首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Late Ordovician Abercrombie Beds, south of Reids Flat, New South Wales, and adjacent to the Wyangala Batholith, show evidence of three successive fold episodes. First generation folds are tight to isoclinal, with fold axes ranging from vertical to horizontal and north‐trending, and steep axial‐plane slaty cleavage. Second generation folds are steeply plunging, tight to open with north‐striking axial planes. In pelitic rocks the axial plane structure is a crenulation cleavage which overprints the slaty cleavage. The first two fold episodes were accompanied by greenschist‐facies metamorphism. Granite emplacement occurred prior to the second fold episode. A third deformation was of relatively mild intensity and produced open, north‐trending folds with axial planes dipping moderately to the east, and crenulation cleavage as the axial plane structure in pelitic rocks. These latest folds are correlated with the latest folds in the Abercrombie Beds north of the Abercrombie River. The mapped area has no apparent macroscopic structure and may be considered as a single domain.  相似文献   

2.
A downward‐facing refolded fold in the aureole of the Bathurst Granite displays evidence for three phases of folding. This, and structural anomalies in other Lachlan Fold Belt granitoid aureoles, may be caused by granitoid emplacement. Alternatively they may be records of early deformations, preserved in the granitoid envelopes from the obliterating effects of later deformations. Various causes for the three fold phases are considered, including soft‐sediment deformation, orogenies, and kinking as a result of granitoid emplacement. A unique solution is not yet possible. Unrecognised structural complexities may be widespread in the Hill End Synclinorial Zone.  相似文献   

3.
Seven phases of deformation are recognised in Dalradian metasediments within the NW aureole of the Main Donegal Granite. Major NW facing F2 folds (the Aghla Anticline and Errigal Syncline) refold an originally NW facing slaty cleavage, which is usually parallel to bedding. D3 structures cross-cut the major F2 folds and verge and face to the SE on their normal limbs. A fourth phase of deformation intensifies towards the granite contact and is shown to be broadly coeval with intrusion and responsible for a major structure in the aureole. Three later phases are variably developed throughout the aureole. The kinematics of F4 folds in relation to the granite intrusion are briefly discussed.  相似文献   

4.
Analysis of the mesoscopic structure of the early Paleozoic Shoo Fly complex, northern Sierra Nevada, California, reveals three phases of deformation and folding. The first phase of folding is pre-Late Devonian and the second two are constrained by regional relations as due to the Late Jurassic Nevadan orogeny. Main phase Nevadan deformation produced penetrative slaty cleavage which is steep, NNW-trending and parallel to tectonostratigraphic terranes of the region. Cleavage is axial-planar to ubiquitous isoclinal similar folds. Fold axes define a NNW-trending girdle with a distinct, near-vertical maximum. Main phase Nevadan folds have nearly ideal class 2 orthogonal thickness geometry although some class 1C forms exist in more competent units. The overall geometry of main phase folds suggests formation by progressive deformation in a flattening regime with cleavage as the flattening plane and a steep extension axis defined by the fold axis maximum. A steep extension axis direction for main phase Nevadan deformation is supported by analysis of interference relations where folds of this generation deform pre-Late Devonian folds. Late Nevadan folds range from kink flexures to ideal class 2 similar folds with incipient axial-planar cleavage. The kinematic significance of late Nevadan folds cannot be evaluated because of their varying style and orientation throughout the northern Sierra Nevada.Penetrative ductile deformation and near-vertical extension during the Nevadan orogeny was synchronous with accretion of oceanic and/or island arc rocks against the western margin of the northern Sierra Nevada. The kinematic framework of deformation defined for Nevadan deformation is consistent with essentially orthogonal convergence of these exotic terranes with the Sierran margin and argues against a transform/transpressive regime.  相似文献   

5.
A deformation history, comprised of six separate deformation events of differing intensity, has affected the rocks of the South Palmer River region of the the Hodgkinson Province, north Queensland. Within this region, a zone of pervasive slaty cleavage, herein termed the Fiery Creek Slate Belt, has developed as a result of the superposition of fabrics formed during several of these events. The most important processes in the formation of this composite cleavage were the re-use and reactivation of the favourably oriented, steep, N-S-trending S2 foliation by the intense fourth deformation event, D4. This produced micro-, meso- and macroscopic folds in an originally shallow S3 foliation, produced during the intervening D3 deformation, with an axial planar S2–S4 foliation. The D4 stretching lineation, L44, plunges subvertically to steeply north and indicates that shear during D4 was oriented steeply north-south. In the Fiery Creek Slate Belt, D2 fold axes are interpreted to have formed in much shallower orientations than their present moderately N-S-plunging to subvertical orientations. We consider this to be a result of D4 shear, which caused variable degrees of rotation of D2 fold axes toward the D4 stretching lineation due to subparallelism of the bulk shortening directions of the D2 and D4 events. Near-total destruction of the pre-D4 foliations during slaty cleavage formation has produced a misleading impression of a simple deformation history. There is no relationship between metamorphic grade and intensity of slaty cleavage development.  相似文献   

6.
The Fenes Nappe belongs to the stack of tectonic units cropping out in the southern Apuseni Mts (Romania). It is characterised by a structural history consisting of two folding phases that developed during the time spanning from Early Aptian to Late Maastrichtian. The D1 phase produced west-northwest-verging, isoclinal to very tight folds, associated to a slaty cleavage. The main metamorphic imprint of the Fenes Nappe is linked to this deformation phase; illite and chlorite ‘crystallinity’ values indicate metamorphic conditions of the late diagenesis, close to the diagenetic zone/anchizone boundary. The subsequent D2 phase produced north-northwest-verging, parallel folds, not associated with synkinematic recrystallisation. These phases are interpreted as developed during a structural path, which includes burial at a depth of 8–10 km, followed by exhumation at shallower structural levels. To cite this article: A. Ellero et al., C. R. Geoscience 334 (2002) 347–354.  相似文献   

7.
雪峰山早中生代构造演化:构造学和年代学分析木   总被引:1,自引:0,他引:1       下载免费PDF全文
雪峰山主体地处湖南省境内,位于华南板块的中心区域,是一条典型的陆内造山带.通过详细的野外地质观察,我们将其分为3个构造单元:西部外区,主要以大型箱状褶皱为主;中部区,与西部区以主逆冲断层相分隔,劈理发育呈扇状,是雪峰山构造带的核心区域,也是变质级别最深、变形最强的区域;东部区,变形集中在脆韧性区域之上,以极性北西构造为...  相似文献   

8.
F1 macroscopic folds in the Late Palaeozoic Coffs Harbour Beds in the SE portion of the New England Fold Belt are commonly transected by cleavage. These macroscopic folds are tight to isoclinal structures, with a consistent vergence to the NE. Axial surfaces are either steeply dipping to the SW or vertical, and are typically faulted. Anomalous bedding‐cleavage relations occur where the steeply dipping cleavage intersects overturned limbs of F1 macroscopic and some F1 mesoscopic folds. Elsewhere F1 mesoscopic folds have a well developed, axial‐surface cleavage and are rarely downward facing. Cleavage is commonly strike‐divergent from axial surfaces of F1 macroscopic folds, except adjacent to the Demon Fault System, where they are parallel. These anomalous cleavage‐folds relations possibly developed during the one deformation. D1 structures are refolded by kink‐like folds that are steeply plunging. The structural style of the D1 deformation indicates that it possibly resulted from accretionary processes at a consuming plate margin.  相似文献   

9.
Lower Palaeozoic sedimentary and volcanic rocks east of Queanbeyan, N.S.W., have undergone multiple deformation resulting in four systems of folds. The first of these consists of large isoclinal, recumbent folds (F1). The second generation folds (F2) are the most pronounced; they consist of flattened flexural‐slip folds with well developed axial‐plane slaty cleavage. Minor variants of this system are associated with meridionally‐trending faults. Third and fourth generation folds are minor kink systems.

The existence of first generation folds was established on the basis of F2 fold‐facing determinations, and their likely form was deduced from the geometrical variations of F2 folds. It is thought that all fold phases developed during the Late Silurian Bowning Orogeny.  相似文献   

10.
The magnetic fabric in folds was investigated in the easternmost Rheno-Hercynian Zone, the Nízký Jeseník Mts. In their eastern areas, the rocks show signs of only weak achimetamorphism and very gentle ductile deformation; SE vergent buckle folds of long wavelength are developed whose magnetic fabric can be easily unfolded geometrically. In the central areas, spaced cleavage and NW vergent buckle folds can be found; the folds can be unfolded mostly only partially. In the western areas, NW vergent cleavage folds and very well developed slaty cleavage occur. The magnetic fabric in the folds is homogeneous, the folds cannot be unfolded at all. The cleavage is transformed into metamorphic schistosity at the western border of the area.  相似文献   

11.
In the western part of the North Singhbhum fold belt near Lotapahar and Sonua the remobilized basement block of Chakradharpur Gneiss is overlain by a metasedimentary assemblage consisting of quartz arenite, conglomerate, slate-phyllite, greywacke with volcanogenic material, volcaniclastic rocks and chert. The rock assemblage suggests an association of volcanism, turbidite deposition and debris flow in the basin. The grade of metamorphism is very low, the common metamorphic minerals being muscovite, chlorite, biotite and stilpnomelane. Three phases of deformation have affected the rocks. The principal D1 structure is a penetrative planar fabric, parallel to or at low angle to bedding. No D1 major fold is observed and the regional importance of this deformation is uncertain. The D2 deformation has given rise to a number of northerly plunging major folds on E-W axial planes. These have nearly reclined geometry and theL 2lineation is mostly downdip on theS 2surface, though some variation in pitch is observed. The morphology of D2 planar fabric varies from slaty cleavage/schistosity to crenulation cleavage and solution cleavage. D3 deformation is weak and has given rise to puckers and broad warps on schistosity and bedding. The D2 major folds south of Lotapahar are second order folds in the core of the Ongarbira syncline whose easterly closure is exposed east of the mapped area. Photogeological study suggests that the easterly and westerly closing folds together form a large synclinal sheath fold. There is a continuity of structures from north to south and no mylonite belt is present, though there is attenuation and disruption along the fold limbs. Therefore, the Singhbhum shear zone cannot be extended westwards in the present area. There is no evidence that in this area a discontinuity surface separates two orogenic belts of Archaean and Proterozoic age.  相似文献   

12.
A 3000 m Jurassic-Cretaceous-Palaeogene succession dominated by carbonates is deformed by NNE trending open folds of Palaeogene age. Conjugate wrench faults and a system of normal faults extend the fold belt axially and probably evolved during anticlockwise rotation in a transpressive regime related to the oblique convergence of the African and Arabian plates across the Lebanese segment of the Dead Sea transform fault. Three sets and four systems of conjugate mesoscopic fractures, symmetrically orientated with reference to bedding and the plunge of the fold in which they are contained, resulted in minor axial elongation. Pressure solution on surfaces striking parallel to the fold belt locally achieved up to 50% shortening.The N30°E vertical Yammouné Fault Zone, which connects with the principal rift faults to the north and south, is accompanied by mesostructures which indicate that displacements were dominantly left-lateral and that the 1–2 km Zone is younger than the folds, possibly of Neogene age.  相似文献   

13.
The geology of the No 1 and 3 pits at the Ranger Mine in the Pine Creek Inlier (PCI) of Australia is dominated by Palaeoproterozoic volcanic, carbonate and sedimentary sequences that unconformably overlie Archaean granitic gneiss of the Nanambu Complex (2470±50 Ma). These sequences are folded, faulted and sheared, and crosscut by east-trending granite (sensu stricto) dykes and pegmatite veins, and gently dipping N–NE trending mafic dykes of the Oenpelli Dolerite (1690 Ma). Regional metamorphism is to greenschist facies and contact metamorphism is to hornblende-hornfels facies.The rocks of the Ranger Mine have been subjected to at least two phases of ductile–brittle deformation (D2–D3) and one phase of brittle deformation (D4). These events were preceded by regional diastathermal or extension-related metamorphism (D1) and the development of an ubiquitous bedding-parallel cleavage (S1).D2 resulted in the development of NNE–NNW trending mesoscopic folds (F2) and a network of thrusts and dextral reverse shears. The modelled palaeo-stress directions for the emplacement of pegmatite veins suggests that they formed early in D2. D3 resulted in the development of WNW–NW trending mesoscopic folds (F3), a weakly defined axial planar cleavage (S3) and sinistral reactivation of D2 shears. D2–D3 are correlated with deformation during the Maud Creek Event of the Top End Orogeny (1870–1780 Ma), while the emplacement of granite dykes and pegmatite veins is correlated with emplacement of regional granites at 1870–1860 Ma.D4 is associated with brittle deformation and resulted in the development of normal faults and fault breccias during a period of east–west extension. This event is correlated with regional east–west extension during deposition of Palaeo- to Mesoproterozoic platform sequences.The sequence of tectonic events established in this study indicates that uranium-bearing ore shoots in the Ranger No 1 and 3 pits formed during extension in D4, and after emplacement of the Oenpelli Dolerite at 1690 Ma. However, the currently accepted 1737±20 U–Pb Ma age places the mineralising event at time of regional post-orogenic erosion, after the Top End Orogeny and before emplacement of the Oenpelli Dolerite and extension in D4. The U–Pb age is not consistent with Sm–Nd ages for primary uranium mineralisation at Nabarlek and Jabiluka at 1650 Ma [Econ. Geol. 84 (1989) 64] and does not concur with currently accepted regional tectonic data of Johnston [Johnston, J.D., 1984. Structural evolution of the Pine Creek Inlier and mineralisation therein, Northern Territory, Australia. Unpublished PhD Thesis, Monash University, Australia], Needham et al. [Precambrian Res. 40/41 (1988) 543] and others. Consequently, the absolute age of uranium mineralisation at the Ranger Mine is open.  相似文献   

14.
Study of a thick section of late Paleozoic to mid-Cretaceous sedimentary and volcanogenic rocks in eastcentral Sierra Nevada has revealed an involved structural succession not readily apparent when analysed under the traditional assumptions of structural analysis (e.g. parallel structures are of the same age).Earliest structures in the area occur as sparse folds in late Paleozoic rocks, whereas in Triassic to mid-Cretaceous rocks earliest structures occur as penecontemporaneous slumps. Upon these earliest structures are superimposed slaty cleavage with associated lineations and subsequent crenulations. The slaty cleavage across the area is statistically parallel, as are the axial planes of crenulations which fold the slaty cleavage. Such a succession would traditionally be interpreted as representing two periods of deformation, the first forming the slaty cleavage and the second the crenulation of the slaty cleavage. There is evidence, however, to indicate that the slaty cleavage itself was formed during more than one period of deformation and the same may be true for the crenulations. Dykes emplaced in Jurassic rocks have been dated (U/Pb) as mid-Cretaceous and lie parallel to what is probably an early slaty cleavage direction. The dykes, however, also bear a slaty cleavage, albeit weaker than in the host rock. In addition, quantitative strain determinations of rocks in the area show that the older units are more strongly deformed than the younger units. These and other data suggest that the statistically parallel slaty cleavage and related structures (folds, lineations, etc.) found in the Jurassic and older rocks have formed during at least two, and possibly three, increments of strain, each increment separated by a lengthy period of geologic time, possibly as much as 45 Ma or more. Crenulations of the slaty cleavage at any point (subsequently formed after each period of slaty cleavage formation) may even predate slaty cleavage formed later at another nearby point.While it is possible to set up a chronology between earlier (tectonic and/or penecontemporaneous slumps) and later structures (slaty cleavage, folds, lineations, etc.), it is not valid to designate for the entire area a relative time sequence of formation of slaty cleavage and crenulations in the Jurassic or older rocks by the usual methods (e.g. S2, S3, F2, F3, etc.). These later structures can only be designated as Only in the youngest stratigraphic unit in the area, which has been subjected to one deformation (mid-Cretaceous), can a valid structural succession be applied areally.We suggest that multiphase, parallel structures, comparable to those we have described, may be a relatively common phenomenon in orogenic belts. Until one arrives at a thorough understanding of the detailed stratigraphy and the absolute ages of units in key relationships to the structures, it may only be possible to delineate the broadest of time sequences for the structures concerned.  相似文献   

15.
《Geodinamica Acta》2013,26(4):157-163
The Terena Formation is located in the central part of the Ossa-Morena Zone (OMZ) and outcrops in the core of a latter (D3) first order syncline. This Formation is a Lower Devonian flysch and shows an unusual “Z” shape, with a central sector trending nearly N-S, and the tips trending NW-SE. This central sector is crossed by the cleavage (NW-SE) showing an apparent dextral (clockwise) transection pattern, anomalous and opposite to the regional widespread sinistral (anti-clockwise) transpression. The same sector with cartographic dextral transection, shows at outcrop scale, mesoscopic folds with a sinistral transection. During the Lower Devonian a N-S trending basin was developed as an effect of an early tectonic deformation phase. This trough was filled with turbidites and its elongated geometry determined the shape of the main syncline. We propose that the dextral transection pattern, at cartographic scale, result from the superposition of the NW-SE upright S3 cleavage on this major regional structure controlled by a sedimentary trough. The mesoscopic folds, observed on the upper levels of the sedimentary sequence were not influenced by the topographic anisotropy of the basin, and therefore they developed a left transection, according to the regional deformation mechanisms.

The “Z” shape of the syncline could be explained as a consequence of two major tectonic shear zones situated along the north and south boundaries of the OMZ, respectively the Tomar-Badajoz-Cordoba Shear Zone and the South Iberian Suture, lined by the Beja-Acebuches Ophiolitic Complex. Both shear zones have a sinistral transpressive character and were active during late Variscan tectonic events.  相似文献   

16.
The Paleo-Tethys suture zone in northern Iran was formed when the Paleo-Tethys Ocean, (between Gonwana-derived Alborz Microcontinent and the Turan Plate), closed during the Eocimmerian orogeny and after they collided together in the Mid-Late Triassic. The NW-striking Boghrov-Dagh basement Fault Zone that lies in the vicinity of Masuleh village and the southern boundary of Gasht Metamorphic Complex is a part of the Eocimmerian suture zone in the Western Alborz. Along this part of the suture zone, tourmaline leucogranites intruded in metamorphic rocks. We recognize three distinct deformation stages (D1 to D3) in the study area especially in the Masuleh Shear Zone. D1 which was synchronous with formation of the main metamorphic minerals, such as sillimanite and staurolite under medium- to high-grade metamorphic conditions probably during the Hercynian event and a NE-directed shortening. The slaty cleavage in metamorphosed Upper Paleozoic rocks and crenulation cleavage and folds in the older rocks were produced due to D2 deformation during the Eocimmerian event under greenschist facies conditions. The Masuleh Shear Zone formed as a result of a ductile strike-slip shear during the Early-Middle Jurassic Mid-Cimmerian D3 event with a pure dextral to transtension shear sense at low to locally medium-grade conditions. All of the D3 structural features agree with a NNW-directed compression and an ENE-directed extension caused by overall dextral shear parallel to the Masuleh shear zone and the Boghrov-Dagh Fault Zone. Based on the available evidence, especially cross-cutting relationships between structural fabrics and rock units, emplacement of the Gasht-Masuleh leucogranites occurred after the D2 collisional event coeval to the possible slab break-off and before the D3 event, between Eocimmerian and Mid-Cimmerian movements.  相似文献   

17.
Transpressional deformation has played an important role in the late Paleozoic evolution of the western Central Asian Orogenic Belt (CAOB), and understanding the structural evolution of such transpressional zones is crucial for tectonic reconstructions. Here we focus on the transpressional Irtysh Shear Zone with an aim at understanding amalgamation processes between the Chinese Altai and the West/East Junggar. We mapped macroscopic fold structures in the southern Chinese Altai and analyzed their relationships with the development of the adjacent Irtysh Shear Zone. Structural observations from these macroscopic folds show evidence for four generations of folding and associated fabrics. The earlier fabric (S1), is locally recognized in low strain areas, and is commonly isoclinally folded by F2 folds that have an axial plane orientation parallel to the dominant fabric (S2). S2 is associated with a shallowly plunging stretching lineation (L2), and defines ∼NW-SE tight-close upright macroscopic folds (F3) with the doubly plunging geometry. F3 folds are superimposed by ∼NNW-SSE gentle F4 folds. The F3 and F4 folds are kinematically compatible with sinistral transpressional deformation along the Irtysh Shear Zone and may represent strain partitioning during deformation. The sub-parallelism of F3 fold axis with the Irtysh Shear Zone may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation (F3) in fold zones. The strain partitioning may have become less efficient in the later stage of transpressional deformation, so that a fraction of transcurrent components was partitioned into F4 folds.  相似文献   

18.
A non-coaxial deformation involving pre-folding initiation of cleavage perpendicular to bedding is proposed to explain non-axial planar cleavage associated with mesoscopic folds in part of the Appalachian foreland thrust-belt of southwest Virginia. Folds are gently plunging, asymmetric, upright to slightly inclined, sinusoidal forms with non-axial fanning cleavage. They show extreme local variations in type and degree of transection and the consistency of transection direction. These relations are further complicated by hinge migration.Cleavage-fan angles, bedding-cleavage angles and δ transection values appear influenced by fold tightness, and in part by fold flattening strain. Fold flattening increments are considered simultaneous with folding. Axial surface traces, and not cleavage traces, coincide with the principal extension direction in fold profiles. Geometric modelling of cleavage fanning and bedding-cleavage angle variations for various theoretical folding modes suggest that folding in limestone and sandstone layers was by tangential longitudinal strain. Significant shape modification and change in bedding-cleavage relations occurred after limb dips of 40 and 50° were attained in limestone and sandstone respectively. Mud-rock class 1C folds with convergent cleavage fans show features transitional between buckling and flexural flow. Initiation of ‘cleavage’ fabrics during layer-parallel shortening prior to significant folding may be important for cleavage evolution in some deformed rocks.  相似文献   

19.
The ENE-plunging macroscopic folds, traced by calc gneiss interbanded with marble and sillimanite schist within the Peninsular Gneiss around Suganapuram in the ‘Palghat gap’ in southern India, represent structures of the second generation (D2). They have folded the axial planes of a set of D1 isoclinal folds on stratification coaxially, so that the mesoscopic D1 folds range from reclined in the hinge zones, through inclined to upright in the limb zones of the D2 folds. Orthogonal relation between stratification and axial planar cleavage, and ‘M’ shaped folds on layering locate the hinge zones of the D1 folds, whereas folds on axial planar cleavage with ‘M’ shaped folds are the sites of the D2 fold hinges. Extreme variation in the shapes of the isoclinal D1 folds from class 1B through class 1C to nearly class 2 of Ramsay is a consequence of buckling followed by flattening on layers of widely varying viscosity contrast. The large ENE-trending structures in this supracrustal belt within the Peninsular Gneiss in the ‘Palghat gap’ could not have evolved by reorientation of NS-trending structures of the Dharwar tectonic province to the north by movement along the Moyar-Bhavani shear zone which marks the boundary between the two provinces. This is because the Moyar and Bhavani faults are steep dipping reverse faults with dominant dip-slip component. Deceased  相似文献   

20.
The moderately metamorphosed and deformed rocks exposed in the Hampden Synform, Eastern Fold Belt, in the Mt Isa terrane, underwent complex multiple deformations during the early Mesoproterozoic Isan Orogeny (ca 1590–1500 Ma). The earliest deformation elements preserved in the Hampden Synform are first‐generation tight to isoclinal folds and an associated axial‐planar slaty cleavage. Preservation of recumbent first‐generation folds in the hinge zones of second‐generation folds, and the approximately northeast‐southwest orientation of restored L1 0 intersection lineation suggest recumbent folding occurred during east‐west to northwest‐southeast shortening. First‐generation folds are refolded by north‐south‐oriented upright non‐cylindrical tight to isoclinal second‐generation folds. A differentiated axial‐planar cleavage to the second‐generation fold is the dominant fabric in the study area. This fabric crenulates an earlier fabric in the hinge zones of second‐generation folds, but forms a composite cleavage on the fold limbs. Two weakly developed steeply dipping crenulation cleavages overprint the dominant composite cleavage at a relatively high angle (>45°). These deformations appear to have had little regional effect. The composite cleavage is also overprinted by a subhorizontal crenulation cleavage inferred to have developed during vertical shortening associated with late‐orogenic pluton emplacement. We interpret the sequence of deformation events in the Hampden Synform to reflect the progression from thin‐skinned crustal shortening during the development of first‐generation structures to thick‐skinned crustal shortening during subsequent events. The Hampden Synform is interpreted to occur within a progressively deformed thrust slice located in the hangingwall of the Overhang Shear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号