首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Paleogene–Neogene stratigraphic scale of the Zerkal’naya River basin is modified with account for new isotopic and paleobotanical data. It is established that the Tadushi Formation and underlying volcanics, which were previously considered as representing transitional Cretaceous–Paleocene strata, are separated in the section of the Ustinovka quarry by a significant stratigraphic hiatus. According to the new data, the volcanics and the Tadushi Formation are established as Campanian and Late Paleocene in age, respectively. The Bogopol Formation in the type section is dated back to the Middle–Late Paleocene. The Svetlyi Formation is now considered to be Early Eocene in age, rather than Late Eocene–Oligocene as previously thought. A new variant of the stratigraphic scale is proposed for the Paleogene–Neogene deposits of the Zerkal’naya depression.  相似文献   

2.
《Geodinamica Acta》2013,26(1-3):83-100
The Magura Basin domain developed in its initial stage as a Jurassic-Early Cretaceous rifted passive margin that faced the eastern parts of the oceanic Alpine Tethys. In the pre- and syn-orogenic evolution of the Magura Basin the following prominent periods can be distinguished: Middle Jurassic-Early Cretaceous syn-rift opening of basins (1) followed by Early Cretaceous post-rift thermal subsidence (2), latest Cretaceous–Paleocene syn-collisional inversion (3), Late Paleocene to Middle Eocene flexural subsidence (4) and Late Eocene - Early Miocene synorogenic closing of the basin (5). The driving forces of tectonic subsidence of the basin were syn-rift and thermal post-rift processes, as well as tectonic loads related to the emplacement of accretionary wedge. This process was initiated at the end of the Paleocene at the Pieniny Klippen Belt (PKB)/Magura Basin boundary and was completed during Late Oligocene in the northern part of the Magura Basin. During Early Miocene the Magura Basin was finally folded, thrusted and uplifted as the Magura Nappe.  相似文献   

3.
受近南北向扩张机制控制,南海陆缘盆地或凹陷多呈NE向带状展布,总体上具有“南三北三”平行排列、外窄内宽的特点。新生代发生的4次重要区域构造运动具有穿时性,共发育3期盆地破裂不整合面,分别是早渐新世与晚渐新世之间、古近纪与新近纪之间、中中新世与晚中新世之间;由东往西,盆地破裂不整合面的时代逐渐变新。受构造运动与海平面升降影响,南海海域发育湖相、海陆过渡相和陆源海相3类烃源岩。由南北两侧向中央海盆,烃源岩类型由湖相逐渐过渡到海陆过渡相与陆源海相;从东向西,盆地主力烃源岩层位逐渐变新,由始新统-渐新统逐渐过渡到渐新统-中新统。南海海域烃源岩的分布规律与盆地破裂不整面存在密切关系:破裂不整合面形成早(早渐新世与晚渐新世之间)的盆地,主力烃源岩形成早(始新统湖相烃源岩);反之,破裂不整合面形成晚(中中新世与晚中新世之间)的盆地,则烃源岩形成晚(渐新统-中新统海陆过渡相到陆源海相烃源岩)。  相似文献   

4.
南海北部珠江口—琼东南盆地白垩系—下渐新统记录了华南大陆边缘从主动陆缘向被动陆缘的转换过程。基于盆地构造-地层、单井相、地震相等特征的综合分析,结合南海中南部的沉积环境和区域构造演化,探讨南海北部白垩纪—渐新世早期的沉积环境演变及构造控制背景。研究发现: (1)南海北部白垩系广泛分布,古新统分布极为有限; 始新世早-中期,琼东南盆地只在部分凹陷深部发育了小规模的滨浅湖相和扇三角洲相沉积,珠江口盆地白云凹陷以大规模发育的湖泊相为特征; 始新世晚期—渐新世早期,琼东南盆地和珠江口盆地白云凹陷都受到海侵作用的影响,以海岸平原相和滨浅海相为主。 (2)构造演变包括5期:包括白垩纪安第斯型大陆边缘的“弧—盆”体系发育期,古新世区域隆升剥蚀山间盆地发育期,始新世早-中期裂陷发育,始新世晚期—渐新世早期陆缘破裂期,渐新世晚期东部海盆稳定扩张期。最后,探讨了南海盆地中生代末/新生代初的动力学转换过程及特征。  相似文献   

5.
基于前人文献,对塔里木盆地新生代海相沉积问题进行梳理,进而探讨该盆地新生代海侵的次数和范围以及海退的时限、原因。研究表明,新生代,塔里木盆地至少经历古近纪的阿尔塔什晚期至齐姆根早期(古新世早期至古新世晚期)、卡拉塔尔期—乌拉根期(始新世中期)、巴什布拉克中期(始新世晚期至早渐新世)等三期海侵;塔里木盆地中新世仍有海相地层这一认识获得广泛认可仍需更多的地质证据来支持。塔里木盆地海侵范围在卡拉塔尔—乌拉根组沉积时期达到最大,向东可达玛扎塔格地区,在盆地北缘和南缘分别可以到达库尔勒以东地区和洛浦县阿其克以东地区。由于受到全球海平面变化和构造运动的共同影响,副特提斯海新生代从塔里木盆地退却的沉积记录包括齐姆根组顶部、乌拉根组顶部、巴什布拉克组第四段和第五段,时间上分别对应于古新世晚期、始新世中晚期和早渐新世。  相似文献   

6.
A number of compressional anticlinal structures are identified in the western and northern part of the Faroe–Rockall Plateau. These structures occur on that part of the Faroe–Rockall Plateau which was above sea level during the latest phase of Paleocene plateau basalt extrusion. Three post-basalt compressional phases have affected the plateau. Most of the compressional structures in the northern part of the plateau are related to NE–SW- to ENE–WSW-oriented stress which we date to Late Paleocene–Early Eocene. The Oligocene phase is interpreted as resulting from N–S-directed compressional stress which also mainly affected the compressional structures on the northern part of the plateau. Compressional stress from the northwest seemed to affect the whole of the Faroe–Rockall Plateau and we suggest it to be of Miocene age. It is proposed that during the Late Paleocene–Early Eocene phase of compression local structure, and anomalously oriented gravitational ridge-push from the now extinct Aegir Axis contributed to a local NE–SW compressional stress system. The two later deformation phases were apparently connected to the regional northwest European stress system with small local modifications.  相似文献   

7.
A succession of quartz-rich fluvial sandstones and siltstones derived from a mainly rhyolitic source and minor metamorphic rocks, located to the west, represent the first Upper Paleocene–Early Eocene deposits described in Chilean eastern central Patagonian Cordillera (46°45′S). This unit, exposed 25 km south of Chile Chico, south of lago General Carrera, is here defined as the Ligorio Márquez Formation. It overlies with an angular unconformity Lower Cretaceous shallow marine sedimentary rocks (Cerro Colorado Formation) and subaerial tuffs that have yielded K–Ar dates of 128, 125 and 123 Ma (Flamencos Tuffs, of the Divisadero Group). The Ligorio Márquez Formation includes flora indicative of a tropical/subtropical climate, and its deposition took place during the initial part of the Late Paleocene–Early Eocene Cenozoic optimum. The underlying Lower Cretaceous units exhibit folding and faulting, implying a pre-Paleocene–Lower Eocene contractional tectonism. Overlying Oligocene–Miocene marine and continental facies in the same area exhibit thrusts and normal faults indicative of post-Lower Miocene contractional tectonism.  相似文献   

8.
南海北部陆缘盆地形成的构造动力学背景   总被引:2,自引:0,他引:2  
摘要:南海北部陆缘盆地处于印度板块与太平洋及菲律宾海板块之间,但三大板块对南海北部陆缘盆地的影响是不同的。通过对三大板块及古南海演化的研究,可知南海北部陆缘地区应力环境于晚白垩世发生改变。早白垩世处于挤压环境,晚白垩世以来转变为伸展环境并且不同时期的成因不同。晚白垩世-始新世,华南陆缘早期造山带的应力松弛、古南海向南俯冲及太平洋俯冲板块的滚动后退导致其处于张应力环境。始新世时南海北部陆缘裂陷盆地开始产生,伸展环境没有变,但因其是由太平洋板块向西俯冲速率的持续降低及古南海向南俯冲引起的,南海北部陆缘盆地继续裂陷。渐新世-早中新世,地幔物质向南运动及古南海向南俯冲导致南海北部陆缘地区处于持续的张应力环境;渐新世早期南海海底扩张;中中新世开始,三大板块开始共同影响着南海北部陆缘盆地的发展演化。  相似文献   

9.
位于青藏高原东北缘的西宁、贵德盆地的新生代沉积序列较完整的记录了盆地周围物源区构造变形过程。重矿物是碎屑物质的重要组成部分,是最直观、有效揭示源区母岩、构造-沉积过程的重要手段。通过重矿物的系统分析,结合沉积-构造变形,揭示出始新世-上新世末西宁-贵得盆地及其源区经历了几个构造活动阶段:古新世-始新世早期的隆升阶段、始新世中期-渐新世晚期的构造稳定阶段、渐新世末-中新世初的构造隆升阶段、中中新世构造稳定阶段和晚中新世以来的强烈隆升阶段。并结合特征矿物(绿泥石)及古水流分析,推断古近纪西宁-贵德盆地是东昆仑山前一个统一盆地。中新世早期青藏高原的扩张导致了拉脊山开始隆起,使原型盆地解体;约8.5 Ma以来拉脊山强烈隆升,两侧盆地逐渐转变为山间盆地。这为正确理解青藏高原东北缘盆山格局的形成和演化提供了重要依据。  相似文献   

10.
在系统分析青藏高原新生代98个残留盆地类型、形成构造背景、岩石地层序列的基础上, 对青藏高原古新世—始新世、渐新世、中新世及上新世构造岩相古地理演化特征进行了讨论: (1)古新世—始新世: 松潘—甘孜和冈底斯带为大面积构造隆起蚀源区.塔里木东部、柴达木、羌塘、可可西里地区主体表现为大面积的构造压陷湖盆-冲泛平原沉积.高原西部和南部为新特提斯海.(2)渐新世: 冈底斯—喜马拉雅和喀喇昆仑大范围沉积缺失, 指示上述地区大面积隆升.沿雅江自东向西古河形成(大竹卡砾岩).西昆仑和松潘—甘孜地区仍为隆起蚀源区.塔里木、柴达木、羌塘、可可西里地区主体表现为大面积构造压陷湖盆沉积.塔里木西南部为压陷盆地滨浅海沉积.渐新世末塔里木海相沉积结束.(3)中新世: 约23 Ma时高原及周边不整合面广布, 标志高原整体隆升.塔里木、柴达木及西宁—兰州、羌塘、可可西里等地区主体表现为大面积的构造压陷湖盆沉积; 约18~13 Ma高原及周边出现中新世最大湖泊扩张期.约13~10 Ma期间, 藏南南北向断陷盆地形成, 是高原隆升到足够高度开始垮塌的标志.(4)上新世: 除可可西里—羌塘、塔里木、柴达木等少数大型湖盆外, 大部分地区为隆起剥蚀区.由于上新世的持续隆升和强烈的断裂活动, 使大型盆地的基底抬升被分割为小盆地, 湖相沉积显著萎缩, 进入巨砾岩堆积期, 是高原整体隆升的响应.高原从古近纪的东高西低格局, 经历了新近纪全区的不均衡隆升和坳陷, 最终铸就了西高东低的地貌格局, 青藏作为一个统一的高原发生了重大的地貌反转事件.   相似文献   

11.
During the Late Jurassic–Early Oligocene interval, widespread hydrothermal copper mineralization events occurred in association with the geological evolution of the southern segment of the central Andes, giving rise to four NS-trending metallogenic belts of eastward-decreasing age: Late Jurassic, Early Cretaceous, Late Paleocene–Early Eocene, and Late Eocene–Early Oligocene. The Antofagasta–Calama Lineament (ACL) consists of an important dextral strike-slip NE-trending fault system. Deformation along the ACL system is evidenced by a right-lateral displacement of the Late Paleocene–Early Eocene metallogenic belts. Furthermore, clockwise rotation of the Early Cretaceous Mantos Blancos copper deposit and the Late Paleocene Lomas Bayas porphyry copper occurred. In the Late Eocene–Early Oligocene metallogenic belt, a sigmoidal deflection and a clockwise rotation is observed in the ACL. The ACL is thought to have controlled the emplacement of Early Oligocene porphyry copper deposits (34–37 Ma; Toki, Genoveva, Quetena, and Opache), whereas it deflected the Late Eocene porphyry copper belt (41–44 Ma; Esperanza, Telégrafo, Centinela, and Polo Sur ore deposits). These observations suggest that right-lateral displacement of the ACL was active during the Early Oligocene. We propose that the described structural features need to be considered in future exploration programs within this extensively gravel-covered region of northern Chile.  相似文献   

12.
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene–Eocene, Oligocene, Miocene, and Pliocene of the Qinghai–Tibet Plateau by compiling data regarding the type, tectonic setting, and lithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan–Garzê and Gangdisê belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai–Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdisê–Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan–Garzê, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining–Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18–13 Ma, and north–south fault basins formed in southern Tibet ca. 13–10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil–Qiangtang, Tarim, and Qaidam.  相似文献   

13.
The common elements and differences of the neighboring Austral (Magallanes), Malvinas and South Malvinas (South Falkland) sedimentary basins are described and analyzed. The tectonic history of these basins involves Triassic to Jurassic crustal stretching, an ensuing Early Cretaceous thermal subsidence in the retroarc, followed by a Late Cretaceous–Paleogene compressional phase, and a Neogene to present-day deactivation of the fold–thrust belt dominated by wrench deformation. A concomitant Late Cretaceous onset of the foreland phase in the three basins and an integrated history during the Late Cretaceous–Cenozoic are proposed. The main lower Paleocene–lower Eocene initial foredeep depocenters were bounding the basement domain and are now deformed into the thin-skinned fold–thrust belts. A few extensional depocenters developed in the Austral and Malvinas basins during late Paleocene–early Eocene times due to a temporary extensional regime resulting from an acceleration in the separation rate between South America and Antarctica preceding the initial opening of the Drake Passage. These extensional depocenters were superimposed to the previous distal foredeep depocenter, postdating the initiation of the foredeep phase and the onset of compressional deformation. Another pervasive set of normal faults of Paleocene to Recent age that can be recognized throughout the basins are interpreted to be a consequence of flexural bending of the lithosphere, in agreement with a previous study from South Malvinas basin. Contractional deformation was replaced by transpressive kinematics during the Oligocene due to a major tectonic plate reorganization. Presently, while the South Malvinas basin is dominated by the transpressive uplift of its active margin with minor sediment supply, the westward basins undergo localized development of pull-apart depocenters and transpressional uplift of previous structures. The effective elastic thickness of the lithosphere for different sections of each basin is calculated using a dynamic finite element numerical model that simulates the lithospheric response to advancing tectonic load with active sedimentation.  相似文献   

14.
Paleomagnetic results from Upper Jurassic to Paleocene rocks in Peninsular Malaysia show counter clockwise (CCW) rotations, while clockwise rotations (CW) are predominantly found in older rocks. Continental redbeds of the Upper Jurassic to Lower Cretaceous Tembeling Group have a post folding remagnetization, giving a VGP at N54°E29°, corresponding to approximately 40° of CCW rotation relative to Eurasia and 60° CCW relative to the Indochina block (Khorat Plateau). Samples from Cretaceous to Paleocene mafic volcanics of the Kuantan dike swarm and the Segamat basalts give VGPs at N59°E47° and N34°E36°, respectively. These Malayasian data are indistinguishable from the Late Eocene and Oligocene VGPs reported for Borneo and the Celebes Sea and are similar to the Eocene VGPs reported for southwest Sulawesi and southwest Palawan. The occurrence of CCW deflected data over this large region suggests that much of Malaysia, Borneo, Sulawesi, and the Celebes Sea rotated approximately 30° to 40° CCW relative to the Geocentric Axial Dipole (GAD) between the Late Eocene and the Late Miocene, although not necessarily synchronously, nor as a single rigid plate. These regional CCW rotations are not consistent with simple extrusion based tectonic models. CW declinations have been measured in Late Triassic granites, Permian to Triassic volcanics, and remagnetized Paleozoic carbonates. The age of this magnetization is poorly understood and may be as old as Late Triassic, or as young as Middle or Late Cretaceous. The plate, or block rotations, giving rise to these directions are correspondingly weakly constrained.  相似文献   

15.
中新生代辽河盆地区域应力场变化及其成因   总被引:12,自引:2,他引:12       下载免费PDF全文
中新生代辽河盆地的形成和发展受控于多期区域应力场变化。对构造现象、火山活动、层序充填型式等多种实际资料的分析表明:辽河盆地经历了侏罗纪末-白垩纪早期、古新世中后期、始新世中后期、中新世等右旋张扭应力场作用阶段,以及白垩纪晚期-古新世初期、始新世早中期、渐新世、上新世以来等左旋压扭应力场作用阶段。区域应力场变化可以用地球自转速度变化引起的岩石圈板块活动及触发的深部过程来解释,亦与先期构造形迹和盆地边界条件有关。不同区域应力场的转化不仅导致了盆地演化的旋回性,也为辽河盆地及其邻区中新生代多套含油气层系的形成奠定了物质基础。  相似文献   

16.
西藏南部过铝花岗岩的分布及其意义   总被引:13,自引:4,他引:13       下载免费PDF全文
本文从西藏南部过铝花岗岩的岩带划分、空间分布和岩浆活动的峰期、规模等方面,总结了西藏南部过铝花岗岩时空分布的基本特点和规律:过铝花岗岩岩浆活动始于早侏罗世,在中新世达到峰期,且主要集中在20~10Ma;岩石类型主要有电气石花岗岩、白云母花岗岩和二云母花岗岩;冈底斯带过铝花岗岩岩浆活动具有由东到西、由南向北的迁移活动规律;西藏南部过铝花岗岩的形成时代可划分为5期。  相似文献   

17.
The Salar de Atacama basin, the largest “pre-Andean” basin in Northern Chile, was formed in the early Late Cretaceous as a consequence of the tectonic closure and inversion of the Jurassic–Early Cretaceous Tarapacá back arc basin. Inversion led to uplift of the Cordillera de Domeyko (CD), a thick-skinned basement range bounded by a system of reverse faults and blind thrusts with alternating vergence along strike. The almost 6000-m-thick, upper Cretaceous to lower Paleocene sequences (Purilactis Group) infilling the Salar de Atacama basin reflects rapid local subsidence to the east of the CD. Its oldest outcropping unit (Tonel Formation) comprises more than 1000 m of continental red sandstones and evaporites, which began to accumulate as syntectonic growth strata during the initial stages of CD uplift. Tonel strata are capped by almost 3000 m of sandstones and conglomerates of western provenance, representing the sedimentary response to renewed pulses of tectonic shortening, which were deposited in alluvial fan, fluvial and eolian settings together with minor lacustrine mudstone (Purilactis Formation). These are covered by 500 m of coarse, proximal alluvial fan conglomerates (Barros Arana Formation). The top of the Purilactis Group consists of Maastrichtian-Danian alkaline lava and minor welded tuffs and red beds (Cerro Totola Formation: 70–64 Ma K/Ar) deposited during an interval of tectonic quiescence when the El Molino–Yacoraite Late Cretaceous sea covered large tracts of the nearby Altiplano-Puna domain. Limestones interbedded with the Totola volcanics indicate that this marine incursion advanced westwards to reach the eastern CD slope. CD shortening in the Late Cretaceous was accompanied by volcanism and continental sedimentation in fault bounded basins associated to strike slip along the north Chilean magmatic arc to the west of the CD domain, indicating that oblique plate convergence prevailed during the Late Cretaceous. Oblique convergence seems to have been resolved into a highly partitioned strain system where margin-parallel displacements along the thermally weakened arc coexisted with margin-orthogonal shortening associated with syntectonic sedimentation in the Salar de Atacama basin. A regionally important Early Paleocene compressional event is echoed, in the Salar de Atacama basin by a, distinctive, angular unconformity which separates Paleocene continental sediments from Purilactis Group strata. The basin also records the Eocene–Early Oligocene Incaic transpressional episode, which produced, renewed uplift in the Cordillera de Domeyko and triggered the accumulation of a thick blanket of syntectonic gravels (Loma Amarilla Formation).  相似文献   

18.
滇西新生代兰坪盆地和剑川盆地分别位于哀牢山–红河断裂带两侧,青藏高原东构造结内,其沉积过程和构造变形对青藏高原东南缘的构造演化有重要的启示意义。通过对这两个盆地古近纪沉积和构造过程的研究,我们发现兰坪盆地和剑川盆地及邻区的构造变形分为三期:始新世早期的强烈挤压变形、始新世中晚期的伸展变形、渐新世的走滑变形。始新世早期的挤压变形主要表现为兰坪地区的褶皱–冲断系统、哀牢山-红河断裂的逆冲活动和剑川盆地的宽缓褶皱。沉积方面,古新统勐野井组(E_1m)较为稳定的细粒滨湖相沉积转变为始新统宝相寺组(E_2b)较粗的具有前陆盆地性质的河流相沉积,特别是宝相寺组底部发育的一套快速堆积的磨拉石建造,可能是对始新世强烈挤压环境下的沉积响应。始新世中晚期伸展变形体现在盆地的构造环境由早期的挤压环境变为伸展环境和该时期大量富钾岩体和岩脉的侵入,沉积学上,下始新统宝相寺组的河流相转变为中始新统金丝厂组(E_2j)具有快速堆积磨拉石特征的曲流河沉积,极可能是对构造体制变革的沉积响应。渐新世的走滑变形则体现在渐新统的缺失和哀牢山–红河断裂的早期左行走滑。因此,我们认为剑川–兰坪地区在始新世中期和渐新世均发生了显著的运动学转换,这一认识也得到了始新世中期兰坪和剑川盆地物源明显变化的支持。结合青藏高原东南部始新世中晚期岩浆的活动,渐新世大型剪切带(崇山剪切带、高黎贡剪切带)的强烈走滑和保山块体的旋转,我们推测青藏高原东南缘古近纪的构造演化为古新世-始新世早期的挤压、始新世中晚期的伸展、渐新世的转换压缩。  相似文献   

19.
Large areas of north-east Africa were dominated by regional extension in the Late Phanerozoic. Widespread rifting occurred in the Late Jurassic, with regional extension culminating in the Cretaceous and resulting in the greatest areal extent and degree of interconnection of the west, central and north African rift systems. Basin reactivation continued in the Paleocene and Eocene and new rifts probably formed in the Red Sea and western Kenya. In the Oligocene and Early Miocene, rifts in Kenya, Ethiopia and the Red Sea linked and expanded to form the new east African rift system.This complex history of rifting resulted in failed rift basins with low to high strain geometries, a range of associated volcanism and varying degrees of interaction with older structures. One system, the Red Sea rift, has partially attained active seafloor spreading. From a comparison of these basins, a general model of three-dimensional rift evolution is proposed. Asymmetrical crustal geometries dominated the early phases of these basins, accompanied by low angle normal faulting that has been observed at least locally in outcrop. As rifting progressed, the original fault and basin forms were modified to produce larger, more through-going structures. Some basins were abandoned, others experienced reversals in regional dip and, in general, extension and subsidence became focused along narrower zones near the rift axes. The final transition to oceanic spreading was accomplished in the Red Sea by a change to high angle, planar normal faulting and diffuse dike injection, followed by the organization of an axial magma chamber.  相似文献   

20.
以最新的地质 地球物理资料和北黄海盆地构造几何学特征为基础,采用盆地反演模拟与宏观分析相结合的方法,系统解析了北黄海盆地的构造运动学特征。研究表明,北黄海盆地在中、新生代时期经历了水平伸展、水平挤压、相对平移(走滑)以及垂直差异升降等几种运动型式,其中,水平伸展运动和垂直差异升降运动是北黄海盆地构造运动及形成演化的主体。水平伸展运动可以划分为J3-K1、E2和E3三个主要“伸展事件”,并控制着盆地的成盆演化,其南北向伸展强度均东强西弱,东西向最大伸展强度自中生代到新生代由东向西迁移。水平挤压运动主要有晚白垩世和渐新世末-中新世初期两期。相对平移(走滑)运动伴随水平伸展运动和水平挤压运动发生,使多数NNE向、NW向断裂具有相对压扭或张扭平移(走滑)性质,其中尤以NNE向断裂更为明显。垂直差异升降运动具有“幕式”渐进之特点,晚侏罗世、早白垩世、始新世、渐新世以及中新世中晚期以来为沉降期,其中尤以始新世的沉降速率最大,晚白垩世、古新世、中新世早期为抬升剥蚀期;盆地的中、新生代沉降作用具有明显的自东向西迁移规律:东部坳陷以中生代沉降作用最为显著,中部坳陷主沉降期为始新世,而西部坳陷的快速沉降主要发生在始新世,并一直持续到渐新世。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号