首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
In the Precambrian rocks west and southwest of the Mount Isa Fault three significant fold generations are recognized. Within individual successions, units containing an early phase of deformation are juxtaposed by a late fault against a sequence that does not share these earlier events.

Many of the large‐scale structures in the Judenan Beds are first‐generation folds, whereas west of the Judenan Beds the area is dominated by second‐generation folds. These two sets of folds are tentatively correlated and are referred to as the Judenan Folds. An earlier set of pre‐Judenan folding is only found in the units west of the Judenan Beds. One phase of the Sybella Granite is also associated with the Judenan folding. Later small‐scale folds associated with a crenulation cleavage are, however, of little regional importance and are commonly found only in zones of highly deformed rocks.  相似文献   

2.
A sequence of psammitic and pelitic metasedimentary rocks from the Mopunga Range region of the Arunta Inlier, central Australia, preserves evidence for unusually low pressure (c. 3 kbar), regional‐scale, upper amphibolite and granulite facies metamorphism and partial melting. Upper amphibolite facies metapelites of the Cackleberry Metamorphics are characterised by cordierite‐andalusite‐K‐feldspar assemblages and cordierite‐bearing leucosomes with biotite‐andalusite selvages, reflecting P–T conditions of c. 3 kbar and c. 650–680 °C. Late development of a sillimanite fabric is interpreted to reflect either an anticlockwise P–T evolution, or a later independent higher‐P thermal event. Coexistence of andalusite with sillimanite in these rocks appears to reflect the sluggish kinematics of the Al2SiO5 polymorphic inversion. In the Deep Bore Metamorphics, 20 km to the east, dehydration melting reactions in granulite facies metapelites have produced migmatites with quartz‐absent sillimanite‐spinel‐cordierite melanosomes, whilst in semipelitic migmatites, discontinuous leucosomes enclose cordierite‐spinel intergrowths. Metapsammitic rocks are not migmatised, and contain garnet–orthopyroxene–cordierite–biotite–quartz assemblages. Reaction textures in the Deep Bore Metamorphics are consistent with a near‐isobaric heating‐cooling path, with peak metamorphism occurring at 2.6–4.0 kbar and c. 750800 °C. SHRIMP U–Pb dating of metamorphic zircon rims in a cordierite‐orthopyroxene migmatite from the Deep Bore Metamorphics yielded an age of 1730 ± 7 Ma, whilst detrital zircon cores define a homogeneous population at 1805 ± 7 Ma. The 1730 Ma age is interpreted to reflect the timing of high‐T, low‐P metamorphism, synchronous with the regional Late Strangways Event, whereas the 1805 Ma age provides a maximum age of deposition for the sedimentary precursor. The Mopunga Range region forms part of a more extensive low‐pressure metamorphic terrane in which lateral temperature gradients are likely to have been induced by localised advection of heat by granitic and mafic intrusions. The near‐isobaric Palaeoproterozoic P–T–t evolution of the Mopunga Range region is consistent with a relatively transient thermal event, due to advective processes that occurred synchronous with the regional Late Strangways tectonothermal event.  相似文献   

3.
The Mallee Bore area in the northern Harts Range of central Australia underwent high-temperature, medium- to high-pressure granulite facies metamorphism. Individual geothermometers and geobarometers and average P–T  calculations using the program Thermocalc suggest that peak metamorphic conditions were 705–810 °C and 8–12 kbar. Partial melting of both metasedimentary and meta-igneous rocks, forming garnet-bearing restites, occurred under peak metamorphic conditions. Comparison with partial melting experiments suggests that vapour-absent melting in metabasic and metapelitic rocks with compositions close to those of rocks in the Mallee Bore area occurs at 800–875 °C and >9–10 kbar. The lower temperatures obtained from geothermometry imply that mineral compositions were reset during cooling. Following the metamorphic peak, the rocks underwent local mylonitization at 680–730 °C and 5.8–7.7 kbar. After mylonitization ceased, garnet retrogressed locally to biotite, which was probably caused by fluids exsolving from crystallizing melts. These three events are interpreted as different stages of a single, continuous, clockwise P–T  path. The metamorphism at Mallee Bore probably occurred during the 1745–1730 Ma Late Strangways Orogeny, and the area escaped significant crustal reworking during the Anmatjira and Alice Springs events that locally reached amphibolite facies conditions elsewhere in the Harts Ranges.  相似文献   

4.
The Lander Rock Beds form the local basement of the Reynolds Range in the Arunta Inlier of central Australia. These dominantly quartzose and pelitic lithologies underwent low-grade ( c.   400  °C) regional metamorphism prior to contact metamorphism ( c.   2.5  kbar) around S-type megacrystic granitoids at 1820–1800  Ma. The Lander Rock Beds are overlain by metasediments of the Reynolds Range Group, which were subsequently intruded by granitoids at c. 1780  Ma. Regional metamorphism at 1590–1580  Ma produced grades varying from greenschist (400  °C at 4–5  kbar) to granulite (750–800  °C at 4–5  kbar) from north-west to south-east along the length of the Reynolds Range. Oxygen isotope ratios of the Lander Rock Beds were reset from 13.4±0.8 to as low as 6.7 adjacent to the contacts of the larger plutons, and to 10.3±1.1 around the smaller plutons. Biotite in all the major rock types found in the aureoles has δD values between −52 and −69, probably reflecting resetting by a cooling igneous+metamorphic fluid near the plutons. Sapphirine-bearing and other Mg- and Al-rich rock types have low δ18O values (4.0±0.7). The precursors to these rocks were probably low-temperature ( c. 200  °C) diagenetic–hydrothermal deposits of Mg-rich chlorite, analogous to those in Proterozoic stratiform precious metal and uranium deposits that form by the infiltration of basin brines or seawater. As in the overlying Reynolds Range Group, regional metamorphism involved little fluid–rock interaction and isotopic resetting.  相似文献   

5.
The Palaeozoic Alice Springs Orogeny was a major intraplate tectonic event in central and northern Australia. The sedimentological, structural and isotopic effects of the Alice Springs Orogeny have been well documented in the northern Amadeus Basin and adjacent exhumed Arunta Inlier, although the full regional extent of the event, as well as lateral variations in timing and intensity are less well known. Because of the lack of regional isotopic data, we take a sedimentological approach towards constraining these parameters, compiling the location and age constraints of inferred synorogenic sedimentation across a number of central and northern Australian basins. Such deposits are recorded from the Amadeus, Ngalia, Georgina, Wiso, eastern Officer and, possibly, Warburton Basins. Deposits are commonly located adjacent to areas of significant basement uplift related to north‐south shortening. In addition, similar aged orogenic deposits occur in association with strike‐slip tectonism in the Ord and southern Bonaparte Basins of northwest Australia. From a combination of sedimentological and isotopic evidence it appears that localised convergent deformation started in the Late Ordovician in the eastern Arunta Inlier and adjacent Amadeus Basin. Synorogenic style sedimentation becomes synchronously widespread in the late Early Devonian and in most areas the record terminates abruptly close to the end of the Devonian. A notable exception is the Ngalia Basin in which such sedimentation continued until the mid‐Carboniferous. In the Ord and Bonaparte Basins there is evidence of two discrete pulses of transcurrent activity in the Late Devonian and Carboniferous. The sedimentological story contrasts with the isotopic record from the southern Arunta Inlier, which has generally been interpreted in terms of continuous convergent orogenic activity spanning most of the Devonian and Carboniferous, with a suggestion that rates of deformation increased in the mid‐Carboniferous. Either Carboniferous sediments have been stripped off by subsequent erosion, or sedimentation outpaced accommodation space and detritus was transported elsewhere.  相似文献   

6.
ABSTRACT Key insights into the timing of tectonometamorphic events in a complex high-grade metamorphic terrane can be obtained by combining results from SHRIMP II ion microprobe studies of individual monazite grains with SHRIMP II studies and scanning electron microscope (SEM)-based cathodoluminescence (CL) imaging of zircons. Results from the Reynolds Range region, Arunta Block, Northern Territory, Australia, show that the final episode of regional metamorphism to high-T and low-P granulite facies conditions is most likely to have occurred at c. 1580 Ma, not at 1785–1775 Ma, as previously accepted. The previous interpretation was based on zircon studies of structurally controlled granitoids, without SEM-based CL imaging. Monazites in a 1806± 6 Ma megacrystic granitoid preserve rare cores that are interpreted to be inherited magmatic monazite, but record no evidence of another high-T event prior to 1580 Ma. Most monazites from the region record only a single high-T metamorphic event at c. 1580 Ma. Zircon inheritance is very common. Zircons or narrow overgrowths of zircon dated at c. 1580 Ma have only been found in two types of rocks: rocks produced by metasomatic fluid flow at high temperatures (≤750°C), and rocks that have undergone local partial melting. Previous explanations that attributed these 1580 Ma zircon ages to widespread hydrothermal fluid fluxing associated with post-tectonic pegmatite emplacement at amphibolite facies conditions are not supported by the available evidence including oxygen isotope data. The observed high regional metamorphic temperatures require the involvement of advective heating. However, contrary to a previous tectonic model for the formation of this and other low-P, high-T metamorphic belts, the granites that are exposed at the present structural level do not appear to be the source of that heat, unless some of the granites were emplaced at c. 1580 Ma.  相似文献   

7.
In the southeastern Reynolds Range, central Australia, a low- P granulite facies metamorphism affected two sedimentary sequences: the Lander Rock Beds and the Reynolds Range Group. In the context of the whole of the Reynolds Range and the adjacent Anmatjira Range, this metamorphism is M3 in a sequence M1–4 that occurred over a period of 250 Ma. In particular, M1 affected the Lander Rock Beds prior to the deposition of the Reynolds Group. M3 has an areally restricted, high-grade area in the southeastern Reynolds Range, affecting both the Reynolds Range Group and the underlying Lander Rock Beds. The effects of M3 are characterized by spinel + quartz-bearing peak metamorphic assemblages in metapelites, which imply peak conditions of ≥750°C and 4.5 ± 1 kbar, and involved isobaric cooling or compression with cooling. It is concluded that one of a series of thermal perturbations caused by thinning of mantle lithosphere contemporaneous with crustal thickening was responsible for M3. In the southeastern Reynolds Range, evidence of both the unconformity between the two rock groups and previous metamorphism/deformation has been completely erased by recrystallization during M3–D3.  相似文献   

8.
王舫  刘福来  刘平华 《岩石学报》2011,27(11):3280-3294
片麻岩是点苍山-哀牢山变质杂岩带最常见的岩石类型,主要由夕线石榴黑云二长片麻岩、石榴黑云斜长片麻岩以及含十字石蓝晶夕线石榴片麻岩所组成,其原岩的化学成分与华北克拉通典型孔兹岩系十分相似.岩相学、成因矿物学和变质反应性质研究以及温压条件估算结果表明,研究区片麻岩类岩石变质峰期的温压条件为T=700~770℃,P=0.5~0.8GPa,已达到或接近麻粒岩相变质,晚期退变质阶段的温压条件为T=600~650℃,P=0.35~0.45GPa.片麻岩变质演化的P-T轨迹具有顺时针型式.在麻粒岩相变质阶段,片麻岩类岩石普遍发生深熔作用,主要表现为含水矿物黑云母的脱水熔融和长英质矿物的部分熔融.该项研究对于进一步揭示青藏高原东南缘点苍山-哀牢山造山带的变质演化深熔作用机理及动力学过程具有重要的科学意义.  相似文献   

9.
漂河川镍矿的辉长岩锆石SHRIMPU-Pb定年给出了222Ma±8Ma的年龄,表明其形成于晚三叠世。研究结果表明,该岩体不属于蛇绿岩的成员,而是热侵位的镁铁—超镁铁质岩,侵位时代在区域性的变质变形事件之前。结合地球化学资料、相邻地区的大地构造相及热年代学的研究结果,认为区域上的造山作用主幕很可能发生在中生代,而不是原来认为的二叠纪末。漂河川和相关地区的镁铁—超镁铁质岩应该形成于碰撞造山之前,很可能属于大陆边缘裂谷性质。  相似文献   

10.
Three types of zircon occur in a complexly deformed and variably migmatized quartzofeldspathic gneiss from the Reynolds Range, central Australia. The oldest type is inherited from the granitic precursor of the gneiss, and is overgrown by a second group of zircon grains that formed during prograde, granulite facies metamorphism. Partial melting of the gneiss resulted in solution of both the inherited and metamorphic zircon. No new zircon growth accompanied crystallization of the partial melt, suggesting loss of zirconium–rich residual fluids. Hydrous, amphibolite facies retrogression of the gneiss and its migmatized variants during late shearing produced new, idiomorphic zircon in both the shear zone and its wall rocks.
Important implications of this study are that (i) zircon has a tendency to dissolve if it comes into direct contact with a melt produced from anhydrous biotite breakdown in a quartzofeldspathic granulite, (ii) melt crystallization is not necessarily accompanied by zircon growth, and (iii) euhedral zircon can grow from a hydrous fluid phase under subsolidus, amphibolite facies conditions, e.g. within shear zones.  相似文献   

11.
The upper pressure limit of pyrophyllite is given by the equilibria (i) pyrophyllite=diaspore+quartz and (ii) pyrophyllite=diaspore+coesite. High- P experimental investigations carried out to locate equilibrium (i) yield brackets between 497 °C/24.8  kbar and 535 °C/25.1  kbar, and between 500 °C/23  kbar and 540 °C/23  kbar. Equilibrium (ii) was bracketed at 550 °C between 26.0 and 28.3  kbar. In the experimental P–T  range, equilibria (i) and (ii) are metastable with respect to kyanite. A stable P–T  grid is calculated using thermodynamic data derived under consideration of the present experimental results. According to these data, the lower pressure limit of the assemblage diaspore+quartz according to equilibrium (i) range from about 12  kbar/300 °C to 20  kbar/430 °C (in the presence of pure water). The upper stability of diaspore+quartz is limited by the reaction diaspore+quartz=kyanite+H2O at about 450 °C (nearly independent of pressure) and, to higher pressure, by the quartz=coesite transition. Equilibrium (ii) is metastable over the whole P–T  range.
Natural occurrences600.S of the diaspore–quartz assemblage in metamorphic rocks in Sulawesi, New Caledonia, Amorgos and the Vanoise are characterized by minerals indicative of high- P such as ferro-magnesiocarpholite, glaucophane, sodic pyroxene and lawsonite. The metamorphic P–T  conditions of these rocks are estimated to be in the range 300–400 °C, >8  kbar. These data are compatible with the derived P–T  stability field of the diaspore+quartz assemblage. We conclude that, in metamorphic rocks, diaspore+quartz is, as ferrocarpholite, an indicator for unusual low- T  /very high- P settings.  相似文献   

12.
Abstract

Information, mainly from the granitic and silicic volcanic rocks in the Stawell, Bendigo and Melbourne structural zones in the state of Victoria, shows that the sources of both the S- and I-type rocks of the Stawell and Bendigo zones (SBZ) contrast in ages and chemistry with the sources of similar granitic rocks in the Melbourne Zone, consistent with the absence of the mainly Proterozoic Selwyn Block beneath most of the SBZ. Below a mid-crustal décollement in the SBZ, the crust is evidently highly variable and possibly includes thinned Proterozoic crust. There is geochronological evidence for ca 400 and ca 370?Ma granulite-grade metamorphic events here, and, after this double bout of metamorphism, and depletion in the silicic melt component, the constituents of the entire deep crust of the SBZ would have densities similar to those of overlying, much lower-grade Cambrian metabasaltic to boninitic rocks. Thus, granitic magmas may have formed here by partial melting of a variety of rock types, probably with back-arc affinities, with ages that may extend back to the Proterozoic. Therefore, the basement of the SBZ is unlikely to consist solely of thick ocean-floor rocks, as in some current interpretations.
  1. KEY POINTS
  2. The sources of the Devonian granitic rocks of the Stawell and Bendigo zones (SBZ) contrast in ages and chemistry with those of the Melbourne Zone granites.

  3. Two Devonian granulite-facies events left the melt-depleted deep SBZ crust with densities similar to those of overlying Cambrian metabasaltic rocks.

  4. The SBZ Devonian granitic magmas probably formed by partial melting of heterogeneous Proterozoic to Cambrian arc-related crust, below the mid-crustal décollement.

  相似文献   

13.
The upper Viséan–Serpukhovian strata in the type region for the Serpukhovian Stage is an epeiric‐sea succession ca. 90 m in thickness. The predominantly Viséan Oka Group (comprising the Aleksin, Mikhailov, and Venev formations) is dominated by photozoan packstones with fluvial siliciclastic wedges developed from the west. The Lower Serpukhovian Zaborie Group is composed of the Tarusa and Gurovo formations. The latter is a new name for the shale‐dominated unit of Steshevian Substage age in the studied area. The Zaborie Group is composed of limestones and marls in its lower (Tarusa and basal Gurovo) part and black smectitic to grey palygorskitic shales in the main part of the Gurovo Formation. The Gurovo Formation is capped by a thin limestone with oncoids and a palygorskitic–calcretic palaeosol. The Upper Serpukhovian is composed of a thin (3–12 m) Protva Limestone heavily karstified during a mid‐Carboniferous lowstand. The succession shows a number of unusual sedimentary features, such as a lack of high‐energy facies, shallow‐subtidal marine sediments penetrated by Stigmaria, the inferred atidal to microtidal regime, and palustrine beds composed of saponitic marls. The succession contains many subaerial disconformities characterized by profiles ranging from undercoal solution horizons to palaeokarsts. Incised fluvial channels are reported at two stratigraphic levels to the west of the study area. The deepest incisions developed from the Kholm Disconformity (top of the Mikhailov Formation). This disconformity also exhibits the deepest palaeokarst profile and represents the major hiatus in the Oka–Zaborie succession. The new sea‐level curve presented herein shows two major cycles separated by the Kholm Unconformity at the Mikhailov/Venev boundary. The Lower Serpukhovian transgression moved the base‐level away from falling below the seafloor so that the section becomes conformable above the Forino Disconformity (lower Tarusa). The maximum deepening is interpreted to occur in the lower dark‐shale part of the Gurovo Formation. The base of the Serpukhovian Stage is defined by FADs of the conodont Lochriea ziegleri and the foraminifer Janischewskina delicata in the middle of the sequence VN2. The Aleksinian–Mikhailovian interval is provisionally correlated with the Asbian (Lower–Middle Warnantian) in Western Europe. Based on FODs of Janischewskina typica and first representatives of Climacammina, the Venevian is correlated with the Brigantian in Western Europe. The Tarusian–Protvian interval contains diverse fusulinid and conodont assemblages, but few forms suitable for international correlation. FADs of the zonal conodont species Adetognathus unicornis and Gnathodus bollandensis at several metres above the Protvian base suggest correlation of the entire Zaborie Group and may be the basal Protvian to the Pendleian. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号