首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The andesitic stratovolcano Volcán de Colima is one of the most active volcanoes in Mexico. The recent eruption of Volcán de Colima began in November 1998 and was preceded by a 12-month period of seismic activity that included five earthquake swarms. About 600 events with magnitudes from -0.5 to 2.7 were located within a 50-km2 area extending northward from the crater of Volcán de Colima to the Pleistocene volcano Nevado de Colima. The majority of hypocenters within this area did not exceed 5 km depth below sea level. We investigated earthquake focal mechanisms and seismotectonic deformations of the volcanic edifice. Focal mechanisms during four earthquake swarms indicated normal faulting associated with extensional processes, which is in agreement with the general stress regime near the volcano revealed by field measurements of fault slips. Earthquakes in the fifth swarm had focal mechanisms associated with inverse faulting, showing a significant change in the stress situation just before the beginning of the eruption. The calculated deformations varied from 1.3᎒-11 to 2.7᎒-9. The first swarm of November-December 1997 resulted in a N-S horizontal elongation that was two times greater than the E-W horizontal shortening. The volume was also subject to vertical shortening. The second and third swarms, observed in March and May 1998, showed uniform horizontal N-S and E-W elongations accompanied by a vertical elongation of the volume. In June-July 1998, the situation of November-December 1997 was repeated, with N-S horizontal elongation greater than the E-W horizontal shortening of the volume accompanied by intensive vertical shortening. During the last swarm of October-November 1998, slight E-W elongation of the seismic volume was accompanied by strong N-S shortening and very slight vertical shortening. We assume that the seismic activity prior to the 1998 eruption of Volcán de Colima developed along two intersecting tectonic structures, the N-S-trending Colima rift, and the E-W-trending system of faults associated with Tamazula fault. During the first stage (November 1997-July 1998) the passageway for magma was developed along the Tamazula fault system under horizontal extension without any surface manifestation. In October-November 1998, the seismic events began to cluster along the Colima rift structures under predominantly compressional stresses; this condition culminated with the extrusion of andesitic block lava from the summit crater.  相似文献   

2.
The 2004 andesitic block-lava extrusion at Volcán de Colima, México was accompanied and followed by numerous seismic signals associated with rockfalls, pyroclastic flows and explosive events. We analyze temporal variations in the number of rockfalls and explosions, the seismic signal duration of rockfalls and the energy of the explosion and compare this with both the rate of magma discharge and SO2 emission. Characteristics of seismic signals and SO2 emission are compared with those observed during the 1998–1999 Volcán de Colima block-lava extrusion. For both eruptions, the explosive activity was low during the lava extrusion and increased after its termination. The variation in the daily number and the total duration of rockfall seismic signals gives a good reflection of the development of the lava emission process. An increase in magmatic degassing (SO2 flux) was observed some days before the onset of lava extrusion. The degassing strongly decreased some days before the peak in the rate of the 1998–1999 lava emission but reached its peak together with the peak in the rate of the 2004 lava emission. These features of seismic activity and SO2 emission demonstrate that they are good tools for monitoring the extrusion process.  相似文献   

3.
Ten years after the last effusive eruption and at least 15 years of seismic quiescence, volcanic seismic activity started at Colima volcano on 14 February 1991, with a seismic crisis which reached counts of more than 100 per day and showed a diversity of earthquake types. Four other distinct seismic crises followed, before a mild effusive eruption in April 1991. The second crisis preceded the extrusion of an andesitic scoriaceous lava lobe, first reported on 1 March; during this crisis an interesting temporary concentration of seismic foci below the crater was observed shortly before the extrusion was detected. The third crisis was constituted by shallow seismicity, featuring possible mild degassing explosion-induced activity in the form of hiccups (episodes of simple wavelets that repeat with diminishing amplitude), and accompanied by increased fumarolic activity. The growth of the new lava dome was accompanied by changing seismicity. On 16 April during the fifth crisis which consisted of some relatively large, shallow, volcanic earthquakes and numerous avalanches of older dome material, part of the newly extruded dome, which had grown towards the edge of the old dome, collapsed, producing the largest avalanches and ash flows. Afterwards, block lava began to flow slowly along the SW flank of the volcano, generating frequent small incandescent avalanches. The seismicity associated with the stages of this eruptive activity shows some interesting features: most earthquake foci were located north of the summit, some of them relatively deep (7–11 km below the summit level), underneath the saddle between the Colima and the older Nevado volcanoes. An apparently seismic quiet region appears between 4 and 7 km below the summit level. In June, harmonic tremors were detected for the first time, but no changes in the eruptive activity could be correlated with them. After June, the seismicity decreasing trend was established, and the effusive activity stopped on September 1991.  相似文献   

4.
This paper reports the results of two seismic experiments aimed at determining the wave field of explosion quakes at Stromboli Island (Mediterranean Sea, Southern Italy). The typical Strombolian activity mostly consists of explosive phenomena causing pyroclastic, materials to be emitted together with jets of volcanic gases from one or more craters. Stromboli is an active volcano characterized by persistent seismic activity consisting of explosion quakes that are seismic events associated with the explosive volcanic phenomena. Explosion quakes are short lived seismic events occurring intermittently whose amplitude tends to decrease with distance from the vent. A distinctive feature of explosion quakes is the presence on seismograms of two, often clearly distinct, seismic phases. The first, low-frequency seismic phase (<2 Hz) is in fact usually followed by a high-frequency seismic phase (>3–4 Hz) after one second or more. The first seismic phase of explosion quakes has been shown to be characterized by a nearly radial linear polarization and by an apparent propagation velocity estimated at 600–800 m/s. The second phase is characterized by a more chaotic motion and a lower apparent propagation velocity of 150–450 m/s. The wavefield associated with the first low-frequency seismic phase appears to be generated by a resonating P-wave seismic source accompanying gas explosion and emission of pyroclastic materials. The wavefield associated with the second high-frequency seismic phase of explosion quakes appears to be mainly composed of scattered and converted waves due to the critical topography of the volcano.  相似文献   

5.
The general characteristics of seismic signals produced by pyroclastic flows (generated by either the collapse of a lava dome or an eruptive column) and lahars at Volcán de Colima, México are discussed. The paper concentrates on the 2004–2006 activity associated with and following the extrusion of andesitic block-lava in October–November 2004. It is shown that the duration of the broad-band seismic records of pyroclastic flows lasts a few minutes while the duration of seismic records of lahars continues for tens of minutes or hours. The spectra of seismic records produced by pyroclastic flows are characterized by lower peak frequencies (around 3–4 Hz) than for lahars (around 6–8 Hz). This difference in the frequency content together with the difference in the duration of seismic signals allows early diagnostic of the events in real time.  相似文献   

6.
首都圈数字地震台网对微弱爆破信号的检测能力   总被引:3,自引:0,他引:3       下载免费PDF全文
利用首都圈数字地震台网接收人工地震信号,进行地下结构研究具有重要意义.但人工震源释放的能量小,激发的地震波以短周期为主,因此本文较全面地研究了地震台网对短周期微弱信号(1~20 Hz)的检测能力:(1) 分析了台网的背景噪声,结果表明基岩台址的地震台噪声比沉积盖层台址的地震台噪声低约13 dB,这相当于近1个震级的检测阈值;夜间的噪声比白天低约5 dB;噪声有逐年增高的趋势,2006年比2001年噪声提高约4 dB.(2 )分析了在台网内进行的药量为25 kg的陆地井下爆破实验,一次爆破相当于0.69级(ML)的天然地震,有18个地震台可辨认爆炸产生的Pg、Pm或Pc波;离爆破点218 km的基岩台,仍可以接收到振幅只有1.6 nm 的Pm波,这个结果可为地震勘探实际工作提供参考.(3) 研究了台网外核爆试验的信号特征,2006年发生在朝鲜的地下核试验是一次检验台网检测微弱信号能力的好机会.波形记录经1~5Hz滤波后,台网中噪声小的18个基岩台可以清晰辨认核爆破产生的P波或Lg波,P波平均振幅为16 nm,计算的平均震级为mb4.3,和NEIC给出的震级相同;分析还表明背景噪声是影响台站信号检测能力的主要因素之一.  相似文献   

7.
Long-period seismicity during magma movement at Volcán de Colima   总被引:1,自引:1,他引:0  
During the period from February to September 2005, Volcán de Colima produced 30 Vulcanian explosions of sufficient magnitude to produce pyroclastic flows of variable size, with a total volume of at least 2.5 × 106 m3. Swarms of long-period events were associated with each event, their duration ranging from about 6 h to 3 days and each swarm containing up to 886 events. The characteristics of the swarms have been studied to understand the source mechanism and their relationship with the Vulcanian explosions. In total, 12,548 long-period events were analysed using various comparative and statistical methods. Patterns were not apparent in the data with no correlation between different properties of the swarms (duration, magnitude or frequency of occurrence of LP events) and the magnitude of the associated Vulcanian explosion, whether recorded by seismicity, volume of pyroclastics or altitude of the eruption column. This, along with other characteristics of the swarms, such as the continuation of the swarm after the explosion, with an increase in long-period event amplitude in some cases, suggests that the mechanism is not merely associated with the pressurization under an impermeable cap and resulting pressure differentials between adjacent volumes within the system. It is more likely that the production of long-period events is dominated by brittle fracturing on the margins of an ascending magma body. A model is proposed whereby the unloading above the ascending magma column produced by a Vulcanian explosion resulted in an increase in ascent rate, reflected in the increasing amplitude of long-period events. The results reflect the complexity of non-linear processes involved during magma ascent, degassing, crystallization and rupture of the impermeable plug during the Vulcanian process. At Volcán de Colima, as at many volcanoes, long-period events represent a useful precursor for eruptive activity. For monitoring, this paper highlights some useful analyses that can be carried out, which could illustrate certain characteristics of an eruptive episode. A preliminary model is presented of the conduit processes at work during the cyclic extrusive and explosive activity during 2005.  相似文献   

8.
Local seismic activity consisting of sharp earthquakes accompanied by thunderous noise was reported starting in late December 1985 around Tacaná volcano (15.13°N, 92.10°W). Portable seismic stations were established in the area by late January 1986 and sampling of the only known thermal spring on the volcano flanks started at the same time. A marked increase in SO42− concentration in the spring water preceded by two months the occurrence of a seismic swarm crisis and a small phreatic explosion. A model involving a crystalline basement fractured by tectonic stresses is proposed to explain the chemical and seismic anomalies, and the consequences on risk of volcanic activity are briefly discussed in terms of the observed behaviour.  相似文献   

9.
 For first time, during 1991, seismic activity was recorded during an eruption at Colima volcano. We analyze these data to obtain a stress pattern using a composite focal mechanism technique. From the analysis of regional seismicity, the Tamazula Fault and the Armeria River appear as active features and the dip of the slab east of the Jalisco Block is approximately 12°. Southwest of Colima volcano a vertical alignment of seismic events was observed. We estimate five different composite focal mechanism solutions from our data set, which indicate a change of the stress field at the volcano after the 1991 eruption. These solutions suggest that the stress field in the volcanic edifice was controlled by stresses related to the emplacement of magma superimposed on the regional stress field. No evidence of active local faults in the volcanic edifice was found. We propose a model for the eruptive process that involves tilting of the volcanic edifice. Received: 15 October 1995 / Accepted: 26 October 1998  相似文献   

10.
Volcán de Colima, the most active volcano in Mexico, had a climactic episode on 20 November, 1998. On this date, a dome formed on the small summit crater during the previous few days, collapsed generating block-and-ash flows. The event was preceded by almost twelve months of seismic activity, which continued afterwards for several more months. We analyzed the main seismic activity, which occurred from 20 March, 1998 to 31 March, 1999. The seismicity was dominated by volcano-tectonic earthquakes before the climax, and subsequently by hybrid and long-period earthquakes. We determined the frequency of events for the entire period, and located most of the volcano-tectonic events. To assess the possibility that these earthquakes were generated by the same source, they were tested for their similitude through cross correlation in the time domain. Six groups of similar events, or earthquake families, were generated. The members of these families appeared before the 20 November event, apparently ceasing afterwards. We examined the location of the families' events with respect to an existing gravity model in which an anomalous body of negative density contrast suggests the presence of the magma chamber. Most of the family events occur on top of the anomalous body, which suggests they were associated with the passage of magma through the feeding conduits of the volcano.  相似文献   

11.
Source location of long period seismicity at Volcàn de Colima,México   总被引:1,自引:0,他引:1  
This paper presents an analysis of seismicity associated with the volcanic activity of Volcàn de Colima (México) and recorded in the period November 2005–April 2006 during a field survey by the Istituto Nazionale di Geofisica e Vulcanologia (INGV)–Osservatorio Vesuviano, the Observatorio Vulcanologico de Colima of Colima University and the Instituto Andaluz de Geofisica, University of Granada. Three different types of volcanic earthquakes have been identified on the basis of their spectral properties: Type A (0.3–1 Hz), Type B (1–5 Hz) and Type C (3–4 Hz). Results of polarization analysis applied to Type A events show a predominance of radial motion, indicating that the wavefield comprises compressional waves (P) and shear waves polarized in the vertical plane (SV), while the signal always begins with a negative polarity. Type A, B and C earthquakes have been located using both a flat layered model and a 3D model including topography. Hypocentre distributions indicate that the source of Type A signals is very shallow and confined to a small volume lying about 1 km below the crater. In contrast, the source of Type B and C events is significantly deeper, with most hypocentres located in a volume of about 1 km3 centred at 2.5–3 km depth. A cluster analysis based on the cross-correlation among the waveforms of different events recorded at the same station was applied to Type A earthquakes. Only two clusters, which include only a small percentage of events were found, indicating that earthquake families were uncommon during the period of our survey.  相似文献   

12.
小震级地震事件的倒谱差异   总被引:2,自引:2,他引:0  
从数学、几何及物理方面,简要介绍了地震事件震源倒谱分析和震源性质判别的基本原理和方法。将该方法应用于小震级的地震与爆炸事件的分析,结果表明,朝鲜半岛6次较小地震与爆炸的震源倒谱具有显著的峰值差异,倒谱差异的定量描述C值参量分别大于和小于1。  相似文献   

13.
邓莉  谭毅培  刘双庆  马婷  卞真付  曹井泉 《地震》2018,38(3):158-169
2015年8月12日发生在天津滨海新区的化学品爆炸事故造成了严重的人员伤亡和财产损失。 基于区域地震台网记录的数字化连续地震波形资料, 对爆炸发生过程的精细分析是深入调查爆炸事故发生原因、 快速估计事故所造成灾害与损失的重要手段之一。 本文首先利用震相到时和质点运动轨迹信息对记录波形中能量较强的震相性质进行分析, 再通过模板匹配算法检测爆炸过程中是否存在两次大爆炸以外的小爆炸事件, 并对检测方法的效能进行检验, 最后依据波形互相关得到的震相到时差估计两次较大爆炸的相对位置。 计算结果显示区域台网记录波形中能量最大的体波震相可能为沿沉积层顶部传播的Pg震相, 垂直向能量最强的面波震相为Rg震相, 而能量较弱的初至震相可能为结晶基底首波; 爆炸过程中除了两次能量较大的爆炸以外还能检测到两次较小的爆炸事件, 其当量相当于约ML0.5的地震; 基于两次大爆炸Pg震相相对到时信息得到第二次大爆炸发生在第一次大爆炸的北西侧, 两次爆炸位置距离约50~55 m。 本文研究结果为爆炸事故的调查分析提供了地震学依据。  相似文献   

14.
For an explosion resource, to evaluate its damage power to ground surface targets is an important problem. Two direct methods, measuring of air shock wave pressures generated by explosion and experimental observation of simulation target damage, are usually used to appraise this blast damage power. However, the measuring system of air shock wave pressures is not only very complex, but there are some problems to gauge the pressure sensors and the measured pressures often exhibit a strong scatter of data. In a simulation way, the used targets, easily damaged by explosion action, are not used once again so that there is the waste of materials. A measuring system of explosion seismic waves, with the characteristics being stable in operation and convenient to arrange the sensors of seismic waves, cannot be easily damaged in the process of experiment. If the explosion seismic strength is able to reflect the damage effects of explosion resources to ground surface targets, it is possible to suggest a new evaluation method based on the seismic effect, which, to large extent, will overcome the drawbacks of those two methods mentioned above. In this work, the potential of this new method is investigated experimentally. The experimental results show that under the identical ground-layer state and within a definite distance range, it is available to employ the explosion seismic effect to evaluate the damage power of explosion resources to ground surface targets.  相似文献   

15.
乌兰浩特地震台爆破与地震记录识别判据   总被引:2,自引:2,他引:0  
选取乌兰浩特地震台爆破及地震波形数据记录,采用小波分析方法,提取地震及爆破的3种波形特征,使用v-SVC支持向量分类机进行分类能力的效果检验,结果表明,WPT(db4)+香农熵特征+v-SVC的组合最佳,可作为该台爆破与地震记录的快速识别判据。  相似文献   

16.
姚清林  马宗晋 《地震》1995,(2):117-124
为了探讨小区域内地震活动的时间规律。本文在中国大陆选择了11个地点分析其从远古至公元1990年间的破坏性地震(M≥4 3/4)的活动性。因而发现小区的地震活动规律主要表现于以大震为代表的地震活动分期上,破坏性地震的频率、集中程度与阶段性变化上,以及与所在地震区地震活动期的关系上,不同小区的地震活动特征有共性,有类型区别,更有各自的特殊性。  相似文献   

17.
Gases, condensates and silica tube precipitates were collected from 400°C (Z2) and 800°C (Z3) fumaroles at Colima volcano, Mexico, in 1996–1998. Volcanic gases at Colima were very oxidized and contain up to 98% air due to mixing with air inside the dome interior, close to the hot magmatic body. An alkaline trap method was used to collect gas samples, therefore only acidic species were analysed. Colima volcanic gases are water-rich (95–98 mol%) and have typical S/C/Cl/F ratios for a subduction type volcano. δD-values for the high-temperature Z3 fumarolic vapour vary from −26 to −57‰. A negative δD–Cl correlation for the Z3 high-temperature fumarole may result from magma degassing: enrichment in D and decrease in the Cl concentration in condensates are likely a consequence of input of “fresh” batches of magma and an increasing of volcanic activity, respectively.The trace element composition of Colima condensates generally does not differ from that of other volcanoes (e.g. Merapi, Kudryavy) except for some enrichment in V, Cu and Zn. Variations in chemical composition of precipitates along the silica tube from the high-temperature fumarole (Colima 1, fumarole Z3), in contrast to other volcanoes, are characterized by high concentrations of Ca and V, low concentration of Mo and a lack of Cd. Mineralogy of precipitates differs significantly from that described for silica tube experiments at other volcanoes with reduced volcanic gas. Thermochemical modelling was used to explain why very oxidized gas at Colima does not precipitate halite, sylvite, and Mo- and Cd-minerals, but does precipitate V-minerals and native gold, which have not been observed before in mineral precipitates from reduced volcanic gases.  相似文献   

18.
2019年3月21日江苏盐城响水化工厂发生爆炸,造成了巨大的人员伤亡和财产损失.人们很关心这次爆炸的规模以及它相当于多大当量的炸药爆炸.随着观测资料的增多与地震学方法的发展,利用地震学方法估算爆炸当量成为可能.本文收集了广岛核爆事件、美国化学爆炸试验、长白山人工震源勘探、朝鲜六次核试爆资料和前人研究成果,讨论了爆炸当量与爆炸所产生地震震级的关系,计算了爆炸能量转换地震波能量的比例.当某次爆炸发生时,如果其产生的地震事件被台站记录到,我们可以估算地震波的能量.进而根据地震波能量在爆炸总能量中的比例,估算爆炸事件释放的能量.本研究估计江苏响水爆炸事故所释放炸药量约为2.8~8.5tTNT炸药.  相似文献   

19.
About 4,300 years ago, 10 km3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40–75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude.Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.  相似文献   

20.
Analysis of the patterns of eruption occurrences may improve our understanding of volcanic processes. In this paper, the available historical data of an individual volcano, Colima in México, are used to classify its eruptions by size using the Volcanic Explosivity Index (VEI). The data shows that, if eruptions are only taken into account above a certain VEI level, the stochastic process associated with the explosive volcanic events can be represented by a non-stationary Poisson point process, which can be reduced to a homogeneous Poisson process through a transformation of the time axis. When eruptions are separated by VEI values, the occurrence patterns of each magnitude category can also be represented by a Poisson distribution. Analysis of the rate of occurrence of all eruptions with VEI greater than 1 permits the recognition of three distinct regimes or rates of volcanic activity during the last 430 years. A double stochastic Poisson model is suggested to describe this non-stationary eruptive pattern of Colima volcano and a Bayesian approach permits an estimation the present hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号