首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fault blocks and inliers of uppermost Silurian to Middle Devonian strata in the Yarrol Province of central coastal Queensland have been interpreted either as island-arc deposits or as a continental-margin sequence. They can be grouped into four assemblages with different age ranges, stratigraphic successions, geophysical signatures, basalt geochemistry, and coral faunas. Basalt compositions from the Middle Devonian Capella Creek Group at Mt Morgan are remarkably similar to analyses from the modern Kermadec Arc, and are most consistent with an intra-oceanic arc associated with a backarc basin. They cannot be matched with basalts from any modern continental arc, including those with a thin crust (Southern Volcanic Zone of the Andes) or those built on recently accreted juvenile oceanic terranes (Eastern Volcanic Front of Kamchatka). Analyses from the other assemblages also suggest island-arc settings, although some backarc basin basalt compositions could be present. Arguments for a continental-margin setting based on structure, provenance, and palaeogeography are not conclusive, and none excludes an oceanic setting for the uppermost Silurian to Middle Devonian rocks. The Mt Morgan gold–copper orebody is associated with a felsic volcanic centre like those of the modern Izu–Bonin Arc, and may have formed within a submarine caldera. The data are most consistent with formation of the Capella Creek Group as an intra-oceanic arc related to an east-dipping subduction zone, with outboard assemblages to the east representing remnant arc or backarc basin sequences. Collision of these exotic terranes with the continent probably coincided with the Middle–Upper Devonian unconformity at Mt Morgan. An Upper Devonian overlap sequence indicates that all four assemblages had reached essentially their present relative positions early in Late Devonian time. Apart from a small number of samples with compositions typical of spreading backarc basins, Upper Devonian basalts and basaltic andesites of the Lochenbar and Mt Hoopbound Formations and the Three Moon Conglomerate are most like tholeiitic or transitional suites from evolved oceanic arcs such as the Lesser Antilles, Marianas, Vanuatu, and the Aleutians. However, they also match some samples from the Eastern Volcanic Front of Kamchatka. Their rare-earth and high field strength element patterns are also remarkably similar to Upper Devonian island arc tholeiites in the ophiolitic Marlborough terrane, supporting a subduction-related origin and a lack of involvement of continental crust in their genesis. Modern basalts from rifted backarc basins do not match the Yarrol Province rocks as well as those from evolved oceanic arcs, and commonly have consistently higher MgO contents at equivalent levels of rare-earth and high field strength elements. One of the most significant points for any tectonic model is that the Upper Devonian basalts become more arc-like from east to west, with all samples that can be matched most readily with backarc basin basalts located along the eastern edge of the outcrop belt. It is difficult to account for all geochemical variations in the Upper Devonian basalts of the Yarrol Province by any simplistic tectonic model using either a west-dipping or an east-dipping subduction zone. On a regional scale, the Upper Devonian rocks represent a transitional phase in the change from an intra-oceanic setting, epitomised by the Middle Devonian Capella Creek Group, to a continental margin setting in the northern New England Orogen in the Carboniferous, but the tectonic evolution must have been more complex than any of the models published to date. Certainly there are many similarities to the southern New England Orogen, where basalt geochemistry indicates rifting of an intra-oceanic arc in Middle to Late Devonian time.  相似文献   

2.
The tectonic setting of the Devonian rocks in the New England Orogen has been the subject of considerable debate and controversy for many years. Our studies reveal that they have formed in intra-oceanic island arc and back arc basin (BAB) settings based on Th/Yb, Nb/Yb, Ba/La and Zr/Y ratios. Further, many of the samples that formed in a BAB have a mixture of MORB and arc-like characteristics, a few are almost entirely MORB-like. The arc-like features are believed to be due to the presence of a subduction component in the basaltic magma, the amount of which is controlled by the distance from the arc. Those samples with MORB-like compositions are thought to have originated at spreading centres. The compositions of Late Devonian basalts become more arc-like to the west suggesting a west facing polarity. Based on the tectonic setting and spatial relationship of Late Devonian sequences, we propose that two subduction zones existed during the Late Devonian, one dipping west beneath the Lachlan Orogen, the other dipping east beneath a rifted intra oceanic arc. Obduction of this intra oceanic arc over the continental margin of the Lachlan Orogen in the latest Devonian at approximately 375 Ma led to the development of a new west dipping subduction zone oceanward and commencement of continental, arc magmatism.  相似文献   

3.

Palaeozoic intrusive rocks of the New England Batholith from the Rockvale district in the southern New England Orogen form three distinct associations: (i) the Carboniferous Rockvale Adamellite, a member of the Hillgrove Suite of deformed S‐type granitoids; (ii) a small I‐type igneous complex on the northwestern margin of the Rockvale Adamellite: several members of this complex have similar chemical compositions to the most mafic members of the Moonbi Suite of New England Batholith I‐types; and (iii) a suite of dyke rocks ranging in composition from calc‐alkaline lamprophyre through hornblende and biotite porphyrite to aplite. Ion‐microprobe U‐Pb zircon analysis indicates intrusion of the Rockvale Adamellite at 303 ±3 Ma (weighted mean 206Pb/238U age; 95% confidence limits). Preliminary investigation of zircon inheritance within the Rockvale Adamellite is consistent with chemical and isotopic indications of derivation of New England Batholith S‐type granitoids from a relatively juvenile protolith. Deformation of the Rockvale Adamellite occurred after complete crystallization of the pluton and prior to emplacement of dykes and I‐type intrusives. K‐Ar biotite and hornblende ages show broadly synchronous intrusion of I‐type magmas and lamprophyre dykes at ca 255 Ma, indicating that mantle magmatism associated with lamprophyres was contemporaneous with the crustal production of I‐type melts. Chemical similarities between the most mafic Moonbi Suite members and calc‐alkaline lamprophyres may also indicate a direct mantle contribution to some I‐type magmas.  相似文献   

4.
The southern part of the New England Orogen exhibits a series of remarkable orogenic bends (oroclines), which include the prominent Z-shaped Texas and Coffs Harbour oroclines. The oroclines are defined by the curvature of Devonian–Carboniferous forearc basin and accretionary complex rock units. However, for much of the interpreted length of the Texas Orocline, the forearc basin is mostly concealed by younger strata, and crops out only in the Emu Creek Block in the eastern limb of the orocline. The geology of the Emu Creek Block has hitherto been relatively poorly constrained and is addressed here by presenting new data, including a revised geological map, stratigraphic sections and new detrital zircon U–Pb ages. Rocks of the Emu Creek Block include shallow-marine and deltaic sedimentary successions, corresponding to the Emu Creek and Paddys Flat formations, respectively. New detrital zircon U–Pb data indicate that these formations were deposited during the late Carboniferous and that strata were derived from a magmatic source of Devonian to Carboniferous age. The sedimentary provenance and detrital zircon age distribution suggest that the sequence was deposited in a forearc basin setting. We propose that the Emu Creek and Paddys Flat formations are arc-distal, along-strike correlatives of the northern Tamworth Belt, which is part of the forearc basin in the western limb of the Texas Orocline. These results confirm the suggestion that Devonian–Carboniferous forearc basin rocks surround the Texas Orocline and have been subjected to oroclinal bending.  相似文献   

5.
Within the Variscan Orogen, Early Devonian and Late Devonian high‐P belts separated by mid‐Devonian ophiolites can be interpreted as having formed in a single subduction zone. Early Devonian convergence nucleated a Laurussia‐dipping subduction zone from an inherited lithospheric neck (peri‐Gondwanan Cambrian back‐arc). Slab‐retreat induced upper plate extension, mantle incursion and lower plate thermal softening, favouring slab‐detachment within the lower plate and diapiric exhumation of deep‐seated rocks through the overlying mantle up to relaminate the upper plate. Upper plate extension produced mid‐Devonian suprasubduction ocean floor spreading (Devonian ophiolites), while further convergence resulted in plate coupling and intraoceanic ophiolite imbrication. Accretion of the remaining Cambrian ocean heralded Late Devonian subduction of inner sections of Gondwana across the same subduction zone and the underthrusting of mainland Gondwana (culmination of NW Iberian allochthonous pile). Oblique convergence favoured lateral plate sliding, and explained the different lateral positions along Gondwana of terranes separated by Palaeozoic ophiolites.  相似文献   

6.
The Late Silurian to Middle Devonian Calliope Volcanic Assemblage in the Rockhampton region is deformed into a set of northwest‐trending gently plunging folds with steep axial plane cleavage. Folds become tighter and cleavage intensifies towards the bounding Yarrol Fault to the east. These folds and associated cleavage also deformed Carboniferous and Permian rocks, and the age of this deformation is Middle to Late Permian (Hunter‐Bowen Orogeny). In the Stanage Bay area, both the Calliope Volcanic Assemblage and younger strata generally have one cleavage, although here it strikes north to northeast. This cleavage is also considered to be of Hunter‐Bowen age. Metamorphic grade in the Calliope Volcanic Assemblage ranges from prehnite‐pumpellyite to greenschist facies, with higher grades in the more strongly cleaved rocks. In the Rockhampton region the Calliope Volcanic Assemblage is part of a west‐vergent fold and thrust belt, the Yarrol Fault representing a major thrust within this system.

A Late Devonian unconformity followed minor folding of the Calliope Volcanic Assemblage, but no cleavage was formed. The unconformity does not represent a collision between an exotic island arc and continental Australia as previously suggested.  相似文献   

7.
The New England Orogen (NEO), the youngest of the orogens of the Tasmanides of eastern Australia, is defined by two main cycles of compression–extension. The compression component involves thrust tectonics and advance of the arc towards the continental plate, while extension is characterised by rifting, basin formation, thermal relaxation and retreat of the arc towards the oceanic plate. A compilation of 623 records of U–Pb zircon geochronology rock ages from Geoscience Australia, the geological surveys of Queensland and New South Wales and other published research throughout the orogen, has helped to clarify its complex tectonic history. This contribution focuses on the entire NEO and is aimed at those who are unfamiliar with the details of the orogen and who could benefit from a summary of current knowledge. It aims to fill a gap in recent literature between broad-scale overviews of the orogen incorporated as part of wider research on the Tasmanides and detailed studies usually specific to either the northern or southern parts of the orogen. Within the two main cycles of compression–extension, six accepted and distinct tectonic phases are defined and reviewed. Maps of geological processes active during each phase reveal the centres of activity during each tectonic phase, and the range in U–Pb zircon ages highlights the degree of diachronicity along the length of the NEO. In addition, remnants of the early Permian offshore arc formed during extensive slab rollback, are identified by the available geochronology. Estimates of the beginning of the Hunter-Bowen phase of compression, generally thought to commence around 265?Ma are complicated by the presence of extensional-type magmatism in eastern Queensland that occurred between 270 and 260?Ma.  相似文献   

8.
The middle to late Permian Hunter Bowen Event is credited with the development of orogenic curvature in the southern New England Orogen, yet contention surrounds the structural dynamics responsible for the development of this curvature. Debate is largely centred on the roles of orogen parallel strike-slip and orogen normal extension and contraction to explain the development of curvature. To evaluate the dynamic history of the Hunter Bowen Event, we present new kinematic reconstructions of the Tamworth Belt. The Tamworth Belt formed as a Carboniferous forearc basin and was subsequently inverted during the Hunter Bowen Event. Kinematic reconstructions of the Tamworth Belt are based on new maps and cross-sections built from a synthesis of best-available mapping, chronostratigraphic data and new interpretations of depth-converted seismic data. The following conclusions are made from our study: (i) the Hunter Bowen Event was dominantly driven by margin normal contraction (east–west shortening; present-day coordinates), and; (ii) variations in structural style along the strike of the Tamworth Belt can be explained by orthogonal vs. oblique inversion, which reflects the angular relationship between the principal shortening vector and continental-arc margin. Given these conclusions, we suggest that curvature around the controversial Manning Bend was influenced by the presence of primary curvature in the continental margin, and that the Hastings Block was translated along a sinistral strike-slip fault system that formed along this oblique (with respect to the regional east–west extension and convergence direction) part of the margin. Given the available temporal data, the translation of the Hastings Block took place in the Early Permian (Asselian) and therefore preceded the Hunter Bowen Event. Accordingly, we suggest that the Hunter Bowen Event was dominantly associated with enhancing curvature that was either primary in origin, or associated with fault block translation during the Early Permian. This model differs to previously proposed reconstructions where curvature largely formed by orogen parallel strike-slip transportation during the Hunter Bowen Event.  相似文献   

9.
Abstract

This paper summarises current knowledge on metamorphism within the entire New England Orogen (NEO) of eastern Australia. Rocks recording metamorphic assemblages characteristic of each of the three metamorphic facies series (high, medium and low P/T) have been identified within the orogen. These include high P/T blueschists and eclogites, mid P/T orogenic metamorphism and low P/T contact aureoles and sub-regional high-temperature–low-pressure (HTLP) metamorphism (regional aureoles). Metamorphism is described as it relates to six tectonic phases of development of the NEO that together comprise two major cycles of compression–extension. Medium–high-grade contact metamorphism spans all six tectonic phases while low-grade burial and/or orogenic metamorphism has been identified for four of the six phases. In contrast, exposure of high P/T eclogites and blueschists, and generation of sub-regional low P/T metamorphism is restricted to extensional phases of the orogen. Hallmarks of the orogen are two newly identified zones of HTLP metamorphism, the older of which extends for almost the entire length of the orogen.
  1. KEY POINTS
  2. The orogen is dominated by low-temperature rocks while high-temperature amphibolite to granulite facies rocks are restricted to small exposures in HTLP complexes and contact aureoles.

  3. Blueschist metamorphism falls into two categories; that associated with subduction during the Currabubula-Connors continental arc phase occurring at depths of ~13–30?km; and the other of Cambrian–Ordovician age, exposed within a serpentinite melange and associated with blocks of eclogite. The eclogite, initially from depths of ~75–90?km, appears to have been entrained in the deep crust for an extended period of geological time.

  4. A comprehensive review of contact metamorphism in the orogen is lacking and as studies on low-grade metamorphism are more extensive in the southern part of the orogen than the north, this highlights a second research gap.

  相似文献   

10.
The Manning Group is characterised by rapidly filled strike-slip basins that developed during the early Permian along the Peel--Manning Fault System in the southern New England Orogen. Typically, the Manning Group has been difficult to date owing to the lack of fossiliferous units or igneous rocks. Thus, the timing of transition from an accretionary convergent margin in the late Carboniferous to dominantly strike-slip tectonic regimes that involved development and emplacement of the Great Serpentinite Belt (Weraerai terrane) is not well constrained. One exception are rhyolites of the Ramleh Volcanics that were erupted into the Echo Hills Formation. These developed along the dextral Monkey Creek Fault splay east of the Peel--Manning Fault System. Zircons extracted from the Ramleh Volcanics yield a U–Pb (SHRIMP) age of 295.6?±?4.6?Ma that constrains the minimum age of deposition in this basin to earliest Permian. Whole-rock geochemistry indicates these are peraluminous felsic melts enriched in LREE and incompatible elements with strong depletions in U, Nb, Sr and Ti. These are similar in age and composition to the nearby S-type Bundarra and Hillgrove plutonic supersuites. We suggest that extensive movement along the east-dipping Peel--Manning Fault System was responsible, not only for strike-slip basin development at the surface (Manning Group), but was also the locus for crustal melting that was responsible for generating S-type felsic melts that utilised hanging-wall fault splays as conduits to the surface or to coalesce in the crust as batholiths exclusively to the east of the Peel--Manning Fault System.  相似文献   

11.
12.
The Glen Eden Mo-Sn-W deposit in north-eastern New South Wales, Australia, is an example of a leucogranite-related, low-grade, large-tonnage hydrothermal system. It occurs in the southern part of the New England Orogen and is hosted within Permian felsic volcanic rocks, intruded at depth by dykes of porphyritic microleucogranite (Glen Eden Granite). The deposit is hosted within a pipe-like quartz-rich greisen breccia body about 500 m in diameter, surrounded by a greisen zone several hundred metres across, zoning out into altered volcanic rocks. The dominant ore minerals, largely hosted as open space fillings and disseminations in quartz and quartz-rich greisen, are molybdenite, wolframite and cassiterite; they are accompanied by minor to trace amounts of muscovite, fluorite, topaz, siderite, pyrrhotite, arsenopyrite, chalcopyrite, sphalerite, bismuth, bismuthinite, joseite A, cosalite, galenobismutite, beryl, anatase and late-stage dickite and kaolinite. Two types of breccia are recognised: (1) greisenised volcanic rock fragments (quartz + muscovite), cemented by hydrothermal quartz ± K-feldspar ± ore minerals, and (2) fragments of hydrothermal quartz ± cassiterite ± wolframite enclosed in quartz ± clay. In both types of breccia and in stockwork veins, there is evidence of early precipitation of Mo-Sn-W phases, followed by Bi minerals and base metal sulfides (± fluorite, siderite).Breccia formation and associated hydrothermal alteration (greisen, potassic, argillic, propylitic) are interpreted to be related to devolatilisation of the highly fractionated Glen Eden Granite of early Triassic age (240±1 Ma based on 40Ar/39Ar geochronology of greisen muscovite) as well as to fluid mixing with meteoric waters. The breccia pipe could have formed in part by rock dissolution and collapse, as well as by explosive degassing of boiling fluids. Fluid inclusion evidence is consistent with boiling, with breccia pipe formation and mineralisation having mainly occurred at 250–350 °C from fluids with salinity of 0.4–9 wt% NaCl equivalent in the dilute types and 30–47 wt% NaCl equivalent in the hypersaline types. Stable isotopic evidence (O, D, C, S) indicates a strong magmatic contribution to the hydrothermal fluids and metals in the breccia. The 18O values of quartz decrease outward from the breccia pipe (10.6–12.3 in the pipe to 3.4–8.7 in the peripheral quartz) indicating that there has been mixing with isotopically light (high latitude) meteoric fluids, mainly after formation of the breccia pipe.  相似文献   

13.
Palaeomagnetic, rock magnetic and magnetic fabric results are presented for a Carboniferous (Visean to Westphalian) succession of felsic, mainly ignimbritic, volcanic and volcaniclastic rocks from the Rocky Creek Block of the northern Tamworth Belt, southern New England Orogen. Detailed thermal demagnetisation of 734 samples from 64 sites show three groups of magnetic components with low (<300°C), intermediate (300–600°C) and high (500–680°C) unblocking temperature ranges. Well‐defined primary magnetisations have been determined for 28 sites with evidence of four overprint phases. The overprints arise from a mid‐Tertiary weathering event (or possibly recent viscous origin), and from fluid movements associated with the Late Cretaceous opening of the Tasman Sea, thrusting during the Middle Triassic main phase of the Hunter‐Bowen Orogeny, and latest Carboniferous — Early Permian formation of the Bowen‐Gunnedah‐Sydney Basin system. Rock magnetic tests establish that the primary magnetisation carriers in the volcanic rocks are mainly magnetite (predominantly single domain, or pseudo‐single domain, and little or no multidomain) and hematite. Optimal magnetic cleaning is achieved at high to very high temperatures, with subtle, but systematic, directional and statistical differences between primary components derived from the mainly hematite fraction and pseudo‐components derived from the mainly magnetite fraction. The 28 primary magnetisation results are presented as six mean‐site results, summarised below and representing 25 sites, and three single‐site results. Fold tests could be applied to five mean‐site results. These are all positive, but one of these results may represent a secondary magnetisation. The primary magnetisation results define a Visean to Westphalian pole path. This long pole path indi cates extensive latitudinal and rotational movement for the Rocky Creek Block, and potentially for the New England Orogen, as follows: (i) Yuendoo Rhyolite Member (Caroda Formation, Visean) pole 235.8°E, 27.7°S, ED95 = 9.0°, n = 3; (ii) Peri Rhyolite Member/Boomi Rhyolite Member (Clifden Formation, Namurian, 318.0 ± 3.4 Ma) pole 177.4°E, 63.4°S, ED95 = 5.2°, n = 3; (iii) tuffaceous beds above Boomi Rhyolite Member (Clifden Formation?, Namurian) pole 162.2°E, 59.1°S, ED95 = 10.2°, n = 3; ((iv) upper Clifden Formation/lower Rocky Creek Conglomerate (Namurian/Westphalian) pole 95.3°E, 49.6°S, ED95 = 8.1°, n = 3 (possible overprint)); (v) Rocky Creek Conglomerate (Westphalian) pole 136.5°E, 57.6°S, ED95 = 5.3°, n = 5; (vi) Lark Hill Formation (Westphalian) pole 127.0°E, 50.4°S, ED95 = 4.8°, n = 8.  相似文献   

14.
切里湖蛇绿岩出露于班公湖-怒江缝合带中段,蕴含较为丰富的铬铁矿资源。蛇绿岩主要由蚀变地幔橄榄岩、辉长岩和辉绿岩组成,铬铁矿矿体呈透镜状分布在地幔橄榄岩内部。切里湖地幔橄榄岩橄榄石Fo(90.06~90.74)和铬尖晶石Cr#值(67.45~85.42)较高,全岩富集MgO、LREE和大离子亲石元素(LILEs,如Rb、Ba等),亏损Al2O3、CaO、高场强元素(HFSE,如Th、Ta、Ce、Nb)和PPGE(Rh、Pt、Pd),这些特征与缝合带其他地幔橄榄岩相似,指示它们具有深海地幔橄榄岩及弧前地幔橄榄岩特征,经历了早期高程度熔体抽取和晚期熔体交代过程。切里湖铬铁矿矿石具有致密块状和浸染状构造,包含磁铁矿、黄铜矿、方铅矿等多种包裹体。铬铁矿Cr#值为65.5~75.8,Mg#值为64.89~76.04,平衡熔体显示出玻安质熔体的亲缘性。与地幔橄榄岩相比,切里湖铬铁矿的IPGE与PPGE分馏更加明显,IPGE更加富集。地幔橄榄岩和铬铁矿Δlg fO2  相似文献   

15.
《China Geology》2019,2(4):478-492
The Narooma-Batemans Bay (NBB) area along the southeast coast of Australia is a part of the eastern zone of the Early Paleozoic Lachlan Orogen. In the NBB, a set of rock association consisting of turbidites, siliceous rock, basic lava, and argillaceous melange zone is mainly developed. According to systematic field geological survey, the deformation of 3 stages (D1, D2, and D3) was identified in the NBB. At stage D1, with the original bedding S0 in a nearly east-west trending as the deformation plane, tight folds, isoclinal folds, and other structures formed in the NBB accompanied by structural transposition. As a result, crenulation cleavage developed along the axial plane of the folds and schistosity S1 formed. At stage D2, with north-south-trending schistosity S1 as the deformation plane, a large number of asymmetrical folds and rotated porphyroclasts formed owing to thrusting and shear. At stage D3, left-lateral strike-slip occurred along the main north-south-trending schistosity. Based on the analysis of the characteristics of tectonic deformation in the NBB and summary of previous research results, it is determined that the early-stage (D1) deformation is related to Ordovician Macquarie arc-continent collision and the deformation at stages D2 and D3 is the result of the westward subduction of Paleo-Pacific Plate. That is, it is not the continuous westward subduction of the Paleo-Pacific Plate that constitutes the evolution model of the NBB as previously considered.  相似文献   

16.
霍宁  郭谦谦  陈艺超  宋东方 《岩石学报》2022,38(4):1253-1279
增生造山带中陆源碎屑岩物源区特征的研究可为解剖造山带结构甚至大陆地壳的形成和演化提供关键证据。北山造山带中部的古硐井群被认为是前寒武纪稳定沉积盖层,是北山造山带存在微陆块的重要依据。本文围绕古硐井群的物源区特征,进行了碎屑颗粒和重矿物统计、全岩主微量元素地球化学分析、碎屑锆石U-Pb年代学和Hf同位素测试。古硐井群碎屑岩的碎屑颗粒多呈棱角状,主要为石英、长石,同时含大量硅质岩碎屑和一定数量的火山岩碎屑;重矿物组成以褐铁矿、锆石、白钛石、尖晶石为主,角闪石、电气石、辉石次之,暗示物源区可能存在蛇绿岩、增生杂岩。全岩主量元素以高硅、高铝、富碱、低锰为特征,结合REE、Cr、Co、Sc和Th等惰性元素含量特征共同指示了长英质的物源区。最年轻的碎屑锆石年龄为443.9±13Ma,表明古硐井群最大沉积时限为晚奥陶世。碎屑锆石的年龄高度集中于470Ma附近,且该区间锆石εHf(t)值多为正值,指示物源区存在大量新生地壳物质。本文推测古硐井群可能形成于增生楔楔顶盆地;研究结果支持北山造山带是古生代持续增生造山的产物这一认识。  相似文献   

17.
Structural, magnetic and gravity trends of the southern New England Orogen (SNEO) indicate four oroclinal structures, none conclusively confirmed paleomagnetically. Curved structures of the Tamworth Belt (TB)—a continental forearc exposed across six tectono-stratigraphic blocks with interlinked Carboniferous stratigraphies and extensive ignimbritic rocks known to retain primary magnetisations despite prevalent overprinting—are prospective to oroclinal testing through comparison of Carboniferous pole paths for individual blocks. Pole paths (a) have been established for the Rocky Creek and Werrie blocks (northwestern/western TB), (b) are described herein for the Rouchel Block (southwestern TB), and (c) are forthcoming for the Gresford and Myall blocks (southern/southeastern TB). The Rouchel path derives from detailed paleomagnetic, rock magnetic and magnetic fabric studies. Thermal, alternating field and liquid nitrogen demagnetisations show a low-temperature overprint, attributed to late Oligocene weathering, and high-temperature (HT) primary and overprint components in both magnetite and hematite carriers, showing slight, systematic, directional differences with hematite providing the better cleaned site poles. Seven primary mean-site poles of Tournaisian and mainly Visean age and three overprint poles show six positive fold tests, five at 95% or higher confidence levels. Two dispersed groupings of intermediate (IT) and HT overprint site poles of Permian and Permo-Triassic age are attributed to early and late phases in oroclinal evolution of the SNEO. HT and IT/HT overprint site poles of mid-Carboniferous age are attributed to Variscan Australia–Asia convergence. Individual pole paths for the Rocky Creek, Werrie and Rouchel blocks show no noticeable rotation between them, indicating primary curvature for the southwestern TB. Their integrated SNEO pole path establishes a reference frame for determining rotations of the southern and southeastern TB.  相似文献   

18.

Carboniferous (Visean to Westphalian) pyroclastics and lava flows in the Rocky Creek region, used to redefine the base of the Kiaman reversal, are formally defined or redefined and the status of the main formations clarified. These units include the Caroda Formation, containing the Kooringal Dacite, Boomi Rhyolite and Barney Springs Andesite Members; the Clifden Formation with the Wanganui Andesite, Glen Idle Rhyolite, Appleogue Dacite, Bexley Rhyolite, Pine Cliffs Rhyolite and Downs Rhyodacite Members; Rocky Creek Conglomerate with the Hazelvale Rhyodacite, Mt Hook Rhyolite, Darthula Rhyodacite and Pound Rock Rhyodacite Members; and Lark Hill Formation with the Eulowrie Pyroclastic, Tycannah Rhyodacite and The Tops Rhyolite Members; a number of informal units are also described. The restriction of most volcanic units to one of the three thrust blocks (Boomi, Kathrose and Darthula blocks) of the Rocky Creek region, suggests their current relationships reflect either shortening due to overthrusting or an original distribution affected by depositional or erosional processes. A westerly increase in the proportion of ignimbrites indicates nearness to sources in that direction. Intermediate volcanism, largely confined to southern and central parts of the Boomi block in the east, began in the Visean and ended in the early Namurian. Acid volcanism also began in the Visean in the northern Boomi block but, with the exception of the Peri Rhyolite Member of the Clifden Formation, did not become widespread until later in the Namurian and Westphalian. In contrast, only acid volcanism took place during the early Namurian to Westphalian in the Kathrose and Darthula blocks. Correlations based on AS3 and SL13 SHRIMP dates illustrate a discordance of about 3% when compared with the most likely location for the base of the Kiaman reversal. The bases of both the Rocky Creek Conglomerate and Lark Hill Formation appear to be slightly diachronous.  相似文献   

19.
对于印度与欧亚板块的侧向碰撞带,即藏东三江地区的新生代构造分析揭示出三种不同性质的构造样式,它们形成于不同的地质时期,发育于不同的地壳层次:(1)区域规模至露头尺度上发育的具有薄皮属性的逆冲断层与推覆构造,它们广泛分布于三江地区,尤其是兰坪-思茅盆地内;(2)以红河-哀牢山断裂、澜沧江和怒江-高黎贡山断裂等为代表的区域高温型走滑韧性剪切带构造和局部发育的脆性走滑断裂构造,后者在中新生代盆地内部断裂更为发育;(3)遍布全区发育的变质核杂岩构造与地堑-半地堑盆地.区域岩浆活动性与区域构造事件的发生具有密切的时空联系.区域性递进收缩事件与走滑事件发生于碰撞过程的早期阶段,并随后伴随着早期具有岩石圈板块俯冲性质的碰撞弧高钾岩浆活动,而后期的递进伸展事件诱发了板内伸展环境中的晚期高钾岩浆活动.二者之间的碱性岩浆活动间歇期,对应着区域构造体制的转变与区域伸展作用的发生,变质核杂岩的发育与微弱的钙碱性岩浆活动是其最直接的表现.区域古地磁资料分析表明,印度-欧亚板块之间的板块相互作用、区域板块与地块的旋转以及由此所致的不同构造环境制约着各种地质事件的发生与发展.北向运动的印度板块的旋转致使三江地块在新生代演化中发生了两次规模与特点不一的地块旋转过程,即早期的大角度快速旋转和晚期的小角度慢速旋转事件.它们分别对应于早期的递进收缩变形、走滑事件和具有碰撞弧属性的碱性岩浆活动与中期的区域伸展、变质核杂岩的发育与微弱的钙碱性岩浆活动性,以及后期的递进伸展作用和晚期陆内碱性岩浆活动性.  相似文献   

20.
Abstract

The shape and structural development of the box-like Parrabel Dome (PD) within the Hastings Block is poorly understood because it has only been weakly cleaved, complexly folded and extensively faulted in comparison to the adjoining blocks. Better characterising this block will provide important controls on the tectonics of the southern New England Orogen. The structural development of the PD and southern Hastings Block (SHB) provides evidence of the degree of rotation, translation and deformation of the Hastings Block, a key terrane within the southern New England Orogen. A major decollement under the Hastings Block–Nambucca Block was suggested to facilitate south-directed deformation caused by the developing Coffs Harbour Orocline. The orientation of bedding and the stratigraphic facing of some fault blocks within the northern Hastings Block (NHB) are consistent with development of the PD, while other fault blocks indicate significant disruption of the NHB prior to, during and after dome development. A deep-seated fault is suggested by the gravity worm analysis consistent with the boundary zone between the PD, NHB-Yarrowitch Block and the east-dipping and younging sequences in the SHB. The eastern limb of the PD underwent clockwise rotation after formation. Fault blocks have been rotated and translated within a restraining bend as the NHB moved post-PD formation northwest along the interface between the NHB and SHB.
  1. KEY POINTS
  2. The Hastings Block was translated and rotated into its current position from the southeastern end of the Tamworth Belt.

  3. Gravity worm data indicate a boundary between northern and southern Hastings Block.

  4. The Hastings and Nambucca blocks have been detached from the basement Gondwana rocks.

  5. Fault block analysis within the Parrabel Dome, northern Hastings Block indicates relocation of some blocks by faulting.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号