首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Werner deconvolution technique for automatic analysis of magnetic data is a powerful tool for the interpretation of magnetic profiles. In particular, the technique is a valuable aid to the interpretation of deep crustal structures beneath the continental margin which frequently lie below the penetration of all but the most high-powered seismic reflection tools. Inverse modelling of selected simple geological structures (buried scarp, graben, half-graben) confirms that the interface model is valuable in delineating the tops of magnetic bodies, while the thin sheet model gives an indication of the depth extent of the bodies. In the case of horizontal sheets in contact (simulating oceanic spreading anomalies), the thin sheet model delineates the boundary, while the interface model gives estimates which are too shallow.

As an illustration of the value of the Werner deconvolution method in regional marine studies, the magnetic basement in the Great Australian Bight (GAB) has been mapped using a set of magnetic profiles; seismic data in the GAB is of limited use in this mapping. Interpretation of the profiles confirms earlier assessments that there is a minimum of 10 km of sediment beneath the Ceduna Terrace (Great Australian Bight Basin), 3 km beneath the Eyre Terrace (Eyre Sub-basin), 6 km in the Duntroon Embayment, 3 km in the Polda Trough, and 4 km beneath the continental rise. The most prominent basement structure in the GAB is the east-west-trending scarp which delineates the northern flank of the Eyre Sub-basin, GAB Basin, and Polda Trough. The gross linearity of this escarpment for 1000 km and the fact that it appears to mark a northern boundary to the extensional basins of the margin suggests that continental extension in the pre-Middle Jurassic took place preferentially south of an old (Precambrian) lineament in the Gawler Block. Polda Trough sediments are probably included in fault-blocks underlying the northern part of the GAB Basin. The interpretation supports the concept of northwest-southeast extension prior to Late Cretaceous breakup.  相似文献   

2.
Palaeolatitude data obtained from palaeomagnetic studies of Australian formations are described and compared with the palaeoclimatic zones inferred from geological observations. The two techniques produce results which agree for most of the Palaeozoic. Only for the Early Cambrian (and late Proterozoic) and Mesozoic do the climatic indicators appear to contradict the palaeolatitude evidence. It is pointed out that each of these geological intervals follows immediately a period of widespread glaciation.  相似文献   

3.
Two lithofacies maps of the Lachlan Fold Belt, one for the Ordovician and one for the Silurian, are illustrated. Both maps indicate shorelines in western New South Wales, Victoria and Tasmania.

The Ordovicoan map suggests open‐sea conditions eastwards from the shoreline with one major and two minor andesitic volcanoes (or volcanic centres). The Silurian map suggests segmentation of the Lachlan Fold Belt into the Melbourne Basin, Omeo Land, Newell Basin, and Budawang Land. The Newell Basin displays a nearshore (Louth‐Mitta Mitta) coarse clastics facies and an offshore (Wellington‐Cooma) platform carbonate facies. Acid volcanism was widespread over the Newell Basin in Silurian time, but did not occur in the Melbourne Basin.

The Louth‐Mitta Mitta and Wellington‐Cooma facies boundary coincides with the position of the Coolac‐Honeybugle Serpentine Belt and the outcrop area of the Girilambone Beds, suggesting that these features were already in some way prominent during the Silurian Period: the Serpentine Belt may have been a fault, and the Girilambone Beds may have been land.

The origin of base‐metal deposits in the Silurian rocks is thought to be somehow related to the heat generated in the subsurface during Silurian time as is indicated by the volcanism and granite intrusion; and also to the fact that the deposits occur in a transgressive sequence which contains the first phase of acid volcanism in the known geological history of the Lachlan Fold Belt.  相似文献   

4.
Geochemical studies of volcanic rocks in the Gamilaroi terrane and Calliope Volcanic Assemblage, New England Fold Belt, eastern Australia, indicate that the setting in which these rocks formed changed in both space and time. The Upper Silurian to Middle Devonian basalts of the Gamilaroi terrane show flat to slightly light rare‐earth element (LREE) depleted chondrite normalised patterns, depletion of high field strength elements (HFSE) relative to N‐MORB, low Ti/V and high Ti/Zr ratios, high Ni, Cr and large‐ion lithophile element (LILE) contents, features characteristic of intra‐oceanic island arc basaltic magmas. They are associated with low‐K, less mafic volcanics, showing moderate LREE enrichment, low Nb and Y contents and Rb/Zr ratios. The depletion of HFSE in the basalts indicates that the magmas were derived from a refractory source in a supra‐subduction zone setting. The presence of such a zone implies that the arc was associated with a backarc basin, the location of which was to the west where a wide backarc region existed from the Middle Silurian. This polarity of arc and backarc basin suggests that the subduction zone dipped to the west. In contrast to their older counterparts, Middle to Upper Devonian basalts of the Gamilaroi terrane have MORB‐like chondrite normalised patterns and higher Ti and lower LILE contents. Moreover, they have low Ti/Zr ratios and MORB‐like Ti/V ratios and HFSE contents, features typical of backarc basins. Dolerites of the Gamilaroi terrane also have predominantly backarc basin signatures. These features suggest that both the basalts and dolerites have been emplaced in an extensional environment produced during the rifting of the intra‐oceanic island arc lithosphere. A progressive increase in Ti/V ratios, and TiO2 and Fe2O3 contents at constant MgO, of stratigraphically equivalent basalts, towards the north‐northwest part of the belt, is consistent with either greater extension to the north or melting of a more fertile magma source. By contrast, basalts in the southeast part of the terrane have moderately high Ti/Zr and low Ti/V ratios and in some samples, exhibit depletion of HFSE, compositional features transitional between island arc and backarc basin basalts. The Lower to Middle Devonian mafic rocks in the Calliope Volcanic Assemblage show both LREE enriched and depleted chondrite normalised REE patterns. Further, the majority have high Ti/Zr ratios and low Zr contents as well as relatively high Th contents relative to MORB. These features are common to rocks of Middle Devonian age as well as those of Early Devonian age and are suggestive of eruption in an arc setting. Thus, the data from this study provide new evidence for the evolution of the New England Fold Belt from the Late Silurian to the Late Devonian and reveal a history more complicated than previously reported.  相似文献   

5.
Long-term shoreline shifts reflect eustatic changes, tectonic activity, and sediment supply. Available lithostratigraphical data from northern Africa, Arabia, and the Tethys Hymalaya, coupled with facies interpretations, permit us to trace late Silurian–Middle Devonian long-term shoreline shifts across the northern Gondwanan margin and to compare them with constraints on global sea-level changes. Our analysis establishes a regression–transgression cycle. Its coincident global sea-level changes reveal the dominance of the eustatic control. A transgression–regression cycle observed in Arabia is best explained by regional subsidence. Our study highlights the importance of constraining the role of regional tectonics when interpreting shoreline shifts.  相似文献   

6.
《Gondwana Research》2014,25(3-4):1051-1066
The Early Palaeozoic Ross–Delamerian orogenic belt is considered to have formed as an active margin facing the palaeo-Pacific Ocean with some island arc collisions, as in Tasmania (Australia) and Northern Victoria Land (Antarctica), followed by terminal deformation and cessation of active convergence. On the Cambrian eastern margin of Australia adjacent to the Delamerian Fold Belt, island arc and backarc basin crust was formed and is now preserved in the Lachlan Fold Belt and is consistent with a spatial link between the Delamerian and Lachlan orogens. The Delamerian–Lachlan connection is tested with new zircon data. Metamorphic zircons from a basic eclogite sample from the Franklin Metamorphic Complex in the Tyennan region of central Tasmania have rare earth element signatures showing that eclogite metamorphism occurred at ~ 510 Ma, consistent with island arc–passive margin collision during the Delamerian(− Tyennan) Orogeny. U–Pb ages of detrital zircons have been determined from two samples of Ordovician sandstones in the Lachlan Fold Belt at Melville Point (south coast of New South Wales) and the Howqua River (western Tabberabbera Zone of eastern Victoria). These rocks were chosen because they are the first major clastic influx at the base of the Ordovician ‘Bengal-fan’ scale turbidite pile. The samples show the same prominent peaks as previously found elsewhere (600–500 Ma Pacific-Gondwana and the 1300–1000 Ma Grenville–Gondwana signatures) reflecting supercontinent formation. We highlight the presence of ~ 500 Ma non-rounded, simple zircons indicating clastic input most likely from igneous rocks formed during the Delamerian and Ross Orogenies. We consider that the most probable source of the Ordovician turbidites was in East Antarctica adjacent to the Ross Orogen rather than reflecting long distance transport from the Transgondwanan Supermountain (i.e. East African Orogen). Together with other provenance indicators such as detrital mica ages, this is a confirmation of the Delamerian–Lachlan connection.  相似文献   

7.
This study focuses on the provenance, volcanic record, and tectonic setting of the Paleozoic Ventania System, a geologic province which comprises the Cambro-Devonian Ventania Fold Belt and the adjoining Permo-Carboniferous Claromecó Foreland Basin, located inboard the deformation front. The Ventania Fold Belt is formed of the Curamalal and Ventana groups, which are composed mainly of mature quartzites that were unconformably deposited on igneous and metamorphic basement. The Pillahuincó Group is exposed as part of the Claromecó Basin and it has lithological and structural features totally distinct from the lowermost groups. This group is composed of immature arkoses and subarkoses with intercalated tuff horizons, unconformably overlaying the quartzites and associated with glacial-marine deposits of the lower Late Carboniferous to Early Permian section. The petrography, as well as major and trace elements (including rare earth elements) support that the Ventania quartzites were derived from cratonic sources and deposited in a passive margin environment. For the Pillahuincó Group, we suggest a transition between rocks derived from and deposited in a passive margin environment to those with geochemical and petrographical signatures indicative of an active continental margin provenance. LA-MC-ICP-MS analysis performed on euhedral and prismatic zircon grains of the tuffs revealed an age of 284 ± 15 Ma. The geochemical fingerprints and geochronological data of the tuffs found in the Claromecó Basin support the presence of an active and widespread Lower Permian pyroclastic activity in southwestern Gondwana, which is interpreted as part of the Choiyoi Volcanic Province in Argentina and Chile.  相似文献   

8.
Despite extensive geochemical study and their importance to granite studies, the geochronology of Silurian to early-Devonian granitic rocks of southeastern Australia is poorly understood. In order to provide an improved temporal framework, new ion microprobe U–Pb zircon ages are presented from these rocks, and previous work is critically reviewed. Geochronological control is best in the Berridale Batholith, where S- and I-type granites have a close spatial relationship. In this region, there is a small volume of I-type granite that crystallised at 436 Ma, followed closely by a large volume of S-type granite at 432 Ma. I-type granite is abundant in a second peak at ca 417 Ma, although the Jindabyne pluton from the Kosciuszko Batholith is slightly older, at 424 Ma. A broader survey of S-type granite throughout the eastern Lachlan Orogen shows that the 432 Ma event is ubiquitous. There is no temporal overlap between S- and I-type granites in the Kosciuszko and Berridale Batholiths, which suggests that factors other than variations in degree of crustal contamination (which may include variation in tectonic setting, heat-flow, mass transfer across the crust–mantle boundary and/or availability in source materials) contribute to the diversity in granite types. The S-type granitic rocks occupy an aerial extent of greater than 28 000 km2, and geochronological constraints suggest that the crystallisation of these granites took place over a relatively small interval, probably less than 10 m.y. This implies a magmatic flux of over 64 km3/Ma per km strike length, comparable to other high-flux granitic belts. Previous work has linked the Benambran Orogeny to the generation of the S-type granites, and so the age of these granites constrains the age of Benambran Orogenesis  相似文献   

9.
Upper Devonian continental and subaqueous sedimentary rocks and bimodal volcanic rocks of the Boyd Volcanic Complex of the south coast of New South Wales were deposited in a rapidly subsiding, 330°‐trending, transtensional basin. Structural analysis of synvolcanic and synsedimentary deformational structures indicate that basin formation is related to a 330°‐orientated subhorizontal σ1 and a 060°‐orientated subhorizontal σ3, which account for the development of the observed intrusion and fracture orientations. Rhyolitic, basaltic and associated clastic dykes are preferentially intruded along extensional 330°‐trending fractures, subordinately along sinistral, transtensional 010°‐trending fractures and along 290°‐trending fractures. One of the implications of such a palaeotectonic reconstruction is that the so called north‐trending Eden‐Comerong‐Yalwal Late Devonian rift does not represent a simple, single palaeobasin entity, but is presently a north‐trending alignment of exposures of sedimentary and volcanic rocks probably emplaced in different basins or sub‐basins, mildly folded during the Carboniferous Kanimblan compression (which also formed the north‐trending Budawang synclinorium) and then extended to the east by the Tasman Sea opening during the Jurassic. The development of scattered, rapidly subsiding, basins characterised by bimodal volcanism during the Late Devonian throughout the Lachlan Fold Belt, can be interpreted in terms of extensional collapse of a forming mountain belt contemporaneous with a sharp decrease of compressional stress after the Middle Devonian Tabberabberan orogenic event. This would promote a reorientation of σ3 and transition from a compressional to a transtensional tectonic environment, which could also favour block rotation and formation of release basins.  相似文献   

10.
Lower to upper Middle Ordovician quartz-rich turbidites form the bedrock of the Lachlan Orogen in the southern Tasmanides of eastern Australia and occupy a present-day deformed volume of ~2–3 million km3. We have used U–Pb and Hf-isotope analyses of detrital zircons in biostratigraphically constrained turbiditic sandstones from three separate terranes of the Lachlan Orogen to investigate possible source regions and to compare similarities and differences in zircon populations. Comparison with shallow-water Lower Ordovician sandstones deposited on the subsiding margin of the Gondwana craton suggests different source regions, with Grenvillian zircons in shelf sandstones derived from the Musgrave Province in central Australia, and Panafrican sources in shelf sandstones possibly locally derived. All Ordovician turbiditic sandstone samples in the Lachlan Orogen are dominated by ca 490–620 Ma (late Panafrican) and ca 950–1120 Ma (late Grenvillian) zircons that are sourced mainly from East Antarctica. Subtle differences between samples point to different sources. In particular, the age consistency of late Panafrican zircon data from the most inboard of our terranes (Castlemaine Group, Bendigo Terrane) suggests they may have emanated directly from late Grenvillian East Antarctic belts, such as in Dronning Maud Land and subglacial extensions that were reworked in the late Panafrican. Changes in zircon data in the more outboard Hermidale and Albury-Bega terranes are more consistent with derivation from the youngest of four sedimentary sequences of the Ross Orogen of Antarctica (Cambrian–Ordovician upper Byrd Group, Liv Group and correlatives referred to here as sequence 4) and/or from the same mixture of sources that supplied that sequence. These sources include uncommon ca 650 Ma rift volcanics, late Panafrican Ross arc volcanics, now largely eroded, and some <545 Ma Granite Harbour Intrusives, representing the roots of the Ross Orogen continental-margin arc. Unlike farther north, Granite Harbour Intrusives between the Queen Maud and Pensacola mountains of the southern Ross Orogen contain late Grenvillian zircon xenocrysts (derived from underlying relatively juvenile basement), as well as late Panafrican magmatic zircons, and are thus able to supply sequence 4 and the Lachlan Ordovician turbidites with both these populations. Other zircons and detrital muscovites in the Lachlan Ordovician turbidites were derived from relatively juvenile inland Antarctic sources external to the orogen (e.g. Dronning Maud Land, Sør Rondane and a possible extension of the Pinjarra Orogen) either directly or recycled through older sedimentary sequences 2 (Beardmore and Skelton groups) and 3 (e.g. Hannah Ridge Formation) in the Ross Orogen. Shallow-water, forearc basin sequence 4 sediments (or their sources) fed turbidity currents into outboard, deeper-water parts of the forearc basin and led to deposition of the Ordovician turbidites ~2500–3400 km to the north in backarc-basin settings of the Lachlan Orogen.  相似文献   

11.
Volcanic‐hosted massive sulfide (VHMS) deposits of the eastern Lachlan Fold Belt of New South Wales represent a VHMS district of major importance. Despite the metallogenic importance of this terrane, few data have been published for sulfur isotope distribution in the deposits, with the exception of previously published studies on Captains Flat and Woodlawn (Captains Flat‐Goulburn Trough) and Sunny Corner (Hill End Trough). Here is presented 105 new sulfur isotope analyses and collation of a further 92 analyses from unpublished sources on an additional 12 of the VHMS systems in the Hill End Trough. Measured δ34S values range from ‐7.4% to 38.3%, mainly for massive and stockwork mineralisation. Sulfur isotope signatures for polymetallic sulfide mineralisation from the Lewis Ponds, Mt Bulga, Belara and Accost deposits (group 1) are all very similar and vary from ‐1.7% to 5.9%. Ore‐forming fluids for these deposits were likely to have been reducing, with sulfur derived largely from a magmatic source, either as a direct magmatic contribution accompanying felsic volcanism or indirectly through dissolution and recycling of rock sulfide in host volcanic sequences. Sulfur isotope signatures for sulfide mineralisation from the Calula, Commonwealth, Cordillera and Kempfield deposits, Peelwood mine and Sunny Corner (group 2) are similar and have average δ34S values ranging from 5.4% to 8.1%. These deposits appear to have formed from ore fluids that were more oxidising than group 1 deposits, representing a mixed contribution of sulfur derived from partial reduction of seawater sulfate, in addition to sulfur from other sources. The δ34S values for massive sulfides from the John Fardy deposit are the highest in the present study and have a range of 11.9–14.5%, suggesting a greater component of sulfur of seawater origin compared to other VHMS deposits in the Hill End Trough. For barite the sulfur isotope composition for samples from the Commonwealth, Stringers and Kempfield deposits ranges from 12.6% to 38.3%. More than 75% of barite samples have a sulfur isotope composition between 23.4 and 30.6%, close to the previously published estimates of the composition of seawater sulfate during Late Silurian to earliest Devonian times, providing supporting evidence that these deposits formed concurrently with the Late Silurian volcanic event. Sulfur isotope distribution appears to be independent of the host rock unit, although there appears to be a relation linking the sulfur isotope composition of different deposits to defined centres of felsic volcanism. The Mt Bulga, Lewis Ponds and Accost systems are close to coherent felsic volcanic rocks and/or intrusions and have sulfur isotope signatures with a stronger magmatic affinity than group 2 deposits. By contrast, group 2 deposits (including John Fardy) are characterised by 34S‐enrichment and a lesser magmatic signature, are generally confined to clastic units and reworked volcanogenic sediments with lesser coherent volcanics in the local stratigraphy, and are interpreted to have formed distal from the magmatic source. An exception is the Belara deposit, which is hosted by reworked felsic volcanic rocks and has a more pronounced magmatic sulfur isotope signature.  相似文献   

12.
Reconstructions of the Cambrian–Silurian tectonic evolution of eastern Gondwanaland, when the Australian Tasmanides and Antarctic Ross Orogen developed, rely on correlation between structural elements in SE Australia and Northern Victoria Land (NVL), Antarctica. A variety of published models exist but none completely solve the tectonic puzzle that is the Delamerian–Lachlan transition in the Tasmanides. This paper summarizes the understanding of Cambrian (Delamerian) to Silurian (Lachlan) geological evolution of the eastern Tasmanides, taking into account new deep seismic data that clarifies the geological connection between Victoria and Tasmania — the ‘Selwyn Block’ model. It evaluates previous attempts at correlation between NVL, Tasmania and Victoria, and presents a new scenario that encompasses the most robust correlations. Tasmania together with the Selwyn Block is reinterpreted as an exotic Proterozoic microcontinental block – ‘VanDieland’ – that collided into the east Gondwanaland margin south of western Victoria, and north of NVL in the Late Cambrian, perhaps terminating the Delamerian Orogeny in SE Australia. Subsequent north-east ‘tectonic escape’ of VanDieland in the Early Ordovician explains the present-day outboard position of Tasmania with respect to the rest of the Delamerian orogen, the origin of the hiatus that separates the Delamerian and Lachlan orogenic cycles in Australia, and how western Lachlan oceanic crust developed as a ‘trapped plate-segment’. The model establishes a new structural template for subsequent Lachlan Orogen development and Mesozoic Australia–Antarctica separation.  相似文献   

13.
14.
The Ordovician Macquarie Arc in the eastern subprovince of the Lachlan Orogen, southeastern Australia, is an unusual arc that evolved in four vertically stacked volcanic phases over ~ 37 million years, and which is flanked by coeval, craton-derived, passive margin sedimentary terranes dominated by detrital quartz grains. Although these two terranes are marked by a general absence of provenance mixing, LA-ICPMS analysis of U–Pb and Lu–Hf contents in zircon grains in volcaniclastic rocks from 3 phases of the arc demonstrates the same age populations of detrital grains inherited from the Gondwana margin as those that characterise the flanking quartz-rich Ordovician turbidites. Magmatic Phase 1 is older, ~ 480 Ma, and is characterised by detrital zircons grains with ages of ~ 490–540 with negative εHf from 0 to mainly –7.78, 550–625 Ma ages with negative εHf from 0 to ?26.6 and 970–1250 Ma (Grenvillian) with εHf from + 6.47 to ?6.44. We have not as yet identified any magmatic zircons related to Phase 1 volcanism. Small amounts of detrital zircons also occur in Phase 2 (~ 468–455 Ma), hiatus 1 and Phase 4 (~ 449–443 Ma), all of which are dominated by Ordovician magmatic zircons with positive εHf values, indicating derivation from unevolved mantle-derived magmas, consistent with formation in an intraoceanic island arc. Because of the previously obtained positive whole rock εNd values from Phase 1 lavas, we rule out contamination from substrate or subducted sediments. Instead, we suggest that during Phase 1, the Macquarie Arc lay close enough to the Gondwana margin so that volcaniclastic rocks were heavily contaminated by detrital zircon grains shed from granites and Grenvillian mafic rocks mainly from Antarctica (Ross Orogen and East Antarctica) and/or the Delamerian margin of Australia. The reduced nature of a Gondwana population in Phase 2, hiatus 1 and Phase 4 is attributed to opening of a marginal basin between the Gondwana margin and the Macquarie Arc that put it out of reach of all but rare turbiditic currents.  相似文献   

15.
16.
The Palaeozoic orogenic process in the North Tianshan of the southern Central Asian Orogenic Belt is controversial. Systematic field study indicates that the ophiolitic fragments of the North Tianshan are mainly thrust slices and blocks of a late Palaeozoic accretionary complex, which was intruded by granitoids. U-Pb zircon dating of plagiogranites from the North Tianshan ophiolite yielded a mean age of 343.1 ± 2.7 Ma. These are typical oceanic plagiogranites but with a supra-subduction zone (SSZ) signature. Ophiolitic basalts display N-MORB, E-MORB, and OIB compositions. One gabbro with an age of 301.9 ± 2.2 Ma shows E-MORB geochemistry mixed with N-MORB and OIB. Some andesites show clear island arc characters indicated by enrichment of LILEs relative to HFSEs. Mean ages of 344.9 ± 4.2 and 298.7 ± 2.4 Ma were obtained for a granite porphyry and a mylonitic granite, respectively. The two granitoids display an island arc geochemical signature evidenced by enrichment of LILEs and depletion of HFSEs. Combined with an eastward migration of Late Devonian to Carboniferous arc magmatism and related Cu-Au-Mo deposits, we propose that trench retreat and slab roll-back took place during subduction of the Junggar Ocean spreading ridge beneath the North Tianshan arc, and that the accretion may have lasted into early Permian time, an important late stage of the long-lived accretionary orogenesis in the southern Central Asian Orogenic Belt.  相似文献   

17.
The northwestern region of Peninsular India preserves important records of Precambrian plate tectonics and the role of Indian continent within Proterozoic supercontinents. In this study, we report precise SHRIMP zircon U–Pb ages from granitoids from the Sirohi terrane located along the western fringe of the Delhi Fold Belt in Rajasthan, NW India. The data reveal a range of Neoproterozoic ages from plagiogranite of Peshua, foliated granite of Devala, and porphyritic granite of Sai with zircon crystallization from magmas at 1015 ± 4.4 Ma, 966.5 ± 3.5 and 808 ± 3.1 respectively. The plagiogranite shows high SiO2, Na2O and extremely low K2O, Rb, Ba, comparable with typical oceanic plagiogranites. These rocks possess low LREE and HREE concentrations and a relatively flat LREE–HREE slope, a well-developed negative Eu-anomaly and conspicuous Nb and Ti anomalies. Compared to the plagiogranite, the foliated Devala granite shows higher SiO2 and moderate Na2O, together with high K2O and comparatively higher Rb, Ba, Sr and REE, with steep REE profiles and a weak positive Eu anomaly. In contrast to the plagiogranite and foliated granite, the porphrytic Sai granite has comparatively lower SiO2 moderately higher Na2O, extremely high Y, Zr, Nb and elevated REE. The geochemical features of the granitoids [HFSE depletion and LILE enrichment, Nb- and Ta-negative anomalies], and their plots in the fields of Volcanic Arc Granites and those from active continental margins in tectonic discrimination diagrams suggest widespread Neoproterozoic arc magmatism with changing magma chemistry in a protracted subduction realm. Our results offer important insights into a long-lived active continental margin in NW India during early and mid Neoproterozoic, consistent with recent similar observations on Cryogenian magmatic arcs widely distributed along the margins of the East African Orogen, and challenge some of the alternate models which link the magmatism to extensional tectonics associated with Rodinia supercontinent breakup.  相似文献   

18.
HAO  NANA  YUAN  WANMING  ZHANG  AIKUI  FENG  YUNLEI  CAO  JIANHUI  CHEN  XIAONING  CHENG  XUEQIN  MO  XUANXUE 《Journal of Earth System Science》2015,124(1):171-196
Journal of Earth System Science - The East Kunlun Orogenic Belt has undergone a composite orogenic process consisting of multiple orogenic cycles and involving many types of magmatic rocks spread...  相似文献   

19.
The Band-e-Hezarchah granitoids (BHG) is located in the northern margin of the central Iran, where the very old continental crust of Iran is found. The BHG mainly include granodiorite, granite and leucogranite. Small meta-gabbroic stocks and dykes are associated with BHG. U–Pb zircon dating of the BHG granites and metabasites yield 238U/206Pb crystallization ages of ca. 553.6 and 533.5 Ma respectively (Ediacaran–early Cambrian). The metabasites have calc-alkaline signature and their magmas seem to have originated from a mantle wedge above a subduction zone. These rocks are thought to be formed in a continental back-arc setting, related to the oblique subduction of Proto-Tethys oceanic lithosphere beneath the northern margin of Gondwanan supercontinent during Ediacaran–Cambrian time. The initial 87Sr/86Sr ratios and ɛNd (t) values for metabasites are change from 0.705 to 0.706 and −3.5 to −3.6 respectively. Sr–Nd isotope composition of metabasites indicates that these rocks were derived from a subcontinental lithospheric mantle source. The BHG and associated metabasites are coeval with other similar aged metagranites and gneisses from Iranian basements exposed in central Iran, Sanandaj-Sirjan and Alborz zones. These rocks were formed due to continental arc magmatism of Neoproterozoic–early Cambrian, bordering the northern active margin of Gondwana.  相似文献   

20.
INTRODUCTION Inrecentyears,greatprogressonthegeologic tec tonicevolutionandmineralresourcesofXinjianghas beenachieved.However,manyissuesarestilldebated, suchasancienttectonicpatternsandtheclosuretimeof theancientoceanicbasin(LiandXu,2004).Theseis sueshavelimitedourknowledgeoftheformationande volutionofAsiancontinents,aswellastheexploration anddevelopmentofmineralresources. Recently,theHilaketehalasuporphyrycopperde positwasdiscoveredinthestrataoftheMiddleDevoni anBeitashanFormatio…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号