province, northeastern Russia, is of great interest because of the occurrence of deposits of apparent “dropstones” and “ice rafted debris” that have been previously interpreted as glacial. Two high-precision U–Pb zircon ages, one for an intercalated volcanic tuff (262.5 ± 0.2 Ma) and the other for a boulder clast (269.8 ± 0.1 Ma) within a diamictite of the Atkan Formation, constrain the age of the Atkan Formation as Guadalupian (middle Permian). Sedimentologic study of the Atkan Formation casts doubt on the glacial nature of the diamictites. Deposition of rocks of the Atkan Formation temporally correlates with the Capitanian interglacial event in the southern hemisphere that recently was calibrated with high precision CA-TIMS. The previously proposed climate proxy record based upon warm-water foraminifera, which corresponds closely to global climate fluctuations, is compared with the glacial record of eastern Australia and indicates that the Capitanian was a time of globally warm climate. The sedimentology of Atkan Formation, the record of diversification of both fusulinids and rugosa corals, global sea-water temperature, and sea-level fluctuations agree well with high latitude paleoclimate records in northeastern Russia and eastern Australia. Major components of the Atkan Formation, the volcanic rocks, are syngenetic with the sedimentation process. The volcanic activity in the nearby regions during middle–late Permian was quite extensive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号