首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
By analyzing observational data, it has been possible to determine quantitative relationships that represent the role of the interaction of fast and slow solar wind (SW) streams in the formation of characteristic SW properties at the Earth's orbit.It is shown that maximum values of magnetic field B M and density n M peaks in the neighbourhood of the sector boundary (SB) at the base of the high-speed stream front are associated with solar wind characteristics such as the SW minimum velocity near the SB, V m, the maximum velocity in the central part of the fast stream, V M, and the slope of the magnetic field neutral line to the solar equatorial plane at R = 2.5 R (R is the solar radius).It is concluded that enhancements of absolute values of the z-component of the magnetic field, ¦B z¦, recorded at the Earth's orbit, are largely attributable, at sufficiently large values of , to the interaction of different-velocity SW streams.  相似文献   

2.
The spatial structure of the transverse oscillations in the interplanetary magnetic field at 1 AU is studied by comparing the simultaneous observations by Explorer 33 and 35 satellites at the maximum separation of about 200R E. The anisotropy characteristics of these oscillations suggest that the oscillations sampled are Alfvén waves. It is found that the size of the region of the wave coherence is related to the solar wind velocity; the size is 80R E when the wind velocity is lower than 500 km s–1 but becomes less than this when the wind velocity is higher. An inference is made that the solar atmospheric turbulence contributing to the faster solar wind is finer in scale than that associated with the slower wind.A postgraduate student at the Tokai University  相似文献   

3.
A. V. Usmanov 《Solar physics》1993,143(2):345-363
An attempt is made to infer parameters of the solar corona and the solar wind by means of a numerical, self-consistent MHD simulation. Boundary conditions for the magnetic field are given from the observations of the large-scale magnetic field at the Sun. A two-region, planar (the ecliptic plane is assumed) model for the solar wind flow is considered. Region I of transonic flow is assumed to cover the distances from the solar surface up to 10R S (R S is the radius of the Sun). Region II of supersonic, super-Alfvénic flow extends between 10R S and the Earth's orbit. Treatment for region I is that for a mixed initial-boundary value problem. The solution procedure is similar to that discussed by Endler (1971) and Steinolfson, Suess, and Wu (1982): a steady-state solution is sought as a relaxation to the dynamic equilibrium of an initial state. To obtain a solution to the initial value problem in region II with the initial distribution of dependent variables at 10R S (deduced from the solution for region I), a numerical scheme similar to that used by Pizzo (1978, 1982) is applied. Solar rotation is taken into account for region II; hence, the interaction between fast and slow solar wind streams is self-consistently treated. As a test example for the proposed formulation and numerical technique, a solution for the problem similar to that discussed by Steinolfson, Suess, and Wu (1982) is obtained. To demonstrate the applicability of our scheme to experimental data, solar magnetic field observations at Stanford University for Carrington rotation 1682 are used to prescribe boundary conditions for the magnetic field at the solar surface. The steady-state solution appropriate for the given boundary conditions was obtained for region I and then traced to the Earth's orbit through region II. We compare the calculated and spacecraft-observed solar wind velocity, radial magnetic field, and number density and find that general trends during the solar rotation are reproduced fairly well although the magnitudes of the density in comparison are vastly different.  相似文献   

4.
The autocorrelation functions of the solar wind velocity and of the IMF components as well as of the geomagnetic activity indices are studied for two periods: August–December, 1965 and January–May, 1974. The vertical component of the IMF is shown to exhibit a rather definite recurrency relatively independent of the recurrency of the solar wind velocity.The daily mean values of the Z-component of the IMF are shown to correlate ( = -0.5) with the intensity of the meridional component of the large scale solar magnetic field with time delay of about 5 days with respect to the latter. This result is interpreted as an evidence for the Z- component of the IMF to be carried away by the solar wind from the Sun.  相似文献   

5.
I. H. Urch 《Solar physics》1969,10(1):219-228
A steady state, inviscid, single fluid model of the solar win d in the equatorial plane is developed using magneto-hydrodynamics and including the heat equation wit h thermal conduction but no non-thermal heating (i.e. a conduction model). The effects of solar rotation and magnetic field are included enabling both radial and azimuthal components of the velocity and magnetic fields to be found in a conduction model for the first time.The magnetic field cuts off the thermal conduction far from the sun and leads to an increased temperature at 1 AU and relatively small changes to the radial velocity and density. Models have been found which fit the experimental electron densities in 2 R < r < 16 R . These models predict at 1 AU a radial velocity of 300–380 km·sec-1 and a density of 8 protons·cm-3. The latter velocity corresponds to a density profile obtained by Blackwell and Petford (1966) during the last sunspot minimum, and is about 100 km·sec-1 above that found in previous conduction models which fit the coronal electron densities. The radial velocities are now consistent with the mean quiet solar wind, as are the densities when the experimental values are averaged over a magnetic sector. However, the azimuthal velocity at 1 AU is only 1–2 km·sec-1 which is low compared to the experimental values, as found by previous authors.  相似文献   

6.
A global 3-D simulation of interplanetary dynamics in June 1991   总被引:3,自引:0,他引:3  
The global dynamics of the solar wind and interplanetary magnetic field in June 1991 is simulated based on a fully three-dimensional, time-dependent numerical MHD model. The numerical simulation includes eight transient disturbances associated with the major solar flares of June 1991. The unique features of the present simulation are: (i) the disturbances are originated at the coronal base (1R s) and their propagation through inhomogeneous ambient solar wind is simulated out to 1.5 AU; (ii) as a background for the transients, the global steady-state solar wind structure inferred from the 3-D steady-state model (Usmanov, 1993c) is used. The parameters of the initial pulses are prescribed in terms of the near-Sun shock velocities (as inferred from the metric Type II radio burst observations) relative to the preshock steady-state flow parameters at the flare sites. The computed parameters at the Earth's location for the period 1–18 June, 1991 are compared with the available observations of the interplanetary magnetic field, solar wind velocity, density, and with variation of the geomagnetic activityK pindex.  相似文献   

7.
We have considered the electrodynamic effects on small Al2O3 spherules dumped into the Earth's magnetosphere in large quantities during solid rocket propellant burns. The charges acquired by these grains in all regions of the terrestrial environment (plasmasphere, magnetosphere, and solar wind) are modest. Consequently electrodynamic effects are significant only at the lower end of the dust size spectrum (R g0.1 m). In that case, the electrodynamic forces conspire with solar radiation pressure to eliminate the grains from the magnetosphere in a comparatively short time. Although not studied here in detail, we anticipate a similar fate for fine micrometeoroids entering the Earth's magnetosphere, with the electro-dynamic effects playing an even more important role.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

8.
Solar wind speeds (SWSs) estimated by interplanetary scintillation (IPS) observations during Carrington rotation 1753 are projected onto the so-called source-surface of 2.5 solar radii along magnetic field lines in interplanetary space. The following two working hypotheses are examined from different points of view: (1) The SWS is a weighted mean along the line of sight to a radio source; the weight for the SWS depends on the distance from theP-point, the closest approach to the Sun on the line of sight. (2) The weighting function has a very sharp peak at theP-point, so that the SWS shows a real solar wind speed at theP-point. In both the two cases, the SWSs projected onto the source surface are further projected onto the photosphere along magnetic field lines in the corona. Footpoints of these field lines are inferred as photospheric source regions of the solar wind. The intensity of the Hei (1083 nm) absorption line (HEI) in the chromosphere corresponding to these photospheric sources is interpolated from observational data. The weighted mean of the HEI is calculated in case 1. The HEI corresponding to theP-point is used in case 2. The SWS is compared with the HEI in both the two cases. It is found that the correlation between the SWS and the HEI is better in case 2 than in case 1. It is further inferred by correlation analysis between the SWS and the HEI that the solar wind is accelerated within 27 solar radii on average. Although the data examined in this paper were limited to just one solar rotation, these results suggest that the SWS estimated by the IPS technique corresponds to the solar wind speed near theP-point and the weighting function along the line of sight may have a very sharp peak near theP-point.  相似文献   

9.
We study quasi-periodical changes in the amplitudes of the 27-day variation of the galactic cosmic ray (GCR) intensity, and the parameters of solar wind and solar activity. We have recently found quasi-periodicity of three to four Carrington rotation periods (3?–?4 CRP) in the amplitudes of the 27-day variation of the GCR intensity (Gil and Alania in J. Atmos. Solar-Terr. Phys. 73, 294, 2011). A similar recurrence is recognized in parameters of solar activity (sunspot number, solar radio flux) and solar wind (components of the interplanetary magnetic field, solar wind velocity). We believe that the 3?–?4 CRP periodicity, among other periodicities, observed in the amplitudes of the 27-day variation of the GCR intensity is caused by a specific cycling structure of the Sun’s magnetic field, which may originate from the turbulent nature of the solar dynamo.  相似文献   

10.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2000,195(2):319-332
It is shown on the basis of analyzing the LASCO/SOHO data that the main quasi-stationary solar wind (SW), with a typical lifetime of up to 10 days, flows in the rays of the streamer belt. Depending on R, its velocity increases gradually from V3 km s–1 at R1.3 R to V170 km s–1 at R15 R . We have detected and investigated the movement of the leading edge of the main solar wind at the stage when it occupied the ray, i.e., at the formative stage of a quasi-stationary plasma flow in the ray. It is shown that the width of the leading edge of the main SW increases almost linearly with its distance from the Sun. It is further shown that the initial velocity of the inhomogeneities (`blobs') that travel in the streamer belt rays increases with the distance from the Sun at which they originate, and is approximately equal to the velocity of the main solar wind which carries them away. The characteristic width of the leading edge of the `blob' R , and remains almost unchanging as it moves away from the Sun. Estimates indicate that the main SW in the brightest rays of the streamer belt to within distances at least of order R3 R represents a flow of collisional magnetized plasma along a radial magnetic field.  相似文献   

11.
The equatorial latitude of auroral activity has been derived from both electron and optical observations with the DMSP satellites. Virtually all of the observations that were obtained during the 5-year interval June 1972-September 1977 have been used to construct a nearly continuous plot of invariant geomagnetic latitude versus time.This plot has two main characteristics: (1) A diurnal variation of approximately ± 5° which is associated with the precession of the Earth's magnetic dipole axis about the Earth's rotation axis; (2) an irregular variation of roughly 5–10° for intervals of one to several days associated with the occurrence of solar flares and coronal holes.With the help of a condensed, Bartels-type display of these measurements, we conclude that: (a) Modest auroral expansions (to ~ 60°) occur during the main body of high-speed streams from coronal holes; (b) great expansions (to < 55°) occur only during intervals of intense interplanetary magnetic fields such as may occur at the leading edge of a high-speed stream or at a flare-produced interplanetary shock.  相似文献   

12.
P. N. Pathak 《Solar physics》1971,20(2):462-473
Using solar wind velocity data obtained by Mariner-2 and IMP-1 spacecrafts, an attempt has been made to study its correlation with 5303 coronal intensity. It is shown that the long-lasting regions of enhanced 5303 intensity in the solar corona are well correlated with recurrent streams of solar wind having high velocity. The time-lag between the central meridian passage (CMP) of the coronal features and the detection of the solar wind streams at the spacecraft is found to be smaller than that implied by a radial solar wind. Significant positive correlations for Mariner-2 data are obtained for coronal intensity at heliolatitudes 5°S–10°N with a time-lag of + 2 days while for IMP-1 data, high positive correlations are obtained for the southern heliolatitudes (10°–25°S) without any time-lag. It should be noted that the average heliographic latitudes for Mariner-2 and IMP-1 were 4°N and 4°S respectively during the periods covered by the present analysis. The implications of the results are discussed.Presented at IUCSTP Symposium on Solar-Terrestrial Physics, Leningrad, May 1970.  相似文献   

13.
We investigated long-term variations of the differential rotation of the solar large-scale magnetic field on 1024 H charts in the latitude zones from +45° to -45° in the period 1915–1990. We used the expansion in terms of Walsh functions. It turns out that the rotation of the Sun becomes more rigid than average during the cycle maximum and the rotation is more differential during minimum. From 1915 to 1990, 7 bands of faster- and 7 bands of slower-than-average rotation are revealed showing an 11-year period. These bands drift towards the equator: 45° in 2.5 to 8 years. The time span of the bands varies from 4 to 6.8 years and is in anti-phase with long-term solar activity. The latitude span of the bands of torsional oscillations varies from 0.5 R to 1.3 R and shows a long-term variation of about 55 years. The poloidal component of velocity, V varies from 2 ms -1 to 6 ms -1. The maximum rate of the equatorial drift occurs in the period between 1935 and 1955 and it develops prior to the highest maximum activity. At the modern epoch from 1965 to 1985, V does not exceed 3 ms -1, but now it has a tendency to increase. The bands of slower-than-average rotation correspond to the evolution of the magnetic activity towards the equator in the butterfly diagram.  相似文献   

14.
Various solar wind forecasting methods have been developed during the past decade, such as the Wang?–?Sheeley model and the Hakamada?–?Akasofu?–?Fry Version 2 (HAFv2) model. Also, considerable correlation has been found between the solar wind speed v and the coronal hole (CH) area A M on the visible side of the Sun, showing quantitative improvement of forecasting accuracy in low CME activity periods (e.g., Vr?nak, Temmer, and Veronig, Solar Phys. 240, 315, 2007a). Properties of lower layers of the solar atmosphere are good indications of the subsequent interplanetary and geomagnetic activities. We analyze the SOHO/EIT 284 Å images and construct a new forecasting factor (Pch) from the brightness of the solar EUV emission, and a good correlation is found between the Pch factor and the 3-day-lag solar wind velocity (v) probed by the ACE spacecraft. The main difference between the Pch and A M factor is that Pch does not depend on the CH-boundary estimate and can reflect both the area and brightness of CH. A simple method of forecasting the solar wind speed near Earth in low CME activity periods is presented. Between Pch and v from 21 November until 26 December 2003, the linear correlation coefficient is R=0.89. For comparison we also analyze the data in the same period (DOY 25?–?125, 2005) as Vr?nak, Temmer, and Veronig (Solar Phys. 240, 315, 2007a), who used the CH areas A M for predicting the solar wind parameters. In this period the correlation coefficient between Pch and v is R=0.70, whereas for A M and v the correlation coefficient is R=0.62. The average relative difference between the calculated and the observed values is $\overline{|\delta|}\approx 12.15\%Various solar wind forecasting methods have been developed during the past decade, such as the Wang – Sheeley model and the Hakamada – Akasofu – Fry Version 2 (HAFv2) model. Also, considerable correlation has been found between the solar wind speed v and the coronal hole (CH) area A M on the visible side of the Sun, showing quantitative improvement of forecasting accuracy in low CME activity periods (e.g., Vršnak, Temmer, and Veronig, Solar Phys. 240, 315, 2007a). Properties of lower layers of the solar atmosphere are good indications of the subsequent interplanetary and geomagnetic activities. We analyze the SOHO/EIT 284 ? images and construct a new forecasting factor (Pch) from the brightness of the solar EUV emission, and a good correlation is found between the Pch factor and the 3-day-lag solar wind velocity (v) probed by the ACE spacecraft. The main difference between the Pch and A M factor is that Pch does not depend on the CH-boundary estimate and can reflect both the area and brightness of CH. A simple method of forecasting the solar wind speed near Earth in low CME activity periods is presented. Between Pch and v from 21 November until 26 December 2003, the linear correlation coefficient is R=0.89. For comparison we also analyze the data in the same period (DOY 25 – 125, 2005) as Vršnak, Temmer, and Veronig (Solar Phys. 240, 315, 2007a), who used the CH areas A M for predicting the solar wind parameters. In this period the correlation coefficient between Pch and v is R=0.70, whereas for A M and v the correlation coefficient is R=0.62. The average relative difference between the calculated and the observed values is . Furthermore, for the ten peaks during the analysis period, Pch and v show a correlation coefficient of R=0.78, and the average relative difference between the calculated and the observed peak values is . Moreover, the Pch factor can eliminate personal bias in the forecasting process, which existed in the method using CH area as input parameter, because CH area depends on the CH-boundary estimate but Pch does not. Until now the CH-boundary could not be easily determined since no quantitative criteria can be used to precisely locate CHs from observations, which led to differences in forecasting accuracy.  相似文献   

15.
Javaraiah  J. 《Solar physics》1999,189(2):289-304
We have analyzed data on sunspot groups compiled during 1874–1981 and investigated the following: (i) dependence of the `initial' meridional motion (v ini()) of sunspot groups on the life span () of the groups in the range 2–12 days, (ii) dependence of the meridional motion (v(t)) of sunspot groups of life spans 10–12 days on the age (t) of the spot groups, and (iii) variations in the mean meridional motion of spot groups of life span 2–12 days during the solar cycle. In each of the latitude intervals 0°–10°, 10°–20° and 20°–30°, the values of both v ini() and v(t) often differ significantly from zero. In the latitude interval 20°–30°, the forms of v ini() and v(t) are largely systematic and mutually similar in both the north and south hemispheres. The form of v(t) suggests existence of periodic variation in the solar meridional motion with period of 4 days and amplitude 10–20 m s–1. Using the anchoring depths of magnetic structures for spot groups of different and testimated earlier, (Javaraiah and Gokhale, 1997), we suggest that the forms of v ini() and v(t) may represent radial variation of meridional flow in the Sun's convection zone, rather than temporal variation of the flow. The meridional flows (v e(t)) determined from the data during the last few days (i.e., age t: 10–12 days) of spot groups of life spans of 10–12 days are found to have magnitudes (10–20 m s–1) and directions (poleward) similar to the those of the surface meridional plasma flows determined from the Dopplergrams and magnetograms. The mean meridional velocity of sunspot groups living 2–12 days seems to vary during the solar cycle. The velocity is not significantly different from zero during the rising phase of the cycle and there is a suggestion of equatorward motion (a few m s–1at lower latitudes and 10 m s–1at higher latitudes) during the declining phase (last few years) of the cycle. The variation during the odd numbered cycles seems to anticorrelate with the variation during the even numbered cycles, suggesting existence of 22-year periodicity in the solar meridional flow. The amplitude of the anticorrelation seems to be depending on latitude and the cycle phase. In the latitude interval 20°–30° the `surface plasma meridional motion', v e(t), is found to be poleward during maximum years (v e(t) 20 m s–1at 4th year) and equatorward during ending years of the cycle (v e(t) –17 m s–1at 10th year).  相似文献   

16.
Comparison of solar wind speed data obtained from the Pioneer 6 and 7 and Vela 3, 4, and 5 satellites from January 1969 through July 1970 has been undertaken. The distribution of measured speeds is similar for all satellites, despite wide separations along the Earth's orbit. For satellite separations (along the Earth's orbit) of 0.5 AU or less, the speeds measured by different satellites are closely correlated, i.e., it is usually possible to predict (to within ± 100 km sec–1) the arrival of a particular solar wind speed at one satellite on the basis of earlier measurements at another. For separations larger than 1.0 AU it is usually not possible to make accurate predictions in this manner. This appears to be evidence that: (1) the boundary conditions on the coronal expansion at the base of the corona are a sensitive function of latitude and/or (2) the boundary conditions at any one point on the Sun evolve sufficiently in 4 days to alter significantly the speed of the wind at 1 AU.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
This paper concerns with the study of KS uniformly regular canonical elements with Earth's oblateness. These elements, ten in number, are all constant in the unperturbed motion and even in the perturbed motion, the substitution is straightforward and elementary due to the transformation laws being explicit and closed expression. By utilizing the recursion formulas of Legendre's polynomials, we are able to include any number of Earth's zonal harmonics J n in the package and also economize the computations. A fixed step-size fourth-order Runge-Kutta-Gill method is employed for numerical integration of the canonical equations.Utilizing 5 test cases covering a large range of semimajor axis and eccentricity, we have carried out computations to study the effects of Earth's zonal harmonics (up to J 36) and integration step-size variation. Bilinear relations and energy equation are used for checking the accuracies of numerical integration. From the application point of view, the package is utilized to study the behaviour of 900 km height near-circular sun-synchronous satellite orbit over a longer duration of 220 days time (nearly 3078 revolutions) and the necessity of including more number of Earth's zonal harmonic terms is noticed. The package is also used to study the effect of higher zonal harmonics on three 900 km height near-circular orbits with inclinations of 60, 63.2, and 65 degrees, by including Earth's zonal harmonics up to J 24. The mean eccentricity (e m) is found to have long-periods of 459.6, 6925.1 and 1077.6 days, respectively. Sharp changes in the variation of m near the minima to em are noticed. The values of m are found to be very near to +-90 degrees at the extrema of em. The same orbit is employed to study the effect of variation of inclination from 0 to 180 degrees on long-period (T) of eccentricity with J 2 to J 24 terms. T is found to increase rapidly as we proceed towards the critical inclinations.  相似文献   

18.
The occurrence at a heliocentric distance of 1 AU of alpha particle streaming velocities larger than proton streaming velocities,v /v p >1 (Ogilvie, 1975) is investigated on the basis of the theory suggesting the existence in the solar wind of an accelerating force acting preferentially on the alpha particles.Accurate solution of the three-fluid model equations for the quiet solar wind indicates that anecessary andsufficient condition for (v /v p )1 AU>1 is the presence of a relativelyweak accelerating forceacting in a limited region in the vicinity of 1 AU. If the force is effectiveonly at small heliocentric distances, the alpha particle streaming velocity excess vanishes at distances less than 1 AU, because of the (equalization) action of the dynamical friction force.  相似文献   

19.
Hari Om Vats 《Solar physics》1992,138(2):379-386
Characteristics of flare-associated high-speed solar plasma streams are investigated using measurements from space probes and Earth-orbiting spacecraft for the period 1964–1982. The maximum observed velocity (V m) of these streams range from 400 to 850 km s–1} with peak probability for 600 km s–1}. These remain for the period of 1–10 days with the peak occurrence 3 days. The difference between the pre-stream velocity (V 0) and the maximum velocity (V m) of any high-speed stream serves as the measure of its intensity. For about 60% of the flare associated streams, (V m-V 0) is well in excess of 200 km s–1} and in some cases becomes as large as 450 km s–1}. The yearly percentage occurrence, total duration and the product of mean (V m - V 0) with total duration of the high-speed streams during the year correlates well with solar activity, e.g., maximum during high solar activity period and minimum during low solar activity. The study suggests that presence of sunspots plays a significant role in the generation of flare associated high-speed solar streams.  相似文献   

20.
A database is compiled for the study of solar and heliospheric causes of geomagnetic perturbations with the daily average index A > 20 that were observed in the period 1997–2000. The number of such events (more than 200) progressively increased and fluctuated as the current solar cycle developed. It is established that geomagnetic storms are generated by dynamical processes and structures near the center of the solar disk in a zone of several tens of degrees, and these processes are responsible for the appearance in the Earth's region, within several tens of hours, of quasistationary and transient solar wind streams with a sufficiently strong southward component of the heliospheric magnetic field. These streams lasted more than a few hours. The following structures can serve as morphological indicators for the prediction of the appearance of such streams: (1) active and disappearing filaments derived from synoptic -maps of the Sun, (2) solar flares, (3) coronal holes and evolving active regions, and (4) the heliospheric current sheet. The geometry of coronal mass ejections needs further observational study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号