首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GSWA Lancer 1, drilled in the northwest Officer Basin, intersected 49 m of tholeiitic basalt lava flows between depths of 527 and 576 m. These lavas have been named the Keene Basalt and were erupted during deposition of the shallow-marine Kanpa Formation, a mixed carbonate – siliciclastic succession in the Neoproterozoic Buldya Group. No direct dating of the Keene Basalt has been undertaken. Maximum depositional age constraints for the enclosing Kanpa Formation are provided by youngest concordant detrital zircon ages of 779±6 Ma for sandstone 19 m below the basalt, and 725±11 Ma for sandstone at the top of the Kanpa Formation in another drillhole. Correlation of the Kanpa Formation with the Burra Group of the Adelaide Rift Complex on palaeontological and chemostratigraphic grounds suggests an age older than 700 Ma. Limited geochemical data indicate that the Keene Basalt is of continental origin and shows a close similarity to mafic dykes near Mingary in South Australia. Petrographic and XRD analyses show that the Keene Basalt has been hydrothermally altered by interaction with seawater, and locally contains disseminated sulfides. Massive and disseminated sulfide mineralisation, similar to that of submarine systems, may exist in this tectonostratigraphic setting in the northwest Officer Basin.  相似文献   

2.
The eastern Officer Basin in South Australia contains a Neoproterozoic to Devonian succession overlain by relatively thin (<500 m) Permian, Mesozoic and Tertiary deposits. Within the basin fill, there are several major unconformities representing uncertain amounts of erosion. Three of these surfaces are associated with regional deformational events. Regional unconformities formed between 560 and 540 Ma (Petermann Ranges Orogeny), approximately 510–490 Ma (Delamerian Orogeny), 370–300 Ma (Alice Springs Orogeny), 260–150 Ma; and 95–40 Ma. AFTA® results from 13 samples of Neoproterozoic, Cambrian and Permian sedimentary rocks in five wells (Giles-1, Manya-2, -5 and -6 and Lake Maurice West-1) show clear evidence for a number of distinct thermal episodes. Results from all samples are consistent with cooling from the most recent thermal episode beginning at some time between 70 and 20 Ma (Maastrichtian–Miocene). AFTA results from Giles-1 indicate at least two pre-Cretaceous thermal episodes with cooling beginning between 350 and 250 Ma (Carboniferous–Permian) and between 210 and 110 Ma (Late Triassic–Albian). Results from Manya-2, -5 and -6 and Lake Maurice West-1 show evidence for at least one earlier higher temperature event, with cooling from elevated paleotemperatures beginning between 270 and 200 Ma (Late Permian to Late Triassic). These episodes can be correlated with other cooling/erosional events outside the study area, and the AFTA-derived paleotemperatures are consistent with kilometre-scale erosion for each of the episodes identified. Integration of the AFTA data with organic thermal maturation indicators (MPI) in the Manya and Giles-1 wells suggests that the Cambrian and Neoproterozoic successions in the northern part of the study area reached peak maturation prior to the Permian, while limited data from Lake Maurice West-1 allows peak maturation to have occurred as young as the Late Permian to Late Triassic thermal episode revealed by AFTA. The approach outlined in this study is relevant to all ancient basins as it emphasises the importance of understanding events associated with neighbouring regions. The thermal history of the Officer Basin, as with most other ancient basins, has been strongly affected by significant tectonic events throughout its history, even though younger deposits are not preserved in the basin itself. The recognition of these younger events, and the implications of these events for the depositional history, is important as it allows identification of the best regions for preservation of early generated hydrocarbons, and in some cases, suggests areas where generation of hydrocarbons could have occurred more recently than previously thought.  相似文献   

3.
Devonian reef complexes were well developed in Western Australia and South China, but no detailed direct comparison has been made between reef building in the two regions. The regions differ in several respects, including tectonic, stratigraphic and palaeoceanographic–palaeogeographic settings, and the reef building styles reflect minor differences in reef builders and reef facies. Similarities and differences between the two reef complexes provide insights into the characteristics of platform margins, reef facies and microbial carbonates of both regions. Here we present a comparison of platform margin types from different stratigraphic positions in the Late Devonian reef complex of the Canning Basin, Western Australia and Middle and Late Devonian margin to marginal slope successions in Guilin, South China. Comparisons are integrated into a review of the reefal stratigraphy of both regions. Reef facies, reef complex architecture, temporal reef builder associations, 2nd order stratigraphy and platform cyclicity in the two regions were generally similar where the successions overlap temporally. However, carbonate deposition began earlier in South China. Carbonate complexes were also more widespread in South China and represent a thicker succession overall. Platforms in the Canning Basin grew directly on Precambrian crystalline basement or early Palaeozoic sedimentary rocks, but in South China, carbonate complexes developed conformably on older Devonian siliciclastic strata. Pre-Frasnian reef facies in South China had more abundant skeletal frameworks than in Canning Basin reefs of equivalent age, and Famennian shoaling margins containing various microbial reefs may have been more common and probably more diverse in South China. However, Late Devonian platform margin types have been documented more completely in the Canning Basin. Deep intra-platform troughs (deep depressions containing non-carbonate pelagic sediments — Nandan-type successions) that developed along syndepositional faults characterize Devonian carbonate platforms in South China, but have no equivalent on the Lennard Shelf, Canning Basin where inter-reef areas were more shallow. The South China platform-to-depression pattern was generally continuous from the Lower to Upper Devonian, indicating that many pre-Devonian tectonic features continued to exercise considerable effect through deposition. Localized, fault-controlled subsidence was an important factor in both regions, but similarities in 2nd order aggradation–progradation cycles suggest that eustasy was also an important control on the larger scale stratigraphic development of both regions.  相似文献   

4.
<正>Beetles(Coleoptera)are the most common insects recovered from the Lower Jurassic Mintaja insect locality of Western Australia,with over half of the fossils recorded from this site being isolated coleopteran elytra. A range of partial beetle bodies and other isolated beetle sclerites have also been recovered from the locality; much of this material is taxonomically unidenitifiable due to its disarticulation and poor preservation.A number of the Mintaja coleopterans are assigned to the archostematan family Ommatidae,including Zygadenia westraliensis(Riek,1968)comb.nov,previously placed in the morphogenus Mesothoris,and an unnamed species of Tetraphalerus.Also recorded is a new species of elaterid,Lithomerus wunda sp.nov.,along with other fragments likely attributable to the same family.The remaining material is assigned into morphospecies, separated primarily on preserved body parts—specifically,there are three morphospecies based on partially articulated coleopteran bodies,two morphospecies based on isolated head capsules,three morphospecies based on isolated thoracic sclerites,three morphospecies based on isolated abdominal sclerites,and 13 morphospecies based on isolated elytra.Overall,the ecology of these fossils is difficult to interpret due to poor preservation, although some of the beetles were likely aquatic,and the Ommatidae and Elateridae were both likely xylophilous. There is a strong similarity between the Mintaja coleopterans and those from the Late Triassic Denmark Hill locality of Queensland,though many of these similarities are based on morphotaxa and may be superficial in nature.Of the species that have been assigned to named taxa,all are generally typical of the Late Mesozoic worldwide,with Zygadenia,Tetraphalerus and Lithomerus all long-ranging,cosmopolitan genera.  相似文献   

5.
The Palaeoproterozoic Capricorn Formation near Ashburton Downs in northwestern Australia formed during the latter stages of the convergence of the Pilbara and Yilgarn Cratons. Palaeocurrent and facies analyses show that the southwesterly derived sediments were deposited in terrestrial environments and in a lake or shallow sea with a shoreline trending southeast. Intraformational debris flows suggest instability during sedimentation. Zircon grains from an accretionary lapilli tuff, dated at 1804 ± 7 Ma by the SHRIMP U—Pb method, show that the Capricorn Formation was deposited at the same time as granitic plutons were intruded in the Gascoyne Complex to the south and west. Although the Capricorn Formation was deposited with marked angular unconformity over the turbiditic Ashburton Formation, both formations could have been deposited in a foreland basin on the northeast flank of the growing Ashburton Fold Belt.  相似文献   

6.

The Savory Basin in central Western Australia was recognized in the mid‐1980s during regional mapping of very poorly exposed Proterozoic rocks previously assigned to the Bangemall Basin. All of the sedimentary rock units in the Savory Basin have been included in the Savory Group, which unconformably overlies the Mesoproterozoic Yeneena and Bangemall Groups. Correlation with adjacent basins is impeded by poor outcrop and the lack of subsurface information. Possible correlations have been investigated with the much better known Amadeus Basin to the east, and with the Officer Basin. Two correlations now clarify the age and relationships of the Savory Group. First, the Skates Hills Formation contains distinctive stromatolites previously recorded from the Bitter Springs Formation of the Amadeus Basin. In addition, the Skates Hills and Bitter Springs Formations have many lithological features in common. This correlation is strengthened by comparison with surface and subsurface units in the northern Officer Basin. Second, the intergrading sandstone‐diamictite of the Boondawari Formation is very similar to the intergrading Pioneer Sandstone‐Olympic Formation of the Amadeus Basin, and the overlying siltstone closely resembles the Pertatataka Formation and its correlative the Winnall beds. The stromatolitic and oolitic carbonates at the top of the Boondawari Formation are broadly comparable with those of the Julie Formation (which grades down into the Pertatataka Formation). Support for this set of correlations comes from carbon isotope chemostratigraphy. The stromatolites include two new forms described herein, Eleonora boondawarica and Acaciella savoryensis, together with a third form too poorly preserved to be formally defined. The age of the upper sandstones is unknown. The McFadden Formation seems to have its provenance in the Paterson Orogen. The southeastern extension of this orogen is the Musgrave Block, where compression followed by uplift at about 560–530 Ma (Peterman Ranges Orogeny) led to the formation of large amounts of conglomerate (Mt Currie Conglomerate) and sandstone (Arumbera Sandstone). If tectonic events in the Paterson Orogen were contemporaneous with those in the Musgrave Block, the McFadden Formation would correlate with the Arumbera Sandstone.  相似文献   

7.
Linella avis, an early to middle Neoproterozoic (Tonian to Cryogenian) stromatolite, occurs in the Eliot Range Dolomite, part of the Ruby Plains Group in the Wolfe Basin, east Kimberley. Previously, this dolomite was assigned to the Mesoproterozoic Bungle Bungle Dolomite in the Osmond Basin, which contains a different suite of stromatolites. Linella avis, which also occurs in the Neoproterozoic Bitter Springs Formation of the Amadeus Basin, central Australia, appears to be restricted to rocks aged around 850 to 800 Ma. The presence of L. avis indicates that the Ruby Plains Group is a probable correlative of the Heavitree Quartzite and Bitter Springs Formation, and is probably much younger than the Bungle Bungle Dolomite. If the correlation suggested here is correct, the Wolfe Basin, together with the Amadeus and Ngalia Basins, formed part of the Centralian Superbasin.  相似文献   

8.
The significance of trilobites described from six cores from the Kalladeina 1 drillhole from the Warburton Basin, northeastern South Australia is discussed. The oldest are from a dark grey shale of Core 16 from a depth of 3453.7–3455.8 m; they are of possible early Drumian (Cambrian Series 3, middle Cambrian) age. The youngest come from a dark grey shale of Core 4 at a depth of 2017.2–2022.04 m. This fauna contains the trilobites Asaphellus? sp., Yosimuraspis sp., Conophrys sp. and Protopliomerops? sp. thus indicating a Tremadoc (earliest Ordovician) age. These are the youngest known trilobites from the Warburton Basin and the youngest known in South Australia.  相似文献   

9.
Abundant scratching traces are described from the Early Triassic Kockatea Shale Formation in the Northampton area of the northern Perth Basin, Western Australia. Except for the Radichnus trace that represents grazing of a possible decapod mecochirids, Scalpoichnus minchinensis igen. and isp. nov. is established to accommodate other scratching sculptures, which might have been produced by arthropods that share similar feeding behaviours to those of decapods. These arthropod traces occurred on a mat‐bound substratum defined by wrinkle structures. Microbial mats may have served as food resources for trace‐makers feeding on the substratum. Furthermore, microbial envelopes functioning as a sole veneer in early diagenesis acted as a crucial role for the preservation of those shallow‐tiered engraving traces. Abundant arthropod traces indicate frequent grazing activities probably by decapods or organisms having similar feeding habits upon microbial mat‐bound substratum, implying that the deposit‐feeders or omnivores survived on the matgrounds in the aftermath of the end‐Permian mass extinction in Gondwanaland. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Eyles  & Eyles 《Sedimentology》2000,47(2):343-356
The intracratonic Canning Basin is Western Australia's largest sedimentary basin (>400 000 km2) and has experienced repeated episodes of Phanerozoic extension and subsidence, resulting in deposition of a number of first-order 'megasequences'. A major phase of basin extension and sedimentation (Grant Group) occurred in the Late Carboniferous/Early Permian when Australia lay at high palaeolatitudes. Facies analysis of 5000 m of drill core from 25 continuously cored wells in Grant Group strata on the fault-bounded Barbwire Terrace in the northern Canning Basin identified three facies associations (FAs). These record the predominance of fault-generated, subaqueous mass flow and sediment reworking. The lowest association (FA I; up to 355 m thick) rests unconformably on tilted older strata and consists of coarse-grained, subaqueously deposited, sediment gravity flow facies. These include fault-generated breccias, massive and graded sandstones and conglomerates deposited by turbidity currents and diamictites generated by mixing of different textural populations during downslope remobilization. FA I is overlain abruptly by relatively fine-grained deposits of FA II (up to 140 m thick), which consist of laminated to thin-bedded mudstone and sandstone turbidites, recording an abrupt increase in relative water depths. In turn, these facies coarsen upwards and are transitional into shallow-water, swaley cross-stratified and rippled sandstones of FA III (up to 125 m thick). The overall stratigraphic succession probably records an initial phase of faulting and accommodation of coarse sediment (FA I), a subsequent phase of rapid subsidence, increasing water depths and 'sediment underfilling' (FA II) and, finally, a regressive phase of shoreface progradation. The occurrence of rare striated clasts in FA I suggests reworking of glacial sediment, but no direct glacial influence on sedimentation can be identified.  相似文献   

11.
Previously, two layers containing impact melt spherules, the Wittenoom spherule layer and the Carawine spherule layer, exposed in the main outcrop area and Oakover River area, respectively, of the Neoarchaean?–?Palaeoproterozoic Hamersley Basin of Western Australia, were correlated. Subsequent discovery and study of the Jeerinah spherule layer in the main outcrop area, as well as a new Carawine spherule layer exposure now suggest that the Carawine and Jeerinah spherule layers are correlates. The previous Wittenoom?–?Carawine correlation was based on the presence of spherules and sedimentological consistency: both layers comprise sediment gravity flows, and the Wittenoom spherule layer was interpreted as the downflow equivalent of the Carawine layer. However, the Jeerinah spherule layer also consists of sediment gravity flows, which could be related to the Carawine layer. Since all three layers reflect events triggered by oceanic impacts, these similarities are not surprising, but they do eliminate sedimentology as a correlation tool. However, two compositional trends suggest that the Carawine and Jeerinah layers are correlates: (i) the textures of their spherules are very similar and are distinctly different from the Wittenoom layer; and (ii) only the Carawine and Jeerinah layers contain irregular impact melt particles. The latter observation is strong evidence as irregular particles are unknown in any other early Precambrian spherule layers in Western Australia. While triggered by the same impact, it is unlikely that the Carawine and Jeerinah spherule layers were deposited by the same sediment gravity flows, as they contain very different intraclast populations.  相似文献   

12.
《International Geology Review》2012,54(16):1906-1917
This article presents the first palaeomagnetic results from 13 independent cooling units in the Chiapanecan Volcanic Arc (ChVA). Six sites were directly dated by Ar–Ar or K–Ar methods: their dates range from 2.14 to 0.23 Ma. We isolated the characteristic palaeodirections for all 13 lavas. Eleven non-transitional directions yield a mean direction with inclination, I?=?30.7°, declination, D?=?4.1°, and precision parameters k?=?63 and α95 = 5.8°. The corresponding mean palaeopole position is Plat = 83.3°, Plong = 203.8°, K?=?227, A 95 = 5.1°. The mean inclination is in good agreement with the expected value for the last 5 million years, as derived from the synthetic North American polar wander path [Besse and Courtillot 2002 Besse, J. and Courtillot, V. 2002. Apparent and true polar wander and the geometry of the magnetic field in the last 200 million years. Journal of Geophysical Research, 107(B11) doi:10.1029/2000JB000050[Crossref], [Web of Science ®] [Google Scholar], Apparent and true polar wander and the geometry of the magnetic field in the last 200 million years: Journal of Geophysical Research, v. 107, no. B11, p. 2300], but a measured rotation of the palaeodeclination of about 8° with respect to the expected direction suggests the possibility of a clockwise rotation of the studied ChVA units. We have estimated the characteristics of palaeosecular variation through study of the scatter of virtual geomagnetic poles, obtaining a palaeosecular variation parameter S b = 14.5° with upper limit S U = 19.6° and lower limit S L = 11.7°, in reasonable agreement with the fit of model G [McFadden et al., 1988 Quidelleur, X., Carlut, J., Gillot, P.Y. and Soler, V. 2002. Evolution of the geomagnetic field prior to the Matuyama-Brunhes transition: Radiometric dating of a 820 ka excursion at La Palma. Geophysical Journal International, 151: F6F10. [Crossref], [Web of Science ®] [Google Scholar], Dipole/quadrupole family modeling of paleosecular variation: Journal of Geophysical Research, v. 93, no. B10, p. 11583–11588; 1991, Reversals of the Earth's magnetic field and temporal variations of the dynamo families: Journal of Geophysical Research, v. 96, no. B3, p. 3923–3933] to the Johnson et al. [2008 Johnson, C.L., Constable, C.G., Tauxe, L., Barendregt, R., Brown, L.L., Coe, R.S., Layer, P., Mejia, V., Opdyke, N.D., Singer, B.S., Staudigel, H. and Stone, D.B. 2008. Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows. Geochemistry, Geophysics, Geosystems, 9(4) ID Q04032, doi:10.1029/2007GC001696[Crossref], [Web of Science ®] [Google Scholar], Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows: Geochemistry, Geophysics, Geosystems, v. 9, no. 4, ID Q04032, doi:10.1029/2007GC001696] databases for the last 5 million years. In those cases in which age determinations are available, the polarity obtained for the studied flows is consistent with their stratigraphic positions, except for the Huitepec site, which probably reflects the transitional geomagnetic regime prior to the Matuyama–Brunhes geomagnetic reversal.  相似文献   

13.
The term ‘cap carbonate’ is commonly used to describe carbonate units associated with glacigenic deposits in Neoproterozoic successions. Attempts to use carbonate units as stratigraphic markers have been counfounded by inconsistent identification of ‘cap carbonates’ and a somewhat broad use of the term. Systematic sedimentological and geochemical analysis of carbonate rocks (mostly dolomite) associated with glacigenic deposits from the Neoproterozoic succession of the Kimberley region, north‐western Australia, shows that it is possible to characterize such units by their specific mineralogical, sedimentological, petrographic, geochemical and stratigraphic features. Hence, it is possible to differentiate true ‘cap carbonates’ from other carbonate units that are associated with glacigenic deposits. In the Kimberley successions two broad carbonate types are identified that reflect two stratigraphically distinct depositional realms. Carbonate rocks from the Egan Formation and Boonall Dolomite (the youngest carbonate units in the succession) are characterized by sedimentary components and features that are consistent with deposition on shallow platforms or shelves, analogous to Phanerozoic warm‐water carbonate platform deposits. In contrast, dolomite from the Walsh, Landrigan and Moonlight Valley Tillites preserves a suite of sedimentary and geochemical characteristics that are distinctly different from Phanerozoic‐like carbonate rocks; they are thin (ca 6 m), laterally persistent units of thinly laminated dolomicrite/dolomicrospar recording δ13C fluctuations from −1‰ to −5‰. These latter features are consistent with a ‘Marinoan‐style cap‐carbonate’ rock described from other Neoproterozoic successions. The similarity and broad distribution of these rocks in Australia, when considered within the context of genetic models suggesting a global oceanographic–atmospheric event, support their use as a lithostratigraphic marker horizon for the start of the Ediacaran Period at ca 635 Ma.  相似文献   

14.
Isolated quartzose pebbles, clusters of quartz granules, orthogonal aggregates of poorly sorted quartzose coarse sand, and ovoid pellets (≤2 mm long) of quartz silt occur in hemipelagic marine mudstone of the mid-Ediacaran Bunyeroo Formation exposed in the Adelaide Geosyncline (Adelaide Rift Complex), and ovoid pellets of quartz silt in cores of the correlative marine Dey Dey Mudstone from deep drillholes in the Officer Basin, South Australia. This detritus is interpreted respectively as dropstones, dumps, and frozen aggregates dispersed by sea ice possibly of seasonal origin, and till pellets transported by glacial ice. The ice-rafted material in the Bunyeroo Formation only has been found <10 m stratigraphically below and above a horizon of dacitic ejecta related to the 90 km diameter Acraman impact structure in the Mesoproterozoic Gawler Range Volcanics 300 km to the west. Furthermore, till pellets have been identified 4.4 to 68 m below distal Acraman ejecta in the Dey Dey Mudstone >500 km northwest of the impact site. The Acraman impact took place at a low paleolatitude (~12.5°) and would have adversely affected the global environment. The stratigraphic observations imply, however, that the impact occurred during, but did not trigger, a cold interval marked by sea ice and glacial ice, although the temporal relationship with Ediacaran glaciations elsewhere in Australia and on other continents is unclear. Release from the combined environmental stresses of a frigid, glacial climate near sea-level and a major impact in low latitudes may have been a factor influencing subsequent Ediacaran biotic evolution.  相似文献   

15.
The Perth Basin (PB) hosts important aquifers within the Yarragadee Formation and adjacent geological formations with potential for economic exploitation by both geothermal energy and carbon capture and sequestration. Published studies on the reservoir quality of the sedimentary units of the PB are very few. This study reports some petrophysical and lithological characteristics of the sedimentary units of interest for geothermal and geosequestration scenarios and help interpolation toward non-sampled intervals. A new fluvial-dominated lithofacies scheme was developed for the Mesozoic stratigraphy from four wells drilled in the central PB (Pinjarra-1, Cockburn-1, Gingin-1 and Gingin-2) based on grainsize, sorting, sedimentary structures and colour that relate to the environment of deposition. Systematic laboratory measurements of permeability, porosity, and thermal conductivity were conducted on core samples to investigate a variety of lithofacies and depths from these wells. Empirical correlations are established among the different physical properties, indicating encouraging relationships for full PB basin interpolation such as between porosity and permeability, when the samples are grouped into ‘hydraulic units’ defined by a ‘flow zone indicator’ parameter. The common principal controls on the PB thermal conductivity are the pore space arrangement and mineralogical content, which are strongly lithofacies-specific. Therefore, the lithofacies type could be a good first-order discriminator for describing spatial variations of thermal conductivity and then estimate their flow zone indicator.  相似文献   

16.
The Bardoc Tectonic Zone (BTZ) of the late Archaean Eastern Goldfields Province, Yilgarn Craton, Western Australia, is physically linked along strike to the Boulder-Lefroy Shear Zone (BLSZ), one of the richest orogenic gold shear systems in the world. However, gold production in the BTZ has only been one order of magnitude smaller than that of the BLSZ (∼100 t Au vs >1,500 t Au). The reasons for this difference can be found in the relative timing, distribution and style(s) of deformation that controlled gold deposition in the two shear systems. Deformation within the BTZ was relatively simple and is associated with tight to iso-clinal folding and reverse to transpressive shear zones over a <12-km-wide area of high straining, where lithological contacts have been rotated towards the plane of maximum shortening. These structures control gold mineralisation and also correspond to the second major shortening phase of the province (D2). In contrast, shearing within the BLSZ is concentrated to narrow shear zones (<2 km wide) cutting through rocks at a range of orientations that underwent more complex dip- and strike-slip deformation, possibly developed throughout the different deformation phases recorded in the region (D1–D4). Independent of other physico-chemical factors, these differences provided for effective fluid localisation to host units with greater competency contrasts during a prolonged mineralisation process in the BLSZ as compared to the more simple structural history of the BTZ.  相似文献   

17.
Several iron-ore deposits hosted within Mesoarchean banded iron formations (BIFs) are mined throughout the North Pilbara Craton, Western Australia. Among these, significant goethite±martite deposits (total resources >50 Mt at 55.8 wt% Fe) are distributed in the Wodgina district within 2 km of the world-class pegmatite-hosted, tantalum Wodgina deposits. In this study, we investigate the dominant controls on iron mineralisation at Wodgina and test the potential role of felsic magma-derived fluids in early alteration and upgrade of nearby BIF units. Camp-scale distribution and geochemistry of iron ore at Wodgina argue against any significant influence of identified felsic intrusions in the upgrade of BIF. Whereas, the formation of BIF-hosted goethite±martite iron ore at Wodgina involves: (i) early (ca 2950 Ma) metamorphism of BIF causing camp-scale recrystallisation of pre-existing iron oxides to form euhedral magnetite, with local enrichment to sub-economic grades (~40 wt% Fe) within or proximal to metre-wide, bedding-parallel shear zones, and (ii) later supergene lateritic enrichment of the magnetite-bearing BIF and shear zones, forming near-surface goethite±martite ore. The supergene alteration sequence includes: (i) downward progression of the oxidation front and replacement of magnetite by martite, (ii) local development of silcrete at ~40 m below the modern surface caused by the lowering of the water-table, (iii) intensive replacement of quartz by goethite, resulting in the goethite±martite ore bodies at Wodgina, and (iv) late formation of ferricrete and ochreous goethite. Goethitisation most likely took place within the hot and very wet climate that prevailed from the Paleocene to the mid-Eocene. Goethite precipitation was accompanied by the incorporation of trace elements P, Zn, As, Ni and Co, which were likely derived from supergene fluid interaction with nearby shales. Enrichment of these elements in goethite-rich ore indicates that they are potentially useful pathfinder elements for concealed ore bodies covered by trace element-depleted pedogenic silcrete and siliciclastic rocks located throughout the Wodgina mine.  相似文献   

18.
The Songliao Basin in Northeast Asia is the largest and longest-lived rift basin and preserves a near-continuous continental succession of the most of the Cretaceous period, providing great material to investigate the adaption of the terrestrial systems to the Cretaceous greenhouse climate and tectonic events. However, the paucity of precise and accurate radioisotopic ages from the Early Cretaceous strata of the Songliao Basin has greatly held back the temporal and causal correlation of the continental records to the global Early Cretaceous records. Three tuff layers intercalated in the Yingcheng Formation have been intercepted by the SK-2 borehole, which offer excellent materials for radioisotopic dating and calibration of the chronostratigraphy of the Lower Cretaceous sequence of Songliao Basin. Moreover, the Yingcheng Formation recorded the largest and the last of the two major volcanic events in Songliao Basin, which also represents a turning point in the basin evolution history of Songliao from syn-rift stage to post-rift stage. Here we report high-precision U–Pb zircon geochronology by the CA-ID-TIMS technique on three tuff samples from the Yingcheng Formation of the SK-2 borehole in the Songliao Basin to construct a greatly improved, absolute age framework for the Yingcheng Formation and provide crucial age constraints for the Songliao Lower Cretaceous Strata. The new CA-ID-TIMS geochronology constrained the Yingcheng Formation at 102.571 + 0.320/?2.346 Ma to ca. 113 Ma, correlating to the Albian Stage. Combined with the previous published Songliao geochronology, the Quantou Formation is constrained to between 96.442 + 0.475/?0.086 Ma and 91.923 + 0.475/?0.086 Ma; the Denglouku Formation is constrained to between 102.571 + 0.320/?2.346 Ma and 96.442 + 0.475/?0.086 Ma; the age of the Shahezi Formation is estimated at ca. 113 Ma to ca. 118 Ma, which could extend to ca. 125 Ma in some locations in Songliao Basin. The major unconformity between the Yingcheng Formation and the Denglouku Formation, which represents the transition of the basin from syn-rift to post-rift is thus confined to between 102.571 + 0.320/?2.346 Ma and 96.442 + 0.475/?0.086 Ma. This is roughly contemporaneous with the change in the direction of the paleo-Pacific plate motion from west-southwest to north or northwest in mid-Cretaceous, suggesting their possible connections.  相似文献   

19.
The centre of the 13?×?11 km Spider impact structure, Western Australia, displays an unusual system of eroded folds and imbricated thrusts surrounding a sandstone dome. As inferred from GIS-integrated remote sensing, geological and digital elevation data, the structural setting of the original crater was influenced by, and hence post-dates, the formation of the Mt Barnett Syncline, the east?–?west-oriented axis of which runs through the Spider structure. The syncline formed during the regional Yampi Orogeny (ca 900 Ma), thus constraining the maximum age of the impact event. The sandstone dome in the centre of Spider formed prior to the imbrication, as interpreted from the present setting that indicates a deflection of the southward moving material during the crater collapse. Two modes of formation are discussed in order to explain the south-directed shortening in the Spider impact structure: (i) impact into the bottom of a syncline-controlled palaeovalley leading to uplift of the central crater floor followed by gravity-driven asymmetric sliding preferentially from the northern crater wall and valley slope, respectively; and (ii) moderately oblique (~10?–?30°) impact from the north onto the axis of the syncline, producing a central uplift under the influence of downrange residual momentum and, thus, asymmetric deformation inside the uplift and farther downrange. Neither model alone explains all the observations, and only a combination of both may provide a satisfactory solution.  相似文献   

20.
Abstract The stability of quartz-chloritoid-staurolite-almandine-cordierite and aluminium silicates is used to constrain both metamorphic conditions and pressure-temperature trajectories for two localities within the 2700 Ma Archaean Yilgarn Block in Western Australia. Available experimental data are used to calculate thermodynamic data for a self-consistent set of equilibria between these minerals. A lower amphibolite facies locality from the margin of a lower strain area contains assemblages including quartz-chloritoid-staurolite-garnet-biotite with altered cordierite replacing chloritoid, quartz-staurolite-andalusite, and quartz-cordierite-andalusite-biotite. This locality was heated to 530–560°C in the andalusite field, at 4.2 kbar. A sample from a mid- to upper-amphibolite facies, highly strained locality contains relict staurolite enclosed by andalusite, in turn replaced by cordierite and muscovite with biotite and sillimanite in the matrix. The assemblage was heated isobarically from conditions near the maximum experienced by the lower grade locality of 560°C at 4.2 kbar to temperatures in excess of the andalusite-sillimanite transition but within the quartz plus muscovite stability field (600–650°C). The higher grade locality is close to a granitoid dome and sections based on gravity profiles reveal that this locality is underlain by granitoid at shallow depths. The higher grade metamorphism apparently reflects superposition of the thermal aureole on regional metamorphic conditions similar to those in the lower grade areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号