首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The southern part of the New England Orogen exhibits a series of remarkable orogenic bends (oroclines), which include the prominent Z-shaped Texas and Coffs Harbour oroclines. The oroclines are defined by the curvature of Devonian–Carboniferous forearc basin and accretionary complex rock units. However, for much of the interpreted length of the Texas Orocline, the forearc basin is mostly concealed by younger strata, and crops out only in the Emu Creek Block in the eastern limb of the orocline. The geology of the Emu Creek Block has hitherto been relatively poorly constrained and is addressed here by presenting new data, including a revised geological map, stratigraphic sections and new detrital zircon U–Pb ages. Rocks of the Emu Creek Block include shallow-marine and deltaic sedimentary successions, corresponding to the Emu Creek and Paddys Flat formations, respectively. New detrital zircon U–Pb data indicate that these formations were deposited during the late Carboniferous and that strata were derived from a magmatic source of Devonian to Carboniferous age. The sedimentary provenance and detrital zircon age distribution suggest that the sequence was deposited in a forearc basin setting. We propose that the Emu Creek and Paddys Flat formations are arc-distal, along-strike correlatives of the northern Tamworth Belt, which is part of the forearc basin in the western limb of the Texas Orocline. These results confirm the suggestion that Devonian–Carboniferous forearc basin rocks surround the Texas Orocline and have been subjected to oroclinal bending.  相似文献   

2.
The New England Orogen in eastern Australia is characterised by orogenic-scale curvatures (oroclines). The largest and most prominent curvature in this system is the Texas Orocline, but its subsurface geometry is still poorly constrained. A large component of the orocline is covered by post-oroclinal sedimentary rocks, which obscure deeper sections of the orocline and make it difficult to understand how the structure is connected to other segments of the New England Orogen. Here, we present geophysical data that elucidate the structure of the Texas Orocline below the sedimentary cover. Using 2D seismic, aeromagnetic TMI (total magnetic intensity) and Bouguer gravity datasets, in combination with outcrop and well data, we identified the depth to the New England ‘basement’ and significant faults intersecting it. We also traced the strongly contorted subsurface continuation of the Peel-Yarrol Fault System, which is characterised by local gravity and magnetic anomalies associated with isolated serpentinite outcrops. Constraints on the timing of oroclinal bending were obtained from the interpretation of seismic transects, which showed that early Permian sedimentary rocks of the Bowen Basin were deposited in a subtrough that deviates from the general north–south trend of the Bowen Basin. The subtrough is oriented approximately parallel to the western limb of the Texas Orocline, thus suggesting that the orocline formed during and/or after early Permian rifting. Our analysis indicates that initial bending occurred contemporaneously with the development of the early Permian rift basins, most likely in the backarc region of a retreating subduction zone. Subsequently, phases of strike-slip and contractional deformation have further tightened the pre-existing curvatures.  相似文献   

3.
《Gondwana Research》2014,26(4):1599-1613
The map-view structure of the southern New England Orogen in the eastern Gondwanan margin is characterised by four tight orogenic-scale curvatures: Texas, Coffs-Harbour, Manning and Nambucca oroclines. Here we focus on the geometry of the Manning Orocline and examine whether the inner-arc area of the oroclinal structure is expressed within the accretionary wedge rocks of the Tablelands Complex. Our observations from the Tablelands Complex (Armidale–Walcha area) show that rocks were subjected to penetrative deformation (D1), which resulted in a regional slaty cleavage (S1) and related isoclinal folds. This was followed by subsequent deformation (D2) associated with minor gentle folds. In a larger scale, the steeply dipping S1 structural fabric shows a continuous map-view curvature, thus defining a macroscopic fold structure. We interpret this macroscopic fold as the expression of the Manning Orocline within the accretionary wedge complex. This interpretation is consistent with the contorted spatial distribution of other tectonic elements (serpentinite belt, forearc basin terranes and early Permian granitoids), which independently define the structure of the Manning Orocline. Our new structural data support the existence of the Manning Orocline and the quadruple oroclinal geometry of the whole southern New England Orogen. The origin of these oroclines is attributed to multiple stages of bending, possibly associated with an earlier phase of curvature during slab rollback (in the early Permian), followed by a subsequent (middle-late Permian) episode of contractional deformation that tightened the oroclinal structure.  相似文献   

4.
Detrital zircon U–Pb LAM-ICPMS age patterns for sandstones from the mid-Permian –Triassic part (Rakaia Terrane) of the accretionary wedge forming the Torlesse Composite Terrane in Otago, New Zealand, and from the early Permian Nambucca Block of the New England Orogen, eastern Australia, constrain the development of the early Gondwana margin. In Otago, the Triassic Torlesse samples have a major (64%), younger group of Permian–Early Triassic age components at ca 280, 255 and 240 Ma, and a minor (30%) older age group with a Precambrian–early Paleozoic range (ca 1000, 600 and 500 Ma). In Permian sandstones nearby, the younger, Late Permian age components are diminished (30%) with respect to the older Precambrian–early Paleozoic age group, which now also contains major (50%) and unusual Carboniferous age components at ca 350–330 Ma. Sandstones from the Nambucca Block, an early Permian extensional basin in the southern New England Orogen, follow the Torlesse pattern: the youngest. Early Permian age components are minor (<20%) and the overall age patterns are dominated (40%) by Carboniferous age components (ca 350–320 Ma). These latter zircons are inherited from either the adjacent Devonian–Carboniferous accretionary wedge (e.g. Texas-Woolomin and Coffs Harbour Blocks) or the forearc basin (Tamworth Belt) farther to the west, in which volcaniclastic-dominated sandstone units have very similar pre-Permian (principally Carboniferous) age components. This gradual variation in age patterns from Devonian–late Carboniferous time in Australia to Late Permian–mid-Cretaceous time in New Zealand suggests an evolutionary model for the Eastern Gondwanaland plate margin and the repositioning of its subduction zone. (1) A Devonian to Carboniferous accretionary wedge in the New England Orogen developing at a (present-day) Queensland position until late in the Carboniferous. (2) Early Permian outboard repositioning of the primary, magmatic arc allowing formation of extensional basins throughout the New England Orogen. (3) Early to mid-Permian translocation of the accretionary wedge and more inboard active-margin elements, southwards to their present position. This was accompanied by oroclinal bending which allowed the initiation of a new, late Permian to Early Triassic accretionary wedge (eventually the Torlesse Composite Terrane of New Zealand) in an offshore Queensland position. (4) Jurassic–Cretaceous development of this accretionary wedge offshore, in northern Zealandia, with southwards translation of the various constituent terranes of the Torlesse Composite Terrane to their present New Zealand position.  相似文献   

5.
The late Carboniferous to Triassic tectonic history of eastern Australia includes important periods of regional-scale crustal extension and contraction. Evidence for these periods of tectonism is recorded by the extensive Pennsylvanian (late Carboniferous) to Triassic basin system of eastern Australia. In this study, we investigate the use of U–Pb dating of detrital zircons in reconstructing the tectonic development of one of these basins, the eastern Galilee Basin of Queensland. U–Pb detrital zircon ages were obtained from samples of stratigraphically well-constrained Cisuralian and Lopingian (early and late Permian, respectively) sandstone in the Galilee Basin. Detrital zircons in these sandstones are dominated by a population with ages in the range of 300–250 Ma, and ages from the youngest detrital zircons closely approximate depositional ages. We attribute these two fundamental findings to (1) appreciable derivation of detrital zircons in the Galilee Basin from the New England Orogen of easternmost Australia and (2) syndepositional magmatism. Furthermore, Cisuralian sandstone of the Galilee Basin contains significantly more >300 Ma detrital zircons than Lopingian sandstone. The transition in detrital zircon population, which is bracketed between 296 and 252 Ma based on previous high-precision U–Pb zircon ages from Permian ash beds in the Galilee Basin, corresponds with the Hunter–Bowen Orogeny and reflects a change in the Galilee Basin from an earlier extensional setting to a later foreland basin environment. During the Lopingian foreland basin phase, the individual depocentres of the Galilee and Bowen basins were linked to form a single and enormous foreland basin that covered >300 000 km2 in central and eastern Queensland.  相似文献   

6.
The Texas and Coffs Harbour oroclines are defined by a Z-shaped curvature in the southern New England Orogen (eastern Australia), but the geometry and kinematics of faults around these oroclines, as well as their possible role during oroclinal bending, have hitherto not been understood. Using aeromagnetic and open file seismic data, as well as field observations, the pattern, geometry and kinematics of fault systems, have been investigated. Fault traces with a strike-slip component are oriented parallel to the curved magnetic and structural fabrics of the Texas and Coffs Harbour oroclines. Our observations show evidence for sinistral or sinistral-reverse, dextral (or dextral-reverse) and normal kinematics along NW-striking faults. The dominant kinematics along NNE- and NE-striking faults is dextral or dextral-reverse. The timing of faulting is not well constrained, but the ubiquitous recognition of orocline-parallel faults may suggest that a flexural slip mechanism operated during oroclinal bending in the early–middle Permian (ca 299–265 Ma). Our observations indicate that many of the orocline-parallel faults, with strike-slip separation, were reactivated during the Mesozoic and Cenozoic, as indicated by the recognition of displaced Triassic granitoids, Mesozoic sedimentary rocks and Cenozoic basalts.  相似文献   

7.
The southwestern Pacific region consists of segmented and translated continental fragments of the Gondwanan margin. Tectonic reconstructions of this region are challenged by the fact that many fragmented continental blocks are submerged and/or concealed under younger sedimentary cover. The Queensland Plateau (offshore northeastern Australia) is one such submerged continental block. We present detrital zircon geochronological and morphological data, complemented by petrographic observations, from samples obtained from the only two drill cores that penetrated the Paleozoic metasedimentary strata of the Queensland Plateau (Ocean Drilling Program leg 133, sites 824 and 825). Results provide maximum age constraints of 319.4 ± 3.5 and 298.9 ± 2.5 Ma for the time of deposition, which in conjunction with evidence for deformation, indicate that the metasedimentary successions are most likely upper Carboniferous to lower Permian. A comparison of our results with a larger dataset of detrital zircon ages from the Tasmanides suggests that the Paleozoic successions of the Queensland Plateau formed in a backarc basin that was part of the northern continuation of the New England Orogen and/or the East Australian Rift System. However, unlike most of the New England Orogen, a distinctive component of the detrital zircon age spectra of the Mossman Orogen is also recognised, suggesting the existence of a late Paleozoic drainage system that crossed the northern Tasmanides en route from the North Australian Craton. A distinctive shift from abraded zircon grains to grains with well-preserved morphology at ca 305 Ma reflects a direct drainage of first-cycle sediments, most likely from an outboard arc and/or backarc magmatism.  相似文献   

8.
The Ediacaran Jibalah Group comprises volcano‐sedimentary successions that filled small fault‐bound basins along the NW–SE‐trending Najd fault system in the eastern Arabian‐Nubian Shield. Like several other Jibalah basins, the Antaq basin contains exquisitely preserved sedimentary structures and felsic tuffs, and hence is an excellent candidate for calibrating late Ediacaran Earth history. Shallow‐marine strata from the upper Jibalah Group (Muraykhah Formation) contain a diversity of load structures and intimately related textured organic (microbial) surfaces, along with a fragment of a structure closely resembling an Ediacaran frond fossil and a possible specimen of Aspidella. Interspersed carbonate beds through the Muraykhah Formation record a positive δ13C shift from ?6 to 0‰. U‐Pb zircon geochronology indicates a maximum depositional age of ~570 Ma for the upper Jibalah Group, consistent with previous age estimates. Although this age overlaps with that of the upper Huqf Supergroup in nearby Oman, these sequences were deposited in contrasting tectonic settings on opposite sides of the final suture of the East African Orogen.  相似文献   

9.
The New England Orogen (NEO), the youngest of the orogens of the Tasmanides of eastern Australia, is defined by two main cycles of compression–extension. The compression component involves thrust tectonics and advance of the arc towards the continental plate, while extension is characterised by rifting, basin formation, thermal relaxation and retreat of the arc towards the oceanic plate. A compilation of 623 records of U–Pb zircon geochronology rock ages from Geoscience Australia, the geological surveys of Queensland and New South Wales and other published research throughout the orogen, has helped to clarify its complex tectonic history. This contribution focuses on the entire NEO and is aimed at those who are unfamiliar with the details of the orogen and who could benefit from a summary of current knowledge. It aims to fill a gap in recent literature between broad-scale overviews of the orogen incorporated as part of wider research on the Tasmanides and detailed studies usually specific to either the northern or southern parts of the orogen. Within the two main cycles of compression–extension, six accepted and distinct tectonic phases are defined and reviewed. Maps of geological processes active during each phase reveal the centres of activity during each tectonic phase, and the range in U–Pb zircon ages highlights the degree of diachronicity along the length of the NEO. In addition, remnants of the early Permian offshore arc formed during extensive slab rollback, are identified by the available geochronology. Estimates of the beginning of the Hunter-Bowen phase of compression, generally thought to commence around 265?Ma are complicated by the presence of extensional-type magmatism in eastern Queensland that occurred between 270 and 260?Ma.  相似文献   

10.
The Late Permian–early Middle Triassic strata of the northern West Qinling area, northeastern Tibetan Plateau, are composed of sediment gravity flow deposits. Detailed sedimentary facies analysis indicates these strata were deposited in three successive deep-marine environments. The Late Permian–early Early Triassic strata of the Maomaolong Formation and the lowest part of the Longwuhe Formation define a NW–SE trending proximal slope environment. Facies of the Early Triassic strata composing the middle and upper Longwuhe Formation are consistent with deposition in a base-of-slope apron environment, whereas facies of the Middle Triassic Anisian age Gulangdi Formation are more closely associated with a base-of-slope fan depositional environment. The lithofacies and the spatial–temporal changes in paleocurrent data from these strata suggest the opening of a continental margin back-arc basin system during Late Permian to early Middle Triassic time in the northern West Qinling. U–Pb zircon ages for geochemically varied igneous rocks with diabasic through granitic compositions intruded into these deep-marine strata range from 250 to 234 Ma. These observations are consistent with extensional back-arc basin development and rifting between the Permian–Triassic Eastern Kunlun arc and North China block during the continent–continent collision and underthrusting of the South China block northward beneath the Qinling terrane of the North China block. Deep-marine sedimentation ended in the northern West Qinling by the Middle Triassic Ladinian age, but started in the southern West Qinling and Songpan-Ganzi to the south. We attribute these observations to southward directed rollback of Paleo-Tethys oceanic lithosphere, continued attenuation of the West Qinling on the upper plate, local post-rift isostatic compensation in the northern West Qinling area, and continued opening of a back-arc basin in the southern West Qinling and Songpan-Ganzi. Rollback and back-arc basin development during Late Permian to early Middle Triassic time in the West Qinling area explains: the truncated map pattern of the Eastern Kunlun arc, the age difference of deep-marine sediment gravity flow deposits between the Late Permian–early Middle Triassic northern West Qinling and the late Middle Triassic–Late Triassic southern West Qinling and Songpan-Ganzi, and the discontinuous trace of ophiolitic rocks associated with the Anyemaqen-Kunlun suture.  相似文献   

11.
The eastern part of the Tasman Orogenic Zone (or Fold Belt System) comprises the Hodgkinson—Broken River Orogen (or Fold Belt) in the north and the New England Orogen (or Fold Belt) in the centre and south. The two orogens are separated by the northern part of the Thomson Orogen.The Hodgkinson—Broken River Orogen contains Ordovician to Early Carboniferous sequences of volcaniclastic flysch with subordinate shelf carbonate facies sediments. Two provinces are recognized, the Hodgkinson Province in the north and the Broken River Province in the south. Unlike the New England Orogen where no Precambrian is known, rocks of the Hodgkinson—Broken River Orogen were deposited immediately east of and in part on, Precambrian crust.The evolution of the New England Orogen spans the time range Silurian to Triassic. The orogen is orientated at an acute angle to the mainly older Thomson and Lachlan Orogens to the west, but the relationships between all three orogens are obscured by the Permian—Triassic Bowen and Sydney Basins and younger Mesozoic cover. Three provinces are recognized, the Yarrol Province in the north, the Gympie Province in the east and the New England Province in the south.Both the Yarrol and New England Provinces are divisible into two zones, western and eastern, that are now separated by major Alpine-type ultramafic belts. The western zones developed at least in part on early Palaeozoic continental crust. They comprise Late Silurian to Early Permian volcanic-arc deposits (both island-arc and terrestrial Andean types) and volcaniclastic sediments laid down on unstable continental shelves. The eastern zones probably developed on oceanic crust and comprise pelagic sediments, thick flysch sequences and ophiolite suite rocks of Silurian (or older?) to Early Permian age. The Gympie Province comprises Permian to Early Triassic volcanics and shallow marine and minor paralic sediments which are now separated from the Yarrol Province by a discontinuous serpentinite belt.In morphotectonic terms, a Pacific-type continental margin with a three-part arrangement of calcalkaline volcanic arc in the west, unstable volcaniclastic continental shelf in the centre and continental slope and oceanic basin in the east, appears to have existed in the New England Orogen and probably in the Hodgkinson—Broken River Orogen as well, through much of mid- to late Palaeozoic time. However, the easternmost part of the New England Orogen, the Gympie Province, does not fit this pattern since it lies east of deepwater flysch deposits of the Yarrol Province.  相似文献   

12.
U–Pb (SHRIMP) detrital zircon age patterns are reported for 12 samples of Permian to Cretaceous turbiditic quartzo‐feldspathic sandstone from the Torlesse and Waipapa suspect terranes of New Zealand. Their major Permian to Triassic, and minor Early Palaeozoic and Mesoproterozoic, age components indicate that most sediment was probably derived from the Carboniferous to Triassic New England Orogen in northeastern Australia. Rapid deposition of voluminous Torlesse/Waipapa turbidite fans during the Late Permian to Late Triassic appears to have been directly linked to uplift and exhumation of the magmatically active orogen during the 265–230 Ma Hunter‐Bowen event. This period of cordilleran‐type orogeny allowed transport of large volumes of quartzo‐feldspathic sediment across the convergent Gondwanaland margin. Post‐Triassic depocentres also received (recycled?) sediment from the relict orogen as well as from Jurassic and Cretaceous volcanic provinces now offshore from southern Queensland and northern New South Wales. The detailed provenance‐age fingerprints provided by the detrital zircon data are also consistent with progressive southward derivation of sediment: from northeastern Queensland during the Permian, southeastern Queensland during the Triassic, and northeastern New South Wales — Lord Howe Rise — Norfolk Ridge during the Jurassic to Cretaceous. Although the dextral sense of displacement is consistent with the tectonic regime during this period, detailed characterisation of source terranes at this scale is hindered by the scarcity of published zircon age data for igneous and sedimentary rocks in Queensland and northern New South Wales. Mesoproterozoic and Neoproterozoic age components cannot be adequately matched with likely source terranes in the Australian‐Antarctic Precambrian craton, and it is possible they originated in the Proterozoic cores of the Cathaysia and Yangtze Blocks of southeast China.  相似文献   

13.
Detrital zircon from the Carboniferous Girrakool Beds in the central Tablelands Complex of the southern New England Orogen, Australia, is dominated by ca 350–320 Ma grains with a peak at ca 330 Ma; there are very few Proterozoic or Archean grains. A maximum deposition age for the Girrakool Beds of ca 309 Ma is identified. These data overlap the age of the Carboniferous Keepit arc, a continental volcanic arc along the western margin of the Tamworth Belt. Zircon trace-element and isotopic compositions support petrographic evidence of a volcanic arc provenance for sedimentary and metasedimentary rocks of the central Tablelands Complex. Zircon Hf isotope data for ca 350–320 Ma detrital grains become less radiogenic over the 30 million-year record. This pattern is observed with maturation of continental volcanic arcs but is opposite to the longer-term pattern documented in extensional accretionary orogens, such as the New England Orogen. Volcanic activity in the Keepit arc is inferred to decrease rapidly at ca 320 Ma, based on a major change in the detrital zircon age distribution. Although subduction continues, this decrease is inferred to coincide with the onset of trench retreat, slab rollback and the eastward migration of the magmatic arc that led to the Late Carboniferous to early Permian period of extension, S-type granite production and intrusion into the forearc basin, high-temperature–low-pressure metamorphism, and development of rift basins such as the Sydney–Gunnedah–Bowen system.  相似文献   

14.
The role of tectonics in controlling temporal and spatial variations in sediment provenance during the evolution of extensional basins from initial rifting to continental breakup and passive margin development are not well established. We test the influence of tectonics in a rift basin that has experienced minimal uplift but significant extension throughout its history: the Perth Basin, Western Australia. We use published zircon U–Pb and Hf isotope data from basin inception through to continental drift and complement this with new data from samples deposited synchronously with the continental breakup of eastern Gondwana. Three primary source regions are inferred, namely the Archean Yilgarn Craton to the east, the Paleo- and Mesoproterozoic Albany–Fraser–Wilkes Orogen to the south and east, and the Mesoproterozoic and Ediacaran–Cambrian Pinjarra Orogen underlying the rift basin and comprising the dominant crustal components to the west and southwest. From mid-Paleozoic basin inception to Early Cretaceous breakup of eastern Gondwana, drainage in the Perth Basin was primarily north- to northwest-directed as evidenced by the dominant Mesoproterozoic detrital zircon cargo, paleodrainage patterns and paleocurrent directions. Thus, provenance was primarily parallel to the rift axis and perpendicular to the extension direction, particularly during periods of thermal subsidence. During episodes of mechanical extension, detrital zircon ages are polymodal and consistently dominated by Paleo- and Mesoproterozoic grains derived from the Albany–Fraser–Wilkes Orogen, but with significant Archean and Neoproterozoic inputs from the rift margins. It is inferred that during mechanical extension the rate of subsidence exceeded sediment supply, which generated basin-margin scarps and enhanced direct input from the rift shoulders. Detrital zircon spectra from temporally-equivalent samples at the rift margin and in the rift axis reveal that distinct sedimentary routing operated on the flanks. In summary, sediment provenance in the Perth Basin (and probably other rift basins) is tectonically controlled by: (1) extension direction, (2) episodes of mechanical extension (rift) or thermal subsidence (post-rift), and (3) proximity to rift axis or rift margin.  相似文献   

15.
Upper Carboniferous to Lower Permian sedimentary rocks extend along the periphery of the northern Sydney Basin, a sub‐basin of the Sydney‐Gunnedah‐Bowen Basin complex. The basin contains basal basalts and volcanic sediments deposited in a nascent rift zone. This rift zone was created through crustal thinning during trench rollback on the eastern edge of the New England Orogen. Thermal subsidence created accommodation for predominantly marine Dalwood Group sediments. Clastic sedimentation then occurred in the Maitland‐Cessnock‐Greta Coalfield and Cranky Corner Basin during the Early Permian. This occurred on a broad shelf undergoing renewed thermal subsidence on the margin of a rift flank of the Tamworth Belt of the southern New England Orogen. Braidplain fans prograded or aggraded in two depositional sequences. The first sequence commences near the top of the Farley Formation and includes part of the Greta Coal Measures, while the second sequence includes the majority of the Greta Coal Measures and basal Branxton Formation. Thin, areally restricted mires formed during interludes in a high sedimentation regime in the lowstand systems tracts. As base‐level rose, areally extensive mires developed on the transgressive surface of both sequences. A paludal to estuarine facies changed to a shallow‐marine facies as the braidplain was transgressed. The transgressive systems tracts continued to develop with rising relative sea‐level. Renewed uplift in the hinterland resulted in the erosion of part of the transgressive systems tract and all of the highstand systems tract of the lower sequence. In the upper sequence a reduction in relative sea‐level rise saw the development of a deltaic to nearshore shelf highstand systems tract. Extensional dynamics caused a fall in relative base‐level and the development of a sequence boundary in the Branxton Formation. Finally, renewed thermal subsidence created accommodation for the overlying, predominantly marine Maitland Group.  相似文献   

16.
Detrital zircon U/Pb ages provide new insights into the provenance of Upper Devonian–Permian clastic rocks of Bel’kovsky Island, within the New Siberian Islands archipelago. Based on these new data, we demonstrate that Upper Devonian–Carboniferous turbidites of Bel’kovsky Island were derived from Grenvillian, Sveconorwegian, and Timanian sources similar to those that fed Devonian–Carboniferous deposits of the Severnaya Zemlya archipelago and Wrangel Island and were probably located within Laurentia–Baltica. Detrital zircon ages from the lower Permian deposits of Bel’kovsky Island suggest a drastic change in provenance and show a strong affinity with the Uralian Orogen. Two possible models to interpret this shift in provenance are proposed. The first involves movement of these continental blocks from the continental margin of Laurentia–Baltica towards the Uralian Orogen during the late Carboniferous to Permian, while the second argues for long sediment transport across the Barents shelf.  相似文献   

17.
《Gondwana Research》2014,25(3-4):865-885
Exhumation of middle and lower crustal rocks during the 450–320 Ma intraplate Alice Springs Orogeny in central Australia provides an opportunity to examine the deep burial of sedimentary successions leading to regional high-grade metamorphism. SIMS zircon U–Pb geochronology shows that high-grade metasedimentary units recording lower crustal pressures share a depositional history with unmetamorphosed sedimentary successions in surrounding sedimentary basins. These surrounding basins constitute parts of a large and formerly contiguous intraplate basin that covered much of Neoproterozoic to early Palaeozoic Australia. Within the highly metamorphosed Harts Range Group, metamorphic zircon growth at 480–460 Ma records mid-to-lower crustal (~ 0.9–1.0 GPa) metamorphism. Similarities in detrital zircon age spectra between the Harts Range Group and Late Neoproterozoic–Cambrian sequences in the surrounding Amadeus and Georgina basins imply that the Harts Range Group is a highly metamorphosed equivalent of the same successions. Maximum depositional ages for parts of the Harts Range Group are as low as ~ 520–500 Ma indicating that burial to depths approaching 30 km occurred ~ 20–40 Ma after deposition. Palaeogeographic reconstructions based on well-preserved sedimentary records indicate that throughout the Cambro–Ordovician central Australia was covered by a shallow, gently subsiding epicratonic marine basin, and provide a context for the deep burial of the Harts Range Group. Sedimentation and burial coincided with voluminous mafic magmatism that is absent from the surrounding unmetamorphosed basinal successions, suggesting that the Harts Range Group accumulated in a localised sub-basin associated with sufficient lithospheric extension to generate mantle partial melting. The presently preserved axial extent of this sub-basin is > 200 km. Its width has been modified by subsequent shortening associated with the Alice Springs Orogeny, but must have been > 80 km. Seismic reflection data suggest that the Harts Range Group is preserved within an inverted crustal-scale half graben structure, lending further support to the notion that it accumulated in a discrete sub-basin. Based on palaeogeographic constraints we suggest that burial of the Harts Range Group to lower crustal depths occurred primarily via sediment loading in an exceptionally deep Late Cambrian to Early Ordovician intraplate rift basin. High-temperature Ordovician deformation within the Harts Range Group formed a regional low angle foliation associated with ongoing mafic magmatism that was coeval with deepening of the overlying marine basin, suggesting that metamorphism of the Harts Range Group was associated with ongoing extension. The resulting lower crustal metamorphic terrain is therefore interpreted to represent high-temperature deformation in the lower levels of a deep sedimentary basin during continued basin development. If this model is correct, it indicates that regional-scale moderate- to high-pressure metamorphism of supracrustal rocks need not necessarily reflect compressional thickening of the crust, an assumption commonly made in studies of many metamorphic terrains that lack a palaeogeographic context.  相似文献   

18.
准噶尔盆地二叠纪盆地属性的再认识及其构造意义   总被引:10,自引:0,他引:10  
准噶尔盆地及其邻区野外剖面、钻井剖面的系统对比和地震剖面的精细解释表明,二叠系沉积演化、断裂控制沉积、箕状断-超反射特征及大地构造背景均显示,二叠纪准噶尔盆地是形成于张性背景下的断陷-裂陷盆地。准噶尔盆地及邻区火山岩地化特征、年代学数据及区域构造研究成果也证明,二叠纪是张性的大地构造背景。早二叠世—中二叠世早期以发育冲积扇沉积为特征,各构造部位的沉积环境差异较大,强烈断陷并逐渐形成坳隆相间的沉积格局,为断陷盆地的裂陷期;中二叠统中晚期由早二叠世隆坳分割的局面逐渐转化为统一的大型内陆湖盆,吐哈盆地与准噶尔盆地水体相通,形成统一的沉积体系,为断陷盆地扩张期;晚二叠世时期以出现冲积-河流相红色粗碎屑沉积为特征,准噶尔盆地和吐哈盆地分割自成沉积体系,是断陷盆地的萎缩期。因此,中生代盆地演化是建立在二叠纪张性背景的基础之上,二叠纪断陷-裂陷盆地的提出对重新认识中生代盆地演化历程将具有重要启示意义,也将对今后的油气勘探具有重要指导意义,值得进一步研究。  相似文献   

19.
晚石炭世末期-三叠纪东澳大利亚的鲍恩-冈尼达-悉尼(Bowen- Gunnedah-Sydney)盆地系是位于拉克伦(Lachlan)褶皱带和新英格兰(New England)褶皱带之间的一个长条形的构造盆地。从北部的冈尼达(Gunnedah)到南部的巴特曼斯(Batemans)湾,悉尼盆地是鲍恩-冈尼达-悉尼盆地系南端的一个次级盆地。悉尼盆地的二叠系包括河流、三角洲、滨浅海沉积岩和火山岩地层。南悉尼盆地的西南部二叠系不整合覆盖于变形变质的拉克伦(Lachlan)褶皱带之上。二叠系由下部的塔拉特郎(Tallaterang)群、中部的肖尔黑文群(Shoalhaven Group)和上部的伊勒瓦拉煤系(Illawarra Coal Measures)组成。从晚石炭世末到中三叠世悉尼盆地经历了弧后扩张到典型的前陆盆地的不同阶段:弧后扩张阶段、被动热沉降阶段和挤压挠曲负载阶段。  相似文献   

20.
Major porphyry Cu–Au and Cu–Mo deposits are distributed across almost 5000 km across central Eurasia, from the Urals Mountains in Russia in the west, to Inner Mongolia in north-eastern China. These deposits were formed during multiple magmatic episodes from the Ordovician to the Jurassic. They are associated with magmatic arcs within the extensive subduction–accretion complex of the Altaid and Transbaikal-Mongolian orogenic collages that developed from the late Neoproterozoic, through the Palaeozoic, to the Jurassic intracratonic extension. The arcs formed predominantly on the Palaeo-Tethys Ocean margin of the proto-Asian continent, but also within two back-arc basins. The development of the collages commenced when slivers of an older Proterozoic subduction complex were rifted from an existing cratonic mass and accreted to the Palaeo-Tethys Ocean margin of the combined Eastern Europe and Siberian cratons. Subduction of the Palaeo-Tethys Ocean beneath the Karakum and Altai-Tarim microcontinents and the associated back-arc basin produced the overlapping late Neoproterozoic to early Palaeozoic Tuva-Mongol and Kipchak magmatic arcs. Contemporaneous intra-oceanic subduction within the back-arc basin from the Late Ordovician produced the parallel Urals-Zharma magmatic arc, and separated the main Khanty-Mansi back-arc basin from the inboard Sakmara marginal sea. By the Late Devonian, the Tuva-Mongol and Kipchak arcs had amalgamated to form the Kazakh-Mongol arc. By the mid Palaeozoic, the two principal cratonic elements, the Siberian and Eastern European cratons, had begun to rotate relative to each other, “drawing-in” the two sets of parallel arcs to form the Kazakh Orocline between the two cratons. During the Late Devonian to Early Carboniferous, the Palaeo-Pacific Ocean began subducting below the Siberian craton to form the Sayan-Transbaikal arc, which expanded by the Permian to become the Selanga-Gobi-Khanka arc. By the Middle to Late Permian, as the Kazakh Orocline continued to develop, both the Sakmara and Khanty-Mansi back-arc basins were closed and the collage of cratons and arcs were sutured by accretionary complexes. During the Permian and Triassic, the North China craton approached and docked with the continent, closing the Mongol-Okhotsk Sea, an embayment on the Palaeo-Pacific margin, to form the Mongolian Orocline. Subduction and arc-building activity on the Palaeo-Pacific Ocean margin continued to the mid Mesozoic as the Indosinian and Yanshanian orogens.Significant porphyry Cu–Au/Mo and Au–Cu deposits were formed during the Ordovician in the Kipchak arc (e.g., Bozshakol Cu–Au in Kazakhstan and Taldy Bulak porphyry Cu–Au in Kyrgyzstan); Silurian to Devonian in the Kazakh-Mongol arc (e.g., Nurkazgan Cu–Au in Kazakhstan and Taldy Bulak-Levoberezhny Au in Kyrgyzstan); Devonian in the Urals-Zharma arc (e.g., Yubileinoe Au–Cu in Russia); Devonian in the Kazakh-Mongol arc (e.g., Oyu Tolgoi Cu–Au, and Tsagaan Suvarga Cu–Au, in Mongolia); Carboniferous in the Kazakh-Mongol arc (e.g., Kharmagtai Au–Cu in Mongolia, Tuwu-Yandong Cu–Au in Xinjiang, China, Koksai Cu–Au, Kounrad Cu–Au and the Aktogai Group of Cu–Au deposits, in Kazakhstan); Carboniferous in the Valerianov-Beltau-Kurama arc (e.g., Kal’makyr–Dalnee Cu–Au in Uzbekistan; Benqala Cu–Au in Kazakhstan); Late Carboniferous to Permian in the Selanga-Gobi-Khanka arc (e.g., Duobaoshan Cu–Au in Inner Mongolia, China); Triassic in the Selanga-Gobi-Khanka arc; and Jurassic in the Selanga-Gobi-Khanka arc (e.g., Wunugetushan Cu–Mo and Jiguanshan Mo in Inner Mongolia, China). In addition to the tectonic, geologic and metallogenic setting and distribution of porphyry Cu–Au/Mo mineralisation within central Eurasia, the setting, geology, alteration and mineralisation at each of the deposits listed above is described and summarised in Table 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号