首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of using the occultation of a pulsar by the solar corona for diagnostics of the magnitude of coronal electron-density inhomogeneities is analyzed. Coronal probing at small elongations is considered, when a ground-based receiver can be in the vicinity of the caustic surface due to the regular refraction of the pulsar radio emission in the circumsolar plasma.  相似文献   

2.
A review and comparative analysis of results from studies of the effects of scattering on the interstellar medium using giant pulses of the Crab Nebula pulsar (B0531+21) are presented. This analysis was based on eight epochs of Very Long Baseline Interferometry (VLBI) radio observations carried out as part of the scientific program of the Radio Astron mission during 2011–2015. The scintillation timescale t scint and spectral index γ for the power-law energy distribution of the pulses were obtained for each observing epoch. The measured scintillation timescales are t scint = 7.5?123 s at 1668 MHz and t scint = 2.9 s at 327 MHz. The spectral indices are ?1.6...?2.5. The frequency and time characteristics of the scattering were measured using two independent methods: based on the decorrelation bandwidth Δν d and the scattering timescale τ SC. The angular size of the scattering disk θ H of the pulsar was obtained, the phase structure functions constructed, and the distance to the effective scattering screen estimated. The derived diameter of the scattering disk θ H at 1668 MHz ranges from 0.4 to 1.3 mas, while the scatteringdisk diameter at 327 MHz is 14.0 mas. The measured distance to the effective scattering screen ranges from 0.7 to 1.9 kpc, and varies from observation to observation in the same way as the scattering timescale and decorrelation bandwidth: τ SC ≈ 0.9?5.8 μs and Δν d ≈ 40.7?161 kHz at 1668 MHz. The scattering timescale and decorrelation bandwidth at 327 MHz are 2340 μs and 68 Hz.  相似文献   

3.
The structure of the interstellar plasma in the direction of the pulsar in the Crab Nebula is studied using several sets of space-VLBI observations obtained with networks of ground telescopes and the RadioAstron space antenna at 18 and 92 cm. Six observing sessions spanning two years are analyzed. Giant pulses are used to probe the cosmic plasma, making it possible to measure the scattering parameters without averaging. More than 4000 giant pulses were detected. The interferometer responses (visibility functions) on ground and ground–space baselines are analyzed. On the ground baselines, the visibility function as a function of delay is dominated by a narrow feature at zero delay with a width of δτ ~ 1/B, where B is the receiver bandwidth. This is typical for compact continuum sources. On the ground–space baselines, the visibility function contains a set of features superposed on each other and distributed within a certain interval of delays, which we identify with the scattering time for the interfering rays τ. The amplitude of the visibility function on ground baselines falls with increasing baseline; the scattering disk is partially resolved at 18 cmand fully resolved at 92 cm. Estimates of the scattering angle ? give 0.5–1.3mas at 18 cm and 14.0 mas at 92 cm. The measured values of ? and τ are compared to estimate the distance from the source to the effective scattering screen, which is found at various epochs to be located at distances from 0.33 to 0.96 of the distance from the observer to the pulsar, about 2 kpc. The screen is close to the Crab Nebula at epochs of strong scattering, confirming that scattering on inhomogeneities in the plasma in the vicinity of the nebula itself dominates at these epochs.  相似文献   

4.
Analysis of individual pulses of the pulsar B0950+08 at 112 MHz has shown that giant pulses with intensities exceeding the peak amplitude of the mean profile at these longitudes by two orders of magnitude are observed at the longitudes of all three components of the mean pulsar profile (the precursor and two-component main pulse). The maximum peak flux density of a recorded pulse is 15 240 Jy, and the energy of this pulse exceeds the mean pulse energy by a factor of 153. Strong but infrequent pulses at the longitude of the first component (precursor) can reach peak flux densities of 5750 Jy, exceeding the amplitude of the mean profile at this longitude by a factor of 490. It is shown that the emission at the precursor longitudes is virtually absent when giant pulses appear at the main-pulse longitudes, and vice versa: the presence of giant pulses at the precursor longitude results in the absence or considerable attenuation of the emission at other longitudes. The analysis shows that the cumulative probability function of the pulse peak flux densities has a piecewise power-law form. The power-law index for pulses with intensities exceeding 600 Jy appearing at the longitudes of the main pulse in the mean profile varies from n 1 = ?1.25 ± 0.04 to n 2 = ?1.84 ± 0.07. The obtained pulse energy distribution also has an inflection at E > 3000 Jy ms and a power-law form with the same index. The distribution of the pulse intensities at the precursor longitude was obtained, and forms a power law with index n = ?1.5 ± 0.1. The studied properties of the pulses at various longitudes of the mean profile are interpreted in the framework of induced scattering of the main-pulse emission by particles of ultrarelativistic, strongly magnetized plasma in the pulsar magnetosphere.  相似文献   

5.
We present the results of long-term, three-frequency monitoring of giant pulses from the Crab pulsar on the 64-m radio telescope in Kalyazin. The total monitoring time was 160 hours. The signal power was recorded simultaneously at 600, 1650, and 4850 MHz via direct sampling of the received signals in the total receiver bandwidth without any compensation for interstellar dispersion. In total, 1117 and 352 giant pulses were detected at 600 and 4850 MHz, respectively. The frequency band centered at 1650 MHz was contaminated by interference, and was used only to identify events found in other frequency bands. The cumulative energy distribution of the giant pulses follows a power law at 600 and 4850 MHz up to the highest energies. A deep modulation in the radio spectra of individual giant pulses was observed on both large (Δv/v ≈ 0.5) and small (Δv/v ≈ (2?4) × 10?3) frequency scales. The simultaneous appearance of giant pulses at the interpulse longitudes at high (4850 MHz) and low (1650 and/or 600 MHz) frequencies testifies to their common origin, in spite of the observed differences in other parameters.  相似文献   

6.
Cumulative and differential energy distributions are derived for the subpulse radio emission from the pulsars B0809+74, B0943+10, B0950+08, and B1133+16 at decameter wavelengths. The obtained cumulative distributions are compared with the analogous characteristic distributions for giant pulsar pulses. The analysis suggests that the amplification mechanisms in pulsar magnetospheres producing giant pulses and anomalously intense pulses may be similar.  相似文献   

7.
The paper presents an analysis of dual-polarization observations of the Crab pulsar obtained on the 64-m Kalyazin radio telescope at 600 MHz with a time resolution of 250 ns. A lower limit for the intensities of giant pulses is estimated by assuming that the pulsar radio emission in the main pulse and interpulse consists entirely of giant radio pulses; this yields estimates of 100 and 35 Jy for the peak flux densities of giant pulses arising in the main pulse and interpulse, respectively. This assumes that the normal radio emission of the pulse occurs in the precursor pulse. In this case, the longitudes of the giant radio pulses relative to the profile of the normal radio emission turn out to be the same for the Crab pulsar and the millisecond pulsar B1937+21, namely, the giant pulses arise at the trailing edge of the profile of the normal radio emission. Analysis of the distribution of the degree of circular polarization for the giant pulses suggests that they can consist of a random mixture of nanopulses with 100% circular polarization of either sign, with, on average, hundreds of such nanopulses within a single giant pulse.  相似文献   

8.
The spectra and visibility functions of giant pulses of the Crab Nebula pulsar derived from VLBI observations carried out through the “RadioAstron” project in 2015 are analyzed. Parameters of the scattering of the pulses in the interstellar medium are measured, namely, the scattering time and decorrelation bandwidth. A comparative analysis of the shapes of the spectra and visibility functions of giant pulses obtained in real observations and via modeling of their scattering is carried out. The results suggest the presence of short bursts (dt < 30 ns) in the structure of the giant pulses at 1668 MHz, whose brightness temperatures exceed 1038 K. These pulses propagate in the pulsar magnetosphere in a strong electromagneticwave regime, leading to the generation of additional radiation perpendicular to the direction of propagation of the giant pulses. This radiation may be associated with anomalous components of the mean pulse profile observed at frequencies above 4 GHz.  相似文献   

9.
Our measurements of the arrival-time delays of radio pulses from the Crab pulsar, PSR B0531+21, at low frequencies 111, 63, and 44 MHz revealed additional delays compared to the usual quadratic frequency relation, Δt(v) ∝ v ?2. These additional delays are 65 ms between 63 MHz and 111 MHz—i.e., a factor of two longer than the pulsar’s period, i.e., a factor of five longer than the pulsar period—and cannot be explained by the “twisting” of the magnetic-field lines by the rotation of the pulsar. We suggest the model in which a previously unknown high-density plasma layer with a high electron concentration is present along the line of sight in the Crab nebula, causing an additional frequency-dependent delay of the observed radio pulses at low frequencies due to the contribution of the n e 2 v ?4 term in the dispersion-delay formula. The parameters of this inferred layer have been derived: emission measure EM ? 4 × 106 pc/cm6, electron density n e ? 106 cm?3, depth along the line of sight d ? 4 × 10?6 pc, and electron temperature T e ≥ 2 × 106 K.  相似文献   

10.
Simultaneous dual-frequency observations of giant radio pulses from the millisecond pulsar B1937+21 were performed for the first time in January–February 2002 on the Westerbork Synthesis Radio Telescope (2210–2250 MHz) and the 64-m Kalyazin radio telescope (1414–1446 MHz). The total observing time was about three hours. Ten giant pulses with peak flux densities from 600 to 1800 Jy were detected at 2210–2250 MHz, and fifteen giant pulses with peak flux densities from 3000 to 10000 Jy were observed at 1414–1446 MHz. No events were found to occur simultaneously at both frequencies. Thus, the observed radio spectra of individual giant pulses of this pulsar are limited in frequency to scales of about \(\frac{{\Delta v}}{v} < 0.5\). The duration of the giant pulses is less than 100 ns and is consistent with the expected scattering timescale in these frequency ranges. Instantaneous radio spectra of the detected giant pulses were compared with the diffractive spectra obtained from ordinary pulses of the pulsar. In some cases, considerable deviations of the radio spectra of the giant pulses from the diffractive spectrum were revealed, which can be interpreted as indicating temporal structure of the giant pulses on timescales of 10–100 ns.  相似文献   

11.
The results of simultaneous multifrequency observations of giant radio pulses from the Crab pulsar, PSR B0531+21, at 23, 111, and 600 MHz are presented and analyzed. Giant pulses were detected at a frequency as low as 23 MHz for the first time. Of the 45 giant pulses detected at 23 MHz, 12 were identified with counterparts observed simultaneously at 600 MHz. Of the 128 giant pulses detected at 111 MHz, 21 were identified with counterparts observed simultaneously at 600 MHz. The spectral indices for the power-law frequency dependence of the giant-pulse energies are from ?3.1 to ?1.6. The mean spectral index is ?2.7 ± 0.1 and is the same for both frequency combinations (600–111 MHz and 600–23 MHz). The large scatter in the spectral indices of the individual pulses and the large number of unidentified giant pulses suggest that the spectra of the individual giant pulses do not actually follow a simple power law. The observed shapes of the giant pulses at all three frequencies are determined by scattering on interstellar plasma inhomogeneities. The scatter-broadening of the pulses and its frequency dependence were determined as τ sc = 20(ν/100)?3.5±0.1 ms, where frequency ν is in MHz.  相似文献   

12.
Radio observations of the Crab pulsar were performed on the 100-m radio telescope of the Green Bank Observatory at a frequency of 2100 MHz in a 64-MHz band in two channels with right-and left-circular polarization. The Mark5A recording system was used. During 15 min of observing time, 609 giant pulses were recorded; the brightest had a peak flux density of 670 kJy. The energy distribution has been constructed, polarization properties have been analyzed, and the characteristic temporal and frequency scales in the radio emission of the detected giant pulses have been found. Comparison of these parameters indicates that the properties of giant pulses detected at the main-pulse and interpulse longitudes do not differ, as is clearly observed at frequencies above 4 GHz. Probable origins of the frequency evolution of the properties of giant pulses are discussed.  相似文献   

13.
The idea and the approximate theory of radio wave interference sounding (RWIS) of layered geological media have been known for a long time and are based on a simplified ray kinematic theory. The results of mathematical simulation of two-layer geo-electric sections based on strict classical dynamic approaches for plane radio waves are considered. The peculiarities of radio wave reflection at the boundaries of the media with different permittivities and specific electric resistances of the layers are revealed. The prospects for RWIS development for the solution of practical problems during near-surface prospecting are given.  相似文献   

14.
Measurements of frequency fluctuations in radio signals generated by the GALILEO spacecraft from January 6 to 11, 1997 are presented and analyzed. The passage of a coronal mass ejection observed by the SOHO/LASCO coronagraph on January 6, 1997 through the radio-communication path between the spacecraft and a ground station was recorded. Radio sounding was carried out at a carrier frequency of 2295 MHz at a heliocentric distance of about 32 solar radii, with the signal being received at three ground stations. As the mass ejection intersected the propagation path, the mean frequency of the signal increased and several-hour-long frequency fluctuations were enhanced. A spectral analysis of the frequency fluctuations shows that the regime and level of plasma turbulence are substantially different in different sections of the quiet solar wind and the disturbed plasmoid. A correlation between the intensity and temporal spectrum of the frequency fluctuations is found. The plasma density in the leading part of the coronal mass ejection exceeds the mean background value by more than an order of magnitude. Our correlation analysis of the frequency fluctuations recorded simultaneously at two widely separated measuring points shows that two flow components with different velocities—the quiet solar wind and a perturbed stream—crossed the communication path. The radio-sounding data are compared with observations of the coronal mass ejection by the SOHO/LASCO coronagraph and plasma measurements near the Earth’s orbit using the WIND satellite. A pronounced correlation is found between the variations in the mean frequency of the sounding signal and the plasma density in near-Earth space.  相似文献   

15.
We present an analysis of pulsar observations carried out on two frequency channels at 1634 MHz and 1650 MHz with a time resolution of 62.5 ns on the 70-m radio telescope of the NASA Deep Space Network in Tidbinbilla. The data were recorded using the S2 system, intended primarily for VLBI observations. Microstructure with characteristic timescales of 270, 80, and 150 µs was detected in pulsars B0833-45, B1749-28, and B1933 + 16, respectively. The distribution of microstructure timescales for the Vela pulsar (B0833-45) is characterized by a gradual growth with decreasing timescale to 200 µs; the distribution has a maximum at 20–200 µs and falls off sharply for timescales below 20 µs. The statistical relation between the microstructure modulation index m and the corresponding timescale τµ can be approximated by the power law dependence Rτ 0.5 ; i.e., the intensity is higher for micropulses with longer durations. This contradicts the predictions of nonlinear models for the formation of micropulses by supercompact soliton wave packets. In all the pulsars studied, the time delays of the micropulses between the two frequency channels deviate from the expected dispersion laws for the interstellar plasma. In particular, the micropulses in the low-frequency channel arrive earlier than predicted by the dispersion measures derived previously from the mean pulse profiles. The deviation from the dispersion delay is determined most accurately for B0833-45, and is 4.9±0.2 µs. Such anomalous delays are probably associated with the effects of propagation of the radio emission within the pulsar magnetosphere.  相似文献   

16.
The pulsar PSR B2111+46 has been observed at 112 MHz, and a new approach to analyzing pulsar pulses scattered in turbulent interstellar plasma applied. This method is based on the dependence of the normalized energy in the trailing part of a pulse on the intrapulse time. Since the trailing edge of a pulse follow exponential law to high accuracy, the inner turbulence scale of the interstellar plasma exceeds the field coherence scale. The measured scattering parameter is τ sc = 147 ± 1 ms. Analysis of the parameters of diffractive and refractive scintillations of the pulsar at 610 MHz together with the 112 MHz data shows that the spectrum of the interstellar plasma toward PSR B2111+46 is a piecewise power law: on scales of 1013–1014 cm, the exponent of the turbulence spectrum is n ≃ 4, whereas n = 3.5 on scales of 2 × 108−1013 cm. The spectrum flattens with approach to the inner turbulence scale l: n = 3–3.2. The obtained inner turbulence scale is l = (3.5 ± 1.5) × 107 cm. The distribution of the interstellar plasma toward the pulsar is close to statistically homogeneous. The local density (N e = 0.4 cm−3) and filling factor (F = 0.04) of the interstellar plasma have been estimated. The similarity of N e estimates obtained from the inner scale of the inhomogeneities and the ratio of the emission measure to the dispersion measure provides evidence that the inner turbulence scale corresponds to the ion inertial length.  相似文献   

17.
The low recharge of reservoirs and the increasing demand for water limit the potential of mobilized resources, especially in arid to semi-arid areas like Morocco. Integrated management is essential to safeguard this resource. In respect with this perspective, this work provides the analysis of hydrogeological potential of Khemisset-Tiflet region, which falls within the action area of the Sebou Hydraulic Basin Agency. The basis of our studies was as follows:(1) The interpretation of the existing geoelectric data;(2) application of geophysical methods for non-destructive reconnaissance and their integration into a Geographic Information System(GIS). The analysis demonstrates that: The map of the isohypses and the geoelectric cross-section of the substratum of the superficial roof aquifer show clearly a plunge associated with development of the Paleozoic roof in the South and the direction of flow of the surface water is from south to north, from the upper zone to the north of the El Kansera dam. These conclusions constitute very useful contribution for any resource management projects in this area.  相似文献   

18.
Sodium emission fromthe zone of circumsolar sublimation of interplanetary dust was searched for during the total solar eclipse of March 29, 2006, using a Fabry-Perot interferometer and interference filter transmitting at 590 nm. The upper limit for the column density sodium atoms is 2 × 108 atoms/cm2, is based on the comparison with the atmospheric sodium emission. This result is compared with the brightness of the zodiacal light and F-corona, as well as the dust density directly measured onboard spacecraft.  相似文献   

19.
The groundwater hydrogeology of southern Tunisia emphasizes two main groundwater bodies so-called Zeuss-Koutine and south Gabes. These groundwater bodies yielding economically important storage of useful water present complex internal architecture and heterogeneity allowing exchange flows throughout permeable or/and fractured bodies. A geophysical survey using resistivity soundings was carried out along this area to describe in detail the field structure and the 3D extent of these groundwater bodies by the hydrogeological new data and detailed subsurface mapping based on resistivity sounding and seismic data. This survey discusses also the potentialities of some permeable layer in water storage and purposes potential favorable areas for optimum groundwater mining.  相似文献   

20.
直流激电测深多参数综合分析划分含水异常岩体   总被引:1,自引:0,他引:1  
直流激电测深观测 (计算) 的参数多, 现已成为一种有效的找水方法。但由于不同的地区存在各种不同的干扰, 因此, 合理、准确地综合利用这些参数, 减少多解性, 避免解释错误显得尤为重要。本文在分析原始实测参数的基础上, 对部分参数进行了转化, 使其抗干扰能力更强, 资料解释更可靠, 并通过实例评价了部分参数的优越性和局限性。应用实例表明, 多参数综合解释方法具有推广意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号