共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordovician quartz turbidites of the Lachlan Fold Belt in southeastern Australia accumulated in a marginal sea and overlapped an adjoining island arc (Molong volcanic province) developed adjacent to eastern Gondwana. The turbidite succession in the Shoalhaven River Gorge, in the southern highlands of New South Wales, has abundant outcrop and graptolite sites. The succession consists of, from the base up, a unit of mainly thick‐bedded turbidites (undifferentiated Adaminaby Group), a unit with conspicuous bedded chert (Numeralla Chert), a unit with common thin‐bedded turbidites (Bumballa Formation (new name)) and a unit of black shale (Warbisco Shale). Coarse to very coarse sandstone in the Bumballa Formation is rich in quartz and similar to sandstone in the undifferentiated Adaminaby Group. Detrital zircons from sandstone in the Bumballa Formation, and from sandstone at a similar stratigraphic level from the upper Adaminaby Group of the Genoa River area in eastern Victoria, include grains as young as 453–473 Ma, slightly older than the stratigraphic ages.The dominant detrital ages are in the interval 500–700 Ma (Pacific Gondwana component) with a lessor concentration of Grenville ages (1000–1300 Ma). This pattern resembles other Ordovician sandstones from the Lachlan Fold Belt and also occurs in Triassic sandstones and Quaternary sands from eastern Australia. The Upper Ordovician succession is predominantly fine grained, which reflects reduced clastic inputs from the source in the Middle Cambrian to earliest Ordovician Ross‐Delamerian Fold Belts that developed along the eastern active margin of Gondwana. Development of subduction zones in the Late Ordovician marginal sea are considered to be mainly responsible for the diversion of sediment and the resulting reduction in the supply of terrigenous sand to the island arc and eastern part of the marginal sea. 相似文献
2.
Detrital volcanic and vein quartz, accompanied by felsic volcanic debris, occur as minor constituents in the Ordovician subduction‐related mafic volcanics of the Molong Volcanic Belt. In the western province of the Molong Volcanic Belt, detrital quartz is present in the three episodes of the mafic Volcanics. Volcanic quartz occurs in allochthonous limestone blocks in the Bendigonian Hensleigh Siltstone overlying the Mitchell Formation. The second volcanic episode (the Fairbridge Volcanics) commenced after a hiatus of approximately 20 million years and lasted around 10 million years from Darriwilian to Gisbornian time. Locally derived vein quartz, volcanic quartz and felsic detritus are concentrated at the bases of autochthonous Wahringa and Yuranigh Limestone Members of the volcanics and are extensive and abundant in basal beds of the regional Eastonian limestone body that transgressed over an eroded volcanic centre at Cargo. This early Eastonian debris, deposited early in an 8 million‐year volcanic hiatus preceding the final Ordovician Bolindian volcanism, establishes a pre‐Eastonian age for mineralisation at Cargo. It is inferred that the pauses in volcanism were preceded by magmatic fractionation, intrusion and hydrothermal activity and followed by erosion, subsidence and deposition of autochthonous limestones. Minor occurrences of vein and volcanic quartz are found in Bolindian volcanogenic sediments of the third volcanic phase. It is concluded that hydrothermal vein formation (and mineralisation by inference) was associated with pauses in volcanic activity throughout the Middle to early Late Ordovician over a wide area in the western province, culminating in the mineralisation at Cargo and Copper Hill near Molong. Volcanism in the eastern province of the Molong Volcanic Belt was continuous from at least Darriwilian to latest Ordovician time. Here, detrital hydrothermal vein quartz and volcanic quartz and felsic detritus are distributed through late Middle and early Late Ordovician turbidites of the Weemalla Formation. The possible existence of cycles in the source area like those of the Fairbridge Volcanics is masked by the distal nature of these deposits. Vein formation occurred in both provinces from late Middle Ordovician to early Late Ordovician, long before the formation of the world‐class mineral deposit at Cadia associated with the latest Ordovician Cadia Monzonite. 相似文献
3.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism. 相似文献
4.
Many granites have compositional features that directly reflect the composition of their source rocks. Since most granites come from the deeper parts of the Earth's crust, their study provides information about the nature of parts of that deep crust. Granites and related volcanic rocks are abundant and widely distributed in the Palaeozoic Lachlan Fold Belt of southeastern Australia. These granites show patterns of regional variation in which sharp discontinuities occur between provinces which internally are of a rather constant character. Such a discontinuity has long been recognized at the I‐S line and the extent of that line can now be defined more fully. Breaks of this type are thought to correspond to sharp changes in the composition of the deep crust that correspond to unexposed or basement terranes. Nine such basement terranes can be recognized in the Lachlan Fold Belt. The character of these basement terranes appears to be different from that of the terranes recognized in the Mesozoic‐Cainozoic Cordilleran fold belt, in which the plates accreted during the period of tectonism reflected in the exposed surface rocks. In the Lachlan Fold Belt, it is postulated that fragments of continental crust, or microplates, were assembled in the Late Proterozoic or Early Palaeozoic to form the substrate of the presently exposed Palaeozoic sedimentary rocks; the compositional features of these fragments were later redistributed vertically by magmatic processes. The identification of basement terranes of this type shows that models which involve the lateral growth of the Lachlan Fold Belt during the Palaeozoic, in a manner analogous to the accretion of younger belts, are untenable. These basement terranes have implications for mineral exploration because the content of heavy metals can vary from one to another and this would ultimately affect the probability of concentrating these metals to form a mineral deposit. 相似文献
5.
C. E. Willman A. H. M. VandenBerg V. J. Morand 《Australian Journal of Earth Sciences》2013,60(2):271-289
The Benambra Terrane of southeastern Australia is the eastern, allochthonous portion of the Lachlan Fold Belt with a distinctive Early Silurian to Early Devonian history. Its magmatic, metamorphic, structural, tectonic and stratigraphic histories are different from the adjacent, autochthonous Whitelaw Terrane and record prolonged orogen‐parallel dextral displacement. Unlike the Whitelaw Terrane, parts of the proto‐Benambra Terrane were affected by extensive Early Silurian plutonism associated with high T/low P metamorphism. The orogen‐parallel movement (north‐south) is in addition to a stronger component of east‐west contraction. Three main orogenic pulses deformed the Victorian portion of the terrane. The earliest, the Benambran Orogeny, was the major cratonisation event in the Lachlan Fold Belt and caused amalgamation of the components that comprise the Benambra Terrane. It produced faults, tight folding and strong cleavage with both east‐west and north‐south components of compression. The Bindian (= Bowning) Orogeny, not seen in the Whitelaw Terrane, was the main period of southward tectonic transport in the Benambra Terrane. It was characterised by the development of large strike‐slip faults that controlled the distribution of second‐generation cleavage, acted as conduits for syntectonic granites and controlled the deformation of Upper Silurian sequences. Strike‐slip and thrust faults form complex linked systems that show kinematic indicators consistent with overall southward tectonic transport. A large transform fault is inferred to have accommodated approximately 600 km of dextral strike‐slip displacement between the Whitelaw and Benambra Terranes. The Benambran and Bindian Orogenies were each followed by periods of extension during which small to large basins formed and were filled by thick sequences of volcanics and sediments, partly or wholly marine. Some of the extension appears to have occurred along pre‐existing fractures. Silurian basins were inverted during the Bindian Orogeny and Early Devonian basins by the Tabberabberan Orogeny. In the Melbourne Zone, just west of the Benambra Terrane, sedimentation patterns in this interval, in particular the complete absence of material derived from the deforming Benambra Terrane, indicate that the two terranes were not juxtaposed until just before the Tabberabberan Orogeny. This orogeny marked the end of orogen‐parallel movement and brought about the amalgamation of the Whitelaw and Benambra Terranes along the Governor Fault. Upper Devonian continental sediments and volcanics form a cover sequence to the terranes and their structural zones and show that no significant rejuvenation of older structures occurred after the Middle Devonian. 相似文献
6.
Silurian to mid-Devonian basin development of the Melbourne Zone, Lachlan Fold Belt, southeastern Australia 总被引:1,自引:0,他引:1
The Melbourne Zone comprises Early Ordovician to Early Devonian marine turbidites, which pass conformably upward into a mid-Devonian fluviatile succession. There are four pulses of Silurian to mid-Devonian deep-marine sandstone-dominated sedimentation: Early Silurian (late Llandovery), Late Silurian (Ludlow), earliest Devonian (Lochkovian) and late Early Devonian (Emsian). Two dispersal patterns have been defined using more than 1100 palaeocurrent measurements, mainly from sole marks and cross-laminations in graded beds, together with sandstone compositions. The older pattern, of Silurian to earliest Devonian age, contains the lowest three sandstone pulses. Palaeocurrents and provenance define a wedge of southwesterly derived sediment, of largely cratonic provenance, thinning eastward. This older dispersal pattern is part of an Early Ordovician to earliest Devonian east-facing passive continental margin succession. Palaeocurrents and provenance in the Emsian sandstone pulse comprise three patterns: (1) west- to southwesterly directed palaeocurrents associated with fine- to coarse-grained, locally conglomeratic, lithic sandstones containing a high proportion of volcanic detritus; (2) east- to northeasterly directed palaeocurrents associated with fine- to medium-grained quartz-lithic sandstones; (3) north- to northwesterly and south- to southeasterly directed palaeocurrents associated with fine- to medium-grained sandstones of variable lithic composition. The palaeocurrent and provenance pattern defines a NNW-elongate basin with a tectonically active eastern margin, and is similar to the coeval Mathinna basin of northeastern Tasmania. Both basins are part of the same system of wrench basins, which developed along the western side of the Wagga–Omeo Metamorphic Belt during the earliest Devonian to Middle Devonian. The change in tectonic setting in the earliest Devonian appears to have occurred during an interval of significant dextral translation of the eastern Lachlan Fold Belt towards the SSE along the Governor and associated fault zones. 相似文献
7.
S- and I-type granites from the Lachlan Fold Belt, southeastern Australia, have been investigated to assess the role of disequilibrium melting in their petrogenesis. Differences between the median initial εHf compositions of magmatic zircon populations and the host bulk-rock (ΔεHfblk-zrc) range from −0.6 to +2.5 ε units, providing evidence for intra-sample (and hence inter-phase) Hf-isotopic heterogeneity. Linear variations on Harker diagrams and O and Hf isotope compositions of magmatic zircon preserved in many I- and S-type granites are inconsistent with assimilation or simple mixing hypotheses. In contrast, isotopic disequilibrium between the melt and a restite assemblage can explain the bulk-rock versus zircon differences observed in these samples.Assuming that magmatic zircon records the melt composition, differences between the bulk-rock εHf and εHf of magmatic zircon (ΔεHfblk-zrc values) measured for I-type granites (0.4–2.5) can largely be explained by disequilibrium amphibole dehydration melting of meta-igneous protoliths that were either isotopically heterogenous at the time they were formed, or perfectly homogeneous before being aged in the crust for 0.4–1.0 billion years prior to partial melting. The Currowong Suite exhibits petrographic features and preserves geochemical and isotopic compositions that do not lend themselves to simple restite model or magma mixing explanations; however, these observations could be explained by the restite unmixing of magma batches generated from a single source rock if, as modelling has suggested, separate batches contain different melt compositions.By investigating the application of disequilibrium melting to granite genesis, this study demonstrates that isotopic heterogeneity at various sampling scales should actually be expected for the production of granites from a single source, rather than necessitating the involvement of multiple sources and mixing processes. As a result great care should be taken in the interpretation of isotope data from granitic bulk-rocks or their zircons. 相似文献
8.
Ordovician rocks of the Lachlan Orogen consist of two major associations, mafic to intermediate volcanic and volcaniclastic rocks (Macquarie Arc), which aerially comprise several north–south-trending belts, and the quartz-rich turbidite succession. Relationships between these associations are integral to resolving their tectonic settings and opinions range between contacts being major thrusts, combinations of various types of faults, and stratigraphic contacts with structural complications. Stratigraphic contacts between these associations are found with volcaniclastic-dominant units overlying quartz-turbidite units along the eastern boundary of the eastern volcanic belt and along the southern boundary of the central volcanic belt. Mixing between these major associations is limited and reflects waning quartzose turbidite deposition along a gently sloping sea floor not penetrating steeper volcaniclastic aprons that were developing around the growing volcanic centres formed during late Middle Ordovician to early Silurian Macquarie Arc igneous activity. An island arc setting has been most widely supported for the Macquarie Arc, but the identification and polarity of the associated subduction zone remain a contentious issue particularly for the Early Ordovician phase of igneous activity. The Macquarie Arc initiated within a Cambrian backarc formed by sea-floor spreading behind a boninitic island arc and presumably reflects a renewed response to regional convergence as subduction ceased along the Ross–Delamerian convergent boundary at the East Gondwana continental margin. An extensional episode accompanied initiation of the late Middle Ordovician expansion in island arc development. A SSE-dipping subduction zone is considered to have formed the Macquarie Arc and underwent anticlockwise rotation about an Euler pole at the western termination of the island arc. This resulted in widespread deformation west of the Macquarie Arc in the Benambran Orogeny and development of subduction along the eastern margin of the orogenic belt. 相似文献
9.
The first definitive evidence for a late Middle to early Late Ordovician age for the Jindalee Group comes from identification of conodonts, including Periodon aculeatus, preserved in chert from an exposure northeast of Cootamundra, New South Wales. In the Grenfell area, the Hoskins Chert, a constituent formation of the Jindalee Group, also yields conodonts of the same general age, although no diagnostic species have been recognised. Conodonts found in the Jindalee Group, along with a distinctive fossil flora of probable cyanobacterial filaments, are similar to those of the Mugincoble Chert in the vicinity of Parkes. Age correlation of the Jindalee Group with the Girilambone Group is confirmed by the newly found conodonts, but at a much more precise level than previously inferred. However, the tectonic settings of the Jindalee and Girilambone Groups might have been quite distinct, with the Jindalee Group forming in an intra‐arc rift and the Girilambone Group depositing in the backarc Wagga Marginal Basin. 相似文献
10.
E. I. Prendergast 《Australian Journal of Earth Sciences》2013,60(4):481-501
The southeastern Lachlan Fold Belt at Batemans Bay on the New South Wales south coast is an accretionary complex with a prolonged deformation history. Early features include synsedimentary folds, mélange, disaggregated bedding and faults. Fabrics within the clast-in-matrix mélange and mudstone match those found in cores from the lower slopes of modern accretionary prisms. At the toe of the accretionary prism, the contact between the craton-derived Adaminaby Group and ocean floor deposits of the Wagonga Group is conformable. As subduction continued, the early structures were overprinted by (D1) deformation that produced meridional north – south-trending, tight to isoclinal folds (F1) and associated axial-plane cleavage (S1). This west-dipping subduction occurred in the Late Ordovician/Early Silurian but probably began much earlier. A younger regional deformation (D2) resulted in north – south-trending, open to tight folds (F2), slightly oblique to F1, and an axial-surface cleavage (S2). 相似文献
11.
Evidence for hybridisation in the Tynong Province granitoids,Lachlan Fold Belt,eastern Australia 总被引:1,自引:0,他引:1
K. R. Regmi I. A. Nicholls R. Maas M. Raveggi 《Australian Journal of Earth Sciences》2016,63(3):235-255
The role of mafic–felsic magma mixing in the formation of granites is controversial. Field evidence in many granite plutons undoubtedly implies interaction of mafic (basaltic–intermediate) magma with (usually) much more abundant granitic magma, but the extent of such mixing and its effect on overall chemical features of the host intrusion are unclear. Late Devonian I-type granitoids of the Tynong Province in the western Lachlan Fold Belt, southeast Australia, show typical evidence for magma mingling and mixing, such as small dioritic stocks, hybrid zones with local host granite and ubiquitous microgranitoid enclaves. The latter commonly have irregular boundaries and show textural features characteristic of hybridisation, e.g. xenocrysts of granitic quartz and K-feldspars, rapakivi and antirapakivi textures, quartz and feldspar ocelli, and acicular apatite. Linear (well defined to diffuse) compositional trends for granites, hybrid zones and enclaves have been attributed to magma mixing but could also be explained by other mechanisms. Magmatic zircons of the Tynong and Toorongo granodiorites yield U–Pb zircon ages consistent with the known ca 370 Ma age of the province and preserve relatively unevolved ?Hf (averages for three samples are +6.9, +4.3 and +3.9). The range in zircon ?Hf in two of the three analysed samples (8.8 and 10.1 ?Hf units) exceeds that expected from a single homogeneous population (~4 units) and suggests considerable Hf isotopic heterogeneity in the melt from which the zircon formed, consistent with syn-intrusion magma mixing. Correlated whole-rock Sr–Nd isotope data for the Tynong Province granitoids show a considerable range (0.7049–0.7074, ?Nd +1.2 to –4.7), which may map the hybridisation between a mafic magma and possibly multiple crustal magmas. Major-element variations for host granite, hybrid zones and enclaves in the large Tynong granodiorite show correlations with major-element compositions of the type expected from mixing of contrasting mafic and felsic magmas. However, chemical–isotopic correlations are poorly developed for the province as a whole, especially for 87Sr/86Sr. In a magma mixing model, such complexities could be explained in terms of a dynamic mixing/mingling environment, with multiple mixing events and subsequent interactions between hybrids and superimposed fractional crystallisation. The results indicate that features plausibly attributed to mafic–felsic magma mixing exist at all scales within this granite province and suggest a major role for magma mixing/mingling in the formation of I-type granites. 相似文献
12.
Deformation and possible origins of the Cooma Complex,southeastern Lachlan Fold Belt,New South Wales
S. E. Johnson 《Australian Journal of Earth Sciences》2013,60(3):429-442
The western half of the Cooma Complex, New South Wales, consists of three thrust‐bound blocks that contain the same structural fabrics, but with different orientations and intensities, owing largely to heterogeneous strain late in the deformation history. Correlation of these fabrics with those found regionally outside the complex shows that a well‐developed, gently dipping crenulation cleavage (S4) apparently has no regional counterpart. This cleavage may have formed by vertical shortening that was restricted to the complex and its development may have been assisted by the higher temperatures there. The Cooma Complex is one of five metamorphic complexes in what is known as the Eastern Metamorphic Belt, which stretches several hundred kilometres through the southeastern Lachlan Fold Belt. The complexes may have formed as local hot spots, possibly related to underplating of mafic magma or intrusion of hot tonalites at or near the base of the Ordovician metasediments (or both). Whether or not these complexes are exhumed portions of an extensive layer in the mid‐crust of the fold belt can be tested by evaluating Late Ordovician/Early Silurian thermal gradients in the ubiquitous Ordovician metasediments. 相似文献
13.
Genetic Significance of Multiple Enclave Types in a Peraluminous Ignimbrite Suite, Lachlan Fold Belt, Australia 总被引:3,自引:1,他引:3
The Violet Town Volcanics (Lachlan Fold Belt, Australia) arean S-type ignimbrite suite containing microgranitoid enclaves,basaltic andesite enclaves and enclaves of high-silica rhyolite.The microgranitoid enclaves are similar to those in peraluminousgranites. They typically have lower initial 87Sr/86Sr and higherNd than the host, and represent globules of a mafic, mantle-derivedmagma, which was hybridized by mixing and diffusional exchangewith the host magma. The basaltic andesite enclaves were incorporatedinto the ignimbrite as xenoliths, but their parental magma mayhave been similar to that of the microgranitoid enclaves. Theyare isotopically less depleted than other mantle-derived rocksfrom the Lachlan Fold Belt, reflecting contamination by crustalmaterial, or derivation from less depleted mantle sources. Thehigh-silica rhyolite enclaves, previously interpreted to berelated to the ignimbrite by crystal fractionation, have Ndvalues up to 3 units higher than their host, and cannot be relatedto their host by crystal fractionation or assimilation-fractionalcrystallization (AFC) processes. The coexistence of S-type magmasand mantle-derived magmas suggests that the latter may haveplayed a role in the Palaeozoic magmatism of the Lachlan FoldBelt, acting as a heat source for melting and perhaps also contributingchemical components to the crustally derived magmas. KEY WORDS: enclaves; magma mingling; magma mixing; S-type
*Present address: Department of Geology and Geophysics, University of Adelaide, Adelaide, S.A. 5005, Australia. Telephone: +-61-8-3035973. Fax: +-61-8-3034347. e-mail: melburg{at}geology.adelaide.edu.au 相似文献
14.
Tectonothermal history of the western Lachlan Fold Belt, Australia: insights from white mica studies
Detailed b lattice parameter and illite crystallinity (IC) studies of K-white micas in slates from the Stawell and Ballarat-Bendigo Zones (SZ, BBZ) in the western Lachlan Fold Belt of Victoria, Australia, reveal a metamorphic pattern characterized by regional metamorphism associated with crustal thickening and younger contact metamorphism accompanied by deformation. The IC data indicate that rocks regionally metamorphosed prior to the intrusion of the Early and Late Devonian granitoids, vary in grade from epizonal (greenschist facies) to diagenetic (zeolite facies) and that most are of epizonal to anchizonal (prehnite–pumpellyite facies) grade. In the BBZ, a decrease in grade from west to east occurs. Across fault zones, IC values show little change, indicating that limited vertical displacement has occurred. This is in accord with the thin skinned deformation model proposed for the western Lachlan Fold Belt. The b lattice parameters (x=9.022 Å; n=137; σn=0.009) indicate baric conditions intermediate between those of New Hampshire (P=Al2SiO5 triple point) and Otago (intermediate P ). Thus, a moderately low geothermal gradient existed 450–430 Ma ago, when these rocks were deformed. KD Fe/Mg (actinolite)/Fe/Mg (chlorite) values (0.52–0.70) obtained from coexisting actinolite and chlorite in metabasites from fault zones support the moderately high-P (c. 4 kbar) metamorphism suggested by the b cell parameter values. The metamorphic conditions indicated by these data are contrary to the low-P/high-T conditions proposed by previous authors, who inferred an intimate association between deformation, granitoid intrusion and gold mineralization. The b lattice parameter of white micas in slates adjacent to Early Devonian (c. 400 Ma) granitoids with schist bearing aureoles in the north-eastern part of the BBZ (x=9.002 Å; n=27; σn=0.007), indicate pressures in the order of c. 2.5 kbar which are in accord with those obtained from andalusite–cordierite and zoisite–garnet bearing assemblages observed in the higher grade metapelitic and calcareous rocks. This contrasts with the higher pressure (c. 4 kbar) existing during regional metamorphism and implies that c. 6.5–8 km of metasedimentary rocks in the BBZ were removed before the emplacement of the Early Devonian granitoids. Metamorphic assemblages in hornfelses associated with Late Devonian granitoids indicate a further 5–6 km of metasediment were removed in the next 40 Ma prior to their emplacement. This study shows the value of white mica studies in elucidating the tectonothermal history of a low-grade metamorphic terrane dominated by metapelitic rocks. 相似文献
15.
16.
Phillip L. Blevin 《Mineralium Deposita》2002,37(1):87-99
Mineralised igneous complexes of Ordovician age from New South Wales range in composition from quartz-rich medium-K dacites (e.g. Copper Hill), to quartz-poor, high-K to 'shoshonitic' monzodioritic to monzonitic complexes (Goonumbla and Cadia). Despite Ordovician igneous suites being considered mostly 'shoshonitic' by some authors, only the Cadia Igneous Complex is potassic in the sense of having molecular K/Na greater than unity. A feature of the intrusive complexes is that each is spatially associated with volcanic rocks of similar compositional character, and that these relationships may occur over long periods of time within local regions (e.g. Goonumbla Volcanic Complex), or show progressive compositional evolution over probably shorter time periods as in the case of the Cadia District. The igneous suites are variably enriched in K and LILE elements, with uniformly high K/Rb ratios, low mantle-compatible element abundances and marked depletions in Ti, Nb and Ta, which is consistent with a subduction-related tectonic setting. Patterns of enrichment and depletion between each suite are similar, and are consistent with the magmas having been derived from sources variably enriched by slab derived materials prior to fusion. Recent dating results from the Goonumbla Volcanic Complex suggest that this enrichment was not progressive over time, and that the oldest intrusions in the Ordovician are not necessarily the least compositionally evolved. These results confirm the overall 'calc-alkaline' nature of Ordovician magmatism and do not support models that argue against contemporaneous subduction on the grounds that Ordovician magmatism was almost exclusively shoshonitic in character. Economic size and significance of associated deposits increase with the degree of K-enrichment (but not total alkali contents) observed in the associated igneous complexes, and supports conceptual models that link mineralisation potential and fertility with processes related to the production of K-enriched protoliths. 相似文献
17.
哈拉湖地区奥陶纪花岗岩相对富钠(Na2O>K2O),具有中钾-高钾钙碱性系列特征,岩石类型以辉长闪长岩和花岗闪长岩为主。岩石稀土及微量元素特征均显示物质来源有地幔物质参与,构造环境判别图显示形成于大洋俯冲的环境。利用LA-ICP-MS进行锆石U-Pb同位素年龄测定,样品锆石206Pb/238U年龄加权平均值为466±4 Ma,限定该花岗岩的形成时代为中奥陶世,该时期北祁连洋发生双向扩张俯冲,南部中祁连陆块遭受俯冲挤压,导致地幔物质上涌,同时陆壳部分熔融,岩体为两者混合形成的产物,该岩体年龄的确定为祁连洋的多阶段俯冲提供了新的证据。 相似文献
18.
苏里地区奥陶纪石英闪长岩具贫铝、高钾(K2O >NaO)特征,属于钙碱性系列,具偏铝质钾玄岩系列岩石的特点,明显具I型花岗岩的特征。岩石稀土及微量元素特征均显示物质来源有地幔物质参与,构造环境判别显示为形成于板块碰撞前的岛弧花岗岩。利用LA-ICP-MS法进行锆石U-Pb同位素年龄测定,样品的锆石206Pb/238U加权平均年龄为(474±2.9)Ma(MSWD=0.12),限定该石英闪长岩的形成时代为早奥陶世,表明在北祁连大洋发生双向扩张俯冲阶段,南部中祁连陆块遭受俯冲挤压导致地幔物质上涌,同时陆壳部分熔融,岩体为两者混合而形成的产物,该岩体年龄的确定为北祁连洋的俯冲时代提供了新的证据。 相似文献
19.
黑龙江北部多宝山矿区广泛发育奥陶系,因含有铜、钼矿源层而受到地质界的注意.本文概述了其生物地层和沉积特征,重点探讨了其火山岩的岩石化学特征.该套火山岩总体上属钙碱性系列,部分(主要是酸性岩)可能属拉斑玄武岩系.下旋回(窝里河组)火山岩以相对低K、La和Eu负异常为特征,总体属大陆边缘岛弧,局部显示出大洋岛弧安山岩的性质.上旋回(多宝山组)的弧则属大陆边缘岛弧与安第斯型山弧的过渡类型,部分地区可能有安第斯型山弧发育.分5个阶段重塑了该区奥陶纪大地构造演化,早古代洋壳向东偏北消减于布列亚一佳木斯地块之下,因后退式的消减而火山弧向西偏南迁移,构造线方向为北北西向. 相似文献
20.
Zekiye Karacik 《Geological Journal》2006,41(2):145-162
The Middle‐Upper Miocene Bodrum magmatic complex of the Aegean region, southwestern Turkey, is mainly represented by intermediate stocks, lavas, pyroclastic and volcaniclastic deposits. Monzonitic stocks and connected porphyry intrusions and extrusions are the first products of the magmatism. These are followed by a volcanic succession consisting of andesitic‐latitic lavas, autobrecciated lavas, pyroclastic and volcaniclastic deposits. The final stage is represented by basaltic and basaltic andesitic flows and dykes intruded into previous units. The volcanic succession crops out in the northern part of the Bodrum peninsula. In the lower part of this succession are widespread pyroclastic deposits, composed of pyroclastic fall and flow units, alternating with epiclastic deposits. Grain size, volume and thickness of the pyroclastic deposits were mainly controlled by the type, magnitude and intensity of the eruption. Further up the section, there are two horizons of debris avalanche deposits forming the coarsest and thickest deposits of the volcaniclastic succession. The debris avalanche deposits indicate at least two different flank collapses coeval with the volcanism. The stratigraphy and map pattern of these volcanic units imply that the northern part of the Bodrum peninsula was the north‐facing flank of a stratovolcano during the mid‐Late Miocene. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献