首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coherent set of timing constraints is produced for Tasmania's Proterozoic and Cambrian geology when only mineral ages are considered and whole‐rock ages excluded. The oldest recognised event is the formation of sedimentary deposits which contain detrital zircons that indirectly indicate a depositional age younger than 1180 Ma. Partial melts of these sedimentary rocks were incorporated in Neoproterozoic, Devonian and probably Cambrian felsic magmas. Neoproterozoic granite on King Island has an age of 760 ± 12 Ma and is part of a high‐level intrusive episode that accompanied the Wickham Orogeny, an event with regionally varied strain that is represented in northwestern Tasmania by a low‐angle unconformity, by altered granitoid with a magmatic age of 777 ± 7 Ma, and by the thick turbidite pile of the Burnie and Oonah Formations with its syndepositional intrusions of Cooee Dolerite. The late Neoproterozoic was relatively quiet tectonically but by early in the Middle Cambrian a crustal collision which marked the early phase of the Tyennan Orogeny brought about high‐level emplacement of ultramafic‐bearing allochthons and deep‐seated metamorphism of quartzose sedimentary and basaltic rocks. The ultramafic allochthons carried tonalite that had crystallised only shortly before at 510 ± 6 Ma, while the deep‐seated metamorphism produced eclogite at 502 ± 8 Ma. By middle Middle Cambrian times the metamorphic rocks had been uplifted and they experienced repeated uplift during the period of Mt Read volcanism and onward to the close of the Tyennan Orogeny in the Early Ordovician, an overall period of some 20 million years from the early Middle Cambrian. Regionally varied strain was again a feature during the Tyennan Orogeny, with the Smithton area in northwestern Tasmania and King Island occupying relatively undeformed cratonic positions.  相似文献   

2.
This study presents new data on the deformational and metamorphic history of previously unstudied Cambrian high-pressure metamorphic rocks exposed on the remote south coast of Tasmania. The Red Point Metamorphic Complex consists of two blocks of high-pressure, medium-grade metamorphic rocks including pelitic schist and minor garnet-bearing amphibolite, which are faulted against a sequence of low-grade phyllite and quartzite. The Red Point Metamorphic Complex records five phases of deformation, all of which except the first are expressed at a mesoscopic scale in both the medium- and low-grade rocks. Peak metamorphic conditions in the high-pressure epidote–amphibolite facies is recorded by medium-grade schist and amphibolite and was synchronous with the second major deformation event, which produced a pervasive schistosity and mesoscale isoclinal folds. The juxtaposition of the low- and medium-grade rocks is interpreted to have first occurred prior to the development of upright, opening folding associated with the third deformation. However, the present contacts between the two contrasting metamorphic sequences formed during widespread faulting and ductile-shear zone development associated with the fourth and fifth deformation events. The new data from the Red Point Metamorphic Complex provide insights into the structural and metamorphic history experienced by the medium-grade rocks of Tasmania during the Cambrian Tyennan Orogeny. This study demonstrates that Cambrian medium-grade metamorphic rocks are more widespread throughout Tasmania than previously realised, which represents an important step towards understanding the large-scale architecture of the Tyennan Orogen.  相似文献   

3.
The Arthur Lineament of northwestern Tasmania is a Cambrian (510 ± 10 Ma) high‐strain metamorphic belt. In the south it is composed of metasedimentary and mafic meta‐igneous lithologies of the ‘eastern’ Ahrberg Group, Bowry Formation and a high‐strain part of the Oonah Formation. Regionally, the lineament separates the Rocky Cape Group correlates and ‘western’ Ahrberg Group to its west from the relatively low‐strain parts of the Oonah Formation, and the correlated Burnie Formation, to its east. Early folding and thrusting caused emplacement of the allochthonous Bowry Formation, which is interpreted to occur as a fault‐bound slice, towards the eastern margin of the parautochthonous ‘eastern’ Ahrberg Group metasediments. The early stages of formation of the Arthur Lineament involved two folding events. The first deformation (CaD1) produced a schistose axial‐planar fabric and isoclinal folds synchronous with thrusting. The second deformation (CaD2) produced a coarser schistosity and tight to isoclinal folds. South‐plunging, north‐south stretching lineations, top to the south shear sense indicators, and south‐verging, downward‐facing folds in the Arthur Lineament suggest south‐directed transport. CaF1 and CaF2 were rotated to a north‐south trend in zones of high strain during the CaD2 event. CaD3, later in the Cambrian, folded the earlier foliations in the Arthur Lineament and produced west‐dipping steep thrusts, creating the linear expression of the structure.  相似文献   

4.
The easternmost zone of the Dinaric‐Hellenic belt is represented by the Vardar Zone, in which the Kopaonik Metamorphic Complex (KMC) is regarded as the lowermost unit. This complex is topped by the unmetamorphosed Brzece unit and is intruded by the Oligocene Kopaonik Intrusive complex. The KMC is characterized by a stratigraphy that includes metapelites and meta‐carbonates of Late Triassic age, associated with metabasites. It is characterized by a complex deformation history that comprises four phases: D1 to D4. The D1 phase structures occur only as relict structures, whereas the D2 phase structures are represented by isoclinal F2 folds, associated with a well‐developed S2 foliation. The estimated P‐T conditions for the D1 and D2 metamorphism are consistent with the upper greenschist facies. The D3 phase is characterized by west‐verging thrusts associated with upright folds. In contrast, the D4 phase is characterized by open folds (F4) associated with low‐angle normal faults. The D1 and D2 deformation phases developed during the shortening related to continental collision, whereas the subsequent D3 and D4 phases can be related to the progressive exhumation of the KMC. The D4 phase probably developed during extensional tectonics during and after emplacement of the Kopaonik Intrusive Complex. The data show that the continental units belonging to the Vardar zone had a long‐lived deformation history that was more complex that previously thought. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A new tectonic model for Tasmania incorporates subduction at the boundary between eastern and western Tasmania. This model integrates thin‐ and thick‐skinned tectonics, providing a mechanism for emplacement of allochthonous elements on to both eastern and western Tasmania as well as rapid burial, metamorphism and exhumation of high‐pressure metamorphic rocks. The west Tamar region in northern Tasmania lies at the boundary between eastern and western Tasmania. Here, rocks in the Port Sorell Formation were metamorphosed at high pressures (700–1400 MPa) and temperatures (400–500°C), indicating subduction to depths of up to 30 km. The eastern boundary of the Port Sorell Formation with mafic‐ultramafic rocks of the Andersons Creek Ultramafic Complex is hidden beneath allochthonous ?Mesoproterozoic turbidites of the Badger Head Group. At depth, this boundary coincides with the inferred boundary between eastern and western Tasmania, imaged in seismic data as a series of east‐dipping reflections. The Andersons Creek Ultramafic Complex was previously thought of as allochthonous, based mainly on associations with other mafic‐ultramafic complexes in western Tasmania. However, the base of the Andersons Creek Ultramafic Complex is not exposed and, given its position east of the boundary with western Tasmania, it is equally likely that it represents the exposed western edge of autochthonous eastern Tasmanian basement. A thin sliver of faulted and metamorphosed rock, including amphibolites, partially separates the Badger Head Group from the Andersons Creek Ultramafic Complex. Mafic rocks in this package match geochemically mafic rocks in the Port Sorell Formation. This match is consistent with two structural events in the Badger Head Group showing tectonic transport of the group from the west during Cambrian Delamerian orogenesis. Rather than being subducted, emplacement of the Badger Head Group onto the Andersons Creek Ultramafic Complex indicates accretion of the Badger Head Group onto eastern Tasmania. Subsequent folding and thrusting in the west Tamar region also accompanied Devonian Tabberabberan orogenesis. Reversal from northeast to southwest tectonic vergence saw imbricate thrusting of Proterozoic and Palaeozoic strata, possibly coinciding with reactivation of the suture separating eastern and western Tasmania.  相似文献   

6.
Tectonic processes that have been proposed to explain the transport to the surface of regional metamorphic belts can be broadly divided into two types. (i) Corner-flow within a convergent margin bounded by two essentially rigid plates associated with extension at shallow levels. This type of model assumes deformation is distributed throughout the margin and that any discontinuities are of secondary importance. (ii) Expulsion or extrusion of coherent metamorphic nappes. In this second idea, tectonic discontinuities are fundamental in the transport to the surface of metamorphic rocks. The wealth of geological data available from a variety of studies in the Sanbagawa metamorphic belt, southwest Japan makes it well-suited for studying the relative importance of continuous vs. discontinuous deformation in the process of exhumation. In the Sanbagawa belt a sudden decrease in metamorphic pressure going down section of several kilobars suggests the presence of a major tectonic contact separating two major regional nappes: an overlying higher-pressure Besshi nappe and an underlying lower-pressure Oboke nappe. Major tectonic discontinuities have also been proposed within the Besshi nappe, however, indicators of metamorphic temperature, the results of radiometric age dating, and microstructural studies all suggest that post-metamorphic discontinuities are minor and that this nappe formed and remained as an essentially coherent unit. Lithological associations and petrological studies suggest the following positions for the two nappes. The Besshi nappe formed deep within the former accretionary wedge, adjacent to the overlying mantle wedge, and with a dip of roughly 30 °C. In contrast, the Oboke nappe formed at moderate depths within the accretionary wedge, was distant from the mantle wedge, and was roughly horizontal. Penetrative deformation that post-dates the peak of metamorphism has affected nearly all of the Sanbagawa belt and has played an important role in its exhumation. However, the presence of a broad coherent Besshi nappe overlying the lower-pressure Oboke nappe suggests that some process such as buoyancy-driven extrusion was also important in the exhumation process and in forming the structure of the Sanbagawa metamorphic belt.  相似文献   

7.
The Vredefort dome (2.0 Ga) represents the central uplift of a very large impact structure. This uplift exposed a nearly complete cross-section through the continental crust in the region, which is 25–30 km thick. Two metamorphic events took place at about the same time as the impact. The first event, so-called static metamorphism, is pre-impact and produced lithologies varying from low-grade shale to high-grade hornfels. It resembles contact metamorphism by its lack of schistosity, but is more regional as it extends over a large area and is not associated with large intrusions.
The second event, the post-shock metamorphism, is responsible for the recrystallization of the shock features. The investigation of this event has been focused on the degree of alteration of the coesite-stishovite-bearing pseudotachylite veins that formed during the transit of the shock wave. These high-pressure silica polymorphs are only present in the upper part of the stratigraphic sequence; downward they have been converted to fibrous quartz. At the highest grade, the fibrous quartz is in turn replaced by triple-junctioned mosaic quartz. The post-shock metamorphism was generated by the heat of the rock before shock, plus the heat released by the shock wave. The isograds, plotted on a map, can be translated into depth of burial and therefore provide valuable information regarding the geological setting immediately before impact. At the time of impact, the rocks were relatively cool and the static metamorphism had ceased with several tens of millions of years separating the two metamorphic events. The static metamorphism was probably caused by continental crustal extension in a stress-free environment and the lack of deformation is probably due to rapid uplift during the later stages of the impact event.  相似文献   

8.
The Owen Conglomerate comprises coarse-grained siliciclastics that were deposited in response to Late Cambrian extension. The identification of normal faults that host thickened accumulations of siliciclastics is used here to support interpretation of syn-fill extension. Local mapping and section construction have identified a series of north-trending, en échelon, segmented normal faults that exhibit changes in along-strike polarity. The Late Cambrian faults are adjacent to sedimentary packages that define half-graben geometries, with an unconformity that defines basal contacts with underlying Mt Read Volcanics and onlap geometries onto the opposing basin margin. Faults that were active during deposition of the Owen Conglomerate were subsequently reversed during D1 Middle Devonian deformation, with reverse displacement controlling the development of inversion structures defined by north-trending fold structures. Pervasive northwest-trending D2 deformation extensively overprints earlier deformation features, and has led to the spectacular development of type 1 interference patterns that largely control outcrop distributions along the West Coast Range. Field evidence is documented in support for a simple structural history that accounts for geometries associated with Late Cambrian extension, prior to Middle Devonian inversion (D1) and subsequent shortening (D2).  相似文献   

9.
The Southern Yenisey Range (Eastern Siberia) consists of thegranulite-facies Kanskiy complex bordered by the lower-gradeYeniseyskiy and Yukseevskiy complexes. Samples of metapeliteof the Kanskiy complex typically show characteristic garnet-formingreaction textures and near-isobaric cooling PT paths.An important new result of this study concerns the differencein shape of the PT paths from different parts of theKanskiy granulite complex: metapelites collected 8 km from theboundary with the Yeniseyskiy complex followed a linear pathwith dP/dT 0·006 kbar/°C; metapelites collected3 km from this boundary reveal a kinked PT path withan interval of burial cooling (dP/dT –0·006 kbar/°C).The difference in the shape of the PT paths is supportedby the chemical zoning of garnet studied in the second groupof samples. A mechanism of buoyant exhumation of granulite issuggested by comparison with the results of numerical modelling,which indicate that such a diversity of PT paths mayresult from a transient disturbance of the thermal structureby rapid differential movement of material from different crustallevels. To arrive at a correct tectonic interpretation, thewhole assemblage of interrelated PT paths of metamorphicrocks collected from different localities within the same complexmust be studied. KEY WORDS: crustal diapirism; exhumation; granulites; numerical modelling; PT path  相似文献   

10.
The tectonic evolution of the Northern Shimanto belt, central Shikoku, Japan, was examined based on petrological and geochronological studies in the Oboke area, where mafic schists of the Kawaguchi Formation contain sodic amphibole (magnesioriebeckite). The peak P–T conditions of metamorphism are estimated as 44.5 kbar (1517 km depth), and 240270 °C based on available phase equilibria and sodic amphibole compositions. These metamorphic conditions are transitional between blueschist, greenschist and pumpellyite–actinolite facies. Phengite KAr ages of 64.8 ± 1.4 and 64.4 ± 1.4 Ma were determined for the mafic schists, and 65.0 ± 1.4, 61.4 ± 1.3 and 63.6 ± 1.4 Ma for the pelitic schists. The metamorphic temperatures in the Oboke area are below the closure temperature of the KAr phengite system, so the K–Ar ages date the metamorphic peak in the Northern Shimanto belt. In the broad sense of the definition of blueschist facies, the highest‐grade part of the Northern Shimanto belt belongs to the blueschist facies. Our study and those of others identify the following constraints on the possible mechanism that led to the exhumation of the overlying Sanbagawa belt: (i) the Sanbagawa belt is a thin tectonic slice with a structural thickness of 34 km; (ii) within the belt, metamorphic conditions varied from 5 to 25 kbar, and 300 to 800 °C, with the grade of metamorphism decreasing symmetrically upward and downward from a structurally intermediate position; and (iii) the Sanbagawa metamorphic rocks were exhumed from ~60 km depth and emplaced onto the Northern Shimanto metamorphic rocks at 15–17 km depth and 240–270 °C. Integration of these results with those of previous geological studies for the Sanbagawa belt suggests that the most probable exhumation mechanism is wedge extrusion.  相似文献   

11.
Microstructural timing relationships indicate that the Rosebery massive sulphide ore, western Tasmania, Australia, formed by metasomatic replacement of 'sericite' schist during a Devonian deformation event (D3). This interpretation is contrary to earlier volcanogenic-based interpretations, but accords with the discordant position and inferred structurally controlled emplacement of the orebody. The main timing criteria are: overprinting of S3 by the late ore minerals, replacement textures in undeformed mineral parageneses, and a D3 structural control from the microscopic to the macroscopic scales. The consistent observation of these criteria in the orebody and the complete lack of pre-D3 ore argue against in situ dissolution of a primary orebody and local redeposition of sulphides by replacement.
D3 deformation at Rosebery is inferred to have been characterized by heterogeneous cleavage-parallel extension, which resulted in localized microfracturing and selective replacement of zones of maximum strain rate. Continuous shifts in the strain-rate distribution pattern during progressive mineralization led to the compositional ore banding.
Published Pb-isotope data point towards a Cambrian source rock for the orebody. This suggests a metamorphogenic origin by regional-scale dissolution of dispersed volcanogenic metals, focused solution transfer and concentrated redeposition in a structural trap.  相似文献   

12.
Eclogite facies cataclasite is recognized at Yangkou in the Chinese Su‐Lu ultrahigh‐P metamorphic belt. The cataclasite dykes (5?15 cm wide) are bounded by mylonite/ultramylonite zones, cutting through unfoliated metagabbro and/or eclogite. The cataclasite veins (generally 2–4 cm wide) are free of mylonite boundary zones, cutting through the foliation of the high‐P host rock. The dykes and veins are dominated by eclogite fragments consisting of debris of omphacite, garnet, quartz, phengite and kyanite, in a matrix of variable amounts of a schist rich in quartz, phengite and kyanite. Garnet clasts in the fragments are welded and overgrown by more Ca‐rich garnet containing mineral inclusions different from those in the garnet cores. The micropoikilitic texture of garnet is typical of eclogitic pseudotachylytes. Crack‐sealing K‐feldspar veinlets in the cataclasite dykes also imply frictional or shock‐induced melting of K‐mica. The modal abundances in the cataclasite and the schist imply that the dykes formed by flow of the omphacite and garnet‐dominated cataclasites into the fractures during seismic faulting, while the lower density minerals (quartz, phengite and kyanite) were largely left in the ultramylonite boundary zones. The dykes have the same composition as their host rocks, except for slightly lower Si and large ion lithophile elements and higher Mg, Ca, Cr, Co and Ni. Chromite, probably spurted from the nearby ultramafic rock, is found as rare particles in the cataclasite fragments. This indicates that material exchange occurred by mechanical mixing between the dykes and the ultramafic rock during seismic faulting. The Cr‐rich eclogite minerals grown on the chromite are evidence for coseismic high‐P crystallization. Short‐lived crystal growth is implied by the fine grain sizes of the eclogite minerals and very limited element diffusion between the garnet clasts and their overgrowths. The fact that the host rocks are more hydrated implies that the dyke formation was not related to fluid infiltration. It appears, therefore, that stress was the key factor inducing the high‐P phase transformation in the dykes. Both stress and temperature were only transiently high in the dykes, which have been metastable since they were formed.  相似文献   

13.
The northern margin of the Inland Branch of the Pan-AfricanDamara Orogen in Namibia shows dramatic along-strike variationin metamorphic character during convergence between the Congoand Kalahari Cratons (M3 metamorphic cycle). Low-P contact metamorphismwith anticlockwise PT paths dominates in the westerndomains (Ugab Zone and western Northern Zone), and high-P Barrovianmetamorphism with a clockwise PT path is documented fromthe easternmost domain (eastern Northern Zone). The sequenceof M3 mineral growth in contact aureoles shows early growthof cordierite porphyroblasts that were pseudomorphed to biotite–chlorite–muscoviteat the same time as an andalusite–biotite–muscovitetransposed foliation was developed in the matrix. The peak-Tmetamorphic assemblages and fabrics were overprinted by crenulationsand retrograde chlorite–muscovite. The KFMASH PTpseudosection for metapelites in the Ugab Zone and western NorthernZone contact aureoles indicates tight anticlockwise PTloops through peak metamorphic conditions of 540–570°Cand 2·5–3·2 kbar. These semi-quantitativePT loops are consistent with average PT calculationsusing THERMOCALC, which give a pooled mean of 556 ± 26°Cand 3·2 ± 0·6 kbar, indicating a high averagethermal gradient of 50°C/km. In contrast, the eastern NorthernZone experienced deep burial, high-P/moderate-T Barrovian M3metamorphism with an average thermal gradient of 21°C/kmand peak metamorphic conditions of c. 635°C and 8·7kbar. The calculated PT pseudosection and garnet compositionalisopleths in KFMASH, appropriate for the metapelite sample fromthis region, document a clockwise PT path. Early plagioclase–kyanite–biotiteparageneses evolved by plagioclase consumption and the growthof garnet to increasing XFe, XMg and XCa and decreasing XMncompositions, indicating steep burial with heating. The developedkyanite–garnet–biotite peak metamorphic parageneseswere followed by the resorption of garnet and formation of plagioclasemoats, indicating decompression, which was followed by retrogressivecooling and chlorite–muscovite growth. The clockwise PTloop is consistent with the foreland vergent fold–thrustbelt geometry in this part of the northern margin. Earlier formed(580–570 Ma) pervasive matrix foliations (M2) were overprintedby contact metamorphic parageneses (M3) in the aureoles of 530± 3 Ma granites in the Ugab Zone and 553–514 Magranites in the western Northern Zone. Available geochronologicaldata suggest that convergence between the Congo and KalahariCratons was essentially coeval in all parts of the northernmargin, with similar ages of 535–530 Ma for the main phaseof deformation in the eastern Northern Zone and Northern Platformand 538–505 Ma high-grade metamorphism of the CentralZone immediately to the south. Consequently, NNE–SSW-directedconvergent deformation and associated M3 metamorphism of contrastingstyles are interpreted to be broadly contemporaneous along thelength of the northern margin of the Inland Branch. In the westheat transfer was dominated by conduction and externally drivenby granites, whereas in the east heat transfer was dominatedby advection and internally driven radiogenic heat production.The ultimate cause was along-orogen variation in crustal architecture,including thickness of the passive margin lithosphere and thicknessof the overlying sedimentary succession. KEY WORDS: Pan-African Orogeny; PT paths; pseudosections; low-P metamorphism; contact metamorphism; Barrovian metamorphism  相似文献   

14.
A combined petrological, geochronological and geochemical study was carried out on felsic veins and their host rocks from the North Qaidam ultrahigh‐pressure (UHP) metamorphic terrane in northern Tibet. The results provide insights into partial melting of deeply subducted continental crust during exhumation. Partial melting is petrograpically recognized in metagranite, metapelite and metabasite. Migmatized gneisses, including metagranite and metapelite, contain microstructures such as granitic aggregates with varying outlines, small dihedral angles at mineral junctions and feldspar with magmatic habits, indicating the former presence of felsic melts. Partial melts were also present in metabasite that occurs as retrograde eclogite. Felsic veins in both the eclogites and gneisses exhibit typical melt crystalline textures such as large euhedral feldspar grains with straight crystal faces, indicating vein crystallization from anatectic melts. The Sr–Nd isotope compositions of felsic veins inside gneisses suggest melt derivation from anatexis of host gneisses themselves, but those inside metabasites suggest melt derivation from hybrid sources. Felsic veins inside gneisses exhibit lithochemical compositions similar to experimental melts on the An–Ab–Or diagram. In trace element distribution diagrams, they exhibit parallel patterns to their host rocks, but with lower element contents and slightly positive Eu and Sr anomalies. The geochemistry of these felsic veins is controlled by minerals that would decompose and survive, respectively, during anatexis. Felsic veins inside metabasites are rich either in quartz or in plagioclase with low normative orthoclase. In either case, they have low trace element contents, with significantly positive Eu and Sr anomalies in plagioclase‐rich veins. Combined with cumulate structures in some veins, these felsic veins are interpreted to crystallize from anatectic melts of different origins with the effect of crystal fractionation. Nevertheless, felsic veins in different lithologies exhibit roughly consistent patterns of trace element distribution, with variable enrichment of LILE and LREE but depletion of HFSE and HREE. There are also higher contents of trace elements in veins hosted by gneisses than veins hosted by metabasites. Anatectic zircon domains from felsic veins and migmatized gneisses exhibit consistent U–Pb ages of c. 420 Ma, significantly younger than the peak UHP eclogite facies metamorphic event at c. 450–435 Ma. Combining the petrological observations with local P–T paths and experimentally constrained melting curves, it is inferred that anatexis of UHP gneisses was caused by muscovite breakdown while anatexis of UHP metabasites was caused by fluid influx. These UHP metagranite, metapelite and metabasite underwent simultaneous anatexis during the exhumation, giving rise to anatectic melts with different compositions in various elements but similar patterns in trace element distribution.  相似文献   

15.
The Connemara region of the Irish Caledonides is a classic example of regional-scale metamorphism of low pressure and high temperature. This terrane is considered as part of a fold belt comprising metasedimentary and metavolcanic rocks that are correlated with the Neoproterozoic–Lower Paleozoic Dalradian Supergroup of Scotland. In mid-Ordovician time, the extensive and high-temperature metamorphism was superimposed on the Dalradian rocks resulting in the Connemara zoning. The key feature of the zoning is elevated horizontal thermal gradient of ca. 14 °C/km. Geological data and geochronological evidence point to a causative link between metamorphism and associated magmatic intrusions, and a brief period of development for the metamorphic zoning. Magmatic intrusion into the middle part of continental crust is treated as a most plausible source of heat for metamorphism, and other conjectures as to the origin of the zoning (flow of hot fluid through the permeable rocks, fracture conduit flushed by flowing magma) are believed to be improbable. To examine in sufficient detail the problem of the nature of heat source, a series of appropriate calculations have been performed to reach the best agreement between the observed and simulated spatial distribution of maximum temperatures at different times. The mathematical modelling shows that the temperature–spatial structure of the Connemara zoning is best explained by the model version based on mid-crustal heating above the upper contact of magmatic intrusive body gently curved and tilted at an angle between 20° and 40°, with an initial temperature of the magma appropriate to a basaltic melt. The model estimate of total lifetime of the temperature anomaly in the crust is of the order of 5–6 Ma. In general, this is in rather good agreement with the currently available evidence of geochronological duration of metamorphism and magmatism in Connemara.  相似文献   

16.
点苍山-哀牢山变质杂岩带中北段嘎洒地区出露了多种典型的变沉积岩,其中夕线石榴黑云二长片麻岩和二云母片岩保存多期/多阶段矿物相转变特征,本文通过岩相学和矿物化学的综合分析,并结合传统矿物对温压计的估算结果,限定上述典型变沉积岩峰期角闪-麻粒岩相(M1)阶段、近等温减压-高温剪切变形阶段(M2)和晚期退变质(M3)阶段的矿物组合及变质温压条件。峰期角闪-麻粒岩相(M1)阶段的矿物组合为:石榴石(Grt)+板柱状夕线石(Sil1)+黑云母(Bt1)+钾长石(Kfs)+斜长石(Pl)+石英(Qtz)+钛铁矿(Ilm),变质温度压力条件为t=690~750℃,p=690~810 MPa;近等温减压-高温剪切变形阶段(M2)阶段,稳定矿物组合为:Grt+Sil2+Bt2+Kfs+Pl+Qtz+Ilm,黑云母在强烈走滑剪切作用下发生脱水熔融反应:2 Bt→Sil+6(Mg,Fe)O+K_2O+5 Qtz+2 H_2O,石榴石、黑云母和夕线石等受到剪切变形影响而发生强烈定向,形成的温度压力条件为t=650~720℃,p=450~630 MPa;晚期退变质阶段(M_3)的稳定矿物组合为:Qtz+Bt+Ms+Pl,退变的温度压力条件为t=580~640℃,p=400~500MPa。其变质演化p-T轨迹样式具有近等温减压的顺时针型式,表明点苍山-哀牢山变质杂岩带曾经历了一次明显的俯冲-碰撞造山事件,峰期变质可达到角闪-麻粒岩相;在碰撞后的构造折返过程中,上述变质岩石发生强烈的高温剪切变形作用,并伴随着黑云母等含水矿物的脱水熔融。  相似文献   

17.
桐柏造山带位于秦岭造山带和大别-苏鲁造山带之间,是揭示秦岭-桐柏-大别-苏鲁巨型造山带中各地质体之间构造关系及地质演化差异的关键地区。桐柏高压变质地体主要由两个高压岩片(I和II)及其北侧的构造混杂岩带和南侧的蓝片岩-绿片岩带构成。高压岩片I以北、南两条榴辉岩带为代表,构成桐柏山背形构造的两翼,其峰期变质条件分别为530~610℃、1.7~2.0GPa和460~560℃、1.3~1.9GPa。高压岩片II以桐柏杂岩中的变质岩包体为代表,其峰期变质条件推测在<700℃、>1.2GPa的榴辉岩相范围内,而退变质条件为660~700℃、0.80~1.03GPa。U-Pb、Lu-Hf、Rb-Sr和Ar-Ar同位素年代学研究表明,高压岩片I的峰期变质时代为255Ma,冷却至白云母封闭温度的时代为238Ma;而高压岩片II的主期变质作用发生在232~220Ma,作为桐柏杂岩主体的片麻状花岗岩则侵位于140Ma。这说明,高压岩片I和II分属于两个时代不同的俯冲/折返岩片,当高压岩片II被俯冲到地壳深处并经受高压变质时,其上覆的高压岩片I已经折返到中上地壳的水平。这一结果验证了在西大别、东大别和苏鲁地区提出的高压/超高压岩石的穿时(或差异)俯冲/折返模型,同时说明华南大陆地壳最早的俯冲发生在晚二叠世,这也代表华北与华南陆块之间从洋壳俯冲转化为陆壳俯冲的时间。基于桐柏杂岩与北大别杂岩的可比性,认为桐柏高压变质地体相对低温低压的变质环境以及超高压岩石的缺乏缘于华南陆块的俯冲深度向西逐渐变浅,而早白垩世的构造挤出造成了桐柏-大别高压/超高压变质带东宽西窄的构造格局。  相似文献   

18.
The Higo terrane in west-central Kyushu Island, southwest Japan consists from north to south of the Manotani, Higo and Ryuhozan metamorphic complexes, which are intruded by the Higo plutonic complex (Miyanohara tonalite and Shiraishino granodiorite).The Higo and Manotani metamorphic complexes indicate an imbricate crustal section in which a sequence of metamorphic rocks with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The metamorphic rocks in these complexes can be divided into five metamorphic zones (zone A to zone E) from top to base (i.e., from north to south) on the basis of mineral parageneses of pelitic rocks. Greenschist-facies mineral assemblages in zone A (the Manotani metamorphic complex) give way to amphibolite-facies assemblages in zones B, C and D, which in turn are replaced by granulite-facies assemblages in zone E of the Higo metamorphic complex. The highest-grade part of the complex (zone E) indicates peak P–T conditions of ca. 720 MPa and ca. 870 °C. In addition highly aluminous Spr-bearing granulites and related high-temperature metamorphic rocks occur as blocks in peridotite intrusions and show UHT-metamorphic conditions of ca. 900 MPa and ca. 950 °C. The prograde and retrograde P–T evolution paths of the Higo and Manotani metamorphic complexes are estimated using reaction textures, mineral inclusion analyses and mineral chemistries, especially in zones A and D, which show a clockwise P–T path from Lws-including Pmp–Act field to Act–Chl–Epi field in zone A and St–Ky field to And field through Sil field in zone D.The Higo metamorphic complex has been traditionally considered to be the western-end of the Ryoke metamorphic belt in the Japanese Islands or part of the Kurosegawa–Paleo Ryoke terrane in south-west Japan. However, recent detailed studies including Permo–Triassic age (ca. 250 Ma) determinations from this complex indicate a close relationship with the high-grade metamorphic terranes in eastern-most Asia (e.g., north Dabie terrane) with similar metamorphic and igneous characteristics, protolith assembly, and metamorphic and igneous ages. The north Dabie high-grade terrane as a collisional metamorphic zone between the North China and the South China cratons could be extended to the N-NE along the transcurrent fault (Tan-Lu Fault) as the Sulu belt in Shandong Peninsula and the Imjingang belt in Korean Peninsula. The Higo and Manotani metamorphic complexes as well as the Hida–Oki terrane in Japan would also have belonged to this type of collisional terrane and then experienced a top-to-the-south displacement with forming a regional nappe structure before the intrusion of younger Shiraishino granodiorite (ca. 120 Ma).  相似文献   

19.
Abstract. In the Kamuikotan zone, central Hokkaido, Japan, two distinct types of metamorphic rocks are tectonically mixed up, along with a great quantity of ultramafic rocks; one type consists of high-pressure metamorphic rocks, and the other of low-pressure ones. The high-pressure metamorphic rocks are divided into two categories. (1) Prograde greenschist to glaucophaneschist facies rocks derived from mudstone, sandstone, limestone, a variety of basic rocks such as pillow and massive lavas, hyaloclastite and tuff, and radiolarian (Valanginian to Hauterivian) chert, among which the basic rocks and the chert, and occasionally the sandstone, occur as incoherent blocks (or inclusions) enveloped by mudstone. (2) Retrograde amphibolites with minor metachert and glaucophane-calcite rock, which are tectonic (or exotic) blocks enclosed within prograde mudstone or serpentinite, or separated from these prograde rocks by faults. The K-Ar ages of the prograde metamorphic rocks (72, 107 and 116 Ma on phengitic muscovites) are younger than those of the retrograde rocks (109, 132, 135 and 145 Ma on muscovites, and 120 Ma on hornblende). The low-pressure metamorphic rocks consist of the mafic members of an ophiolite sequence with a capping of radiolarian (Tithonian) chert with the metamorphic grade ranging from the zeolite facies, through the greenschist (partly, actinolite-calcic plagioclase) facies to the amphibolite (partly, hornblende-granulite) facies. The low-pressure metamorphism has a number of similarities with that described for'ocean-floor'metamorphism. The tectonic evolution of such a mixed-up zone is discussed in relation to Mesozoic plate motion.  相似文献   

20.
刘景波  叶凯 《岩石学报》2000,16(4):482-484
通过拉曼光谱,识别出大别山超高压变质带片麻岩的锆石中有重晶石和硬石膏包裹体,它们与柯石英共生,由此表明超高压变质过程中存在变质流体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号