首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. nal 《Geological Journal》2008,43(1):95-116
The Middle Miocene Orduzu volcanic suite, which is a part of the widespread Neogene Yamadağ volcanism of Eastern Anatolia, consists of a rhyolitic lava flow, rhyolitic dykes, a trachyandesitic lava flow and basaltic trachyandesitic dykes. Existence of mafic enclaves and globules in some of the volcanic rocks, and microtextures in phenocrysts indicate that magma mingling and mixing between andesitic and basaltic melts played an important role in the evolution of the volcanic suite. Major and trace element characteristics of the volcanic rocks are similar to those formed in convergent margin settings. In particular, incompatible trace element patterns exhibit large depletions in high field strength elements (Nb and Ta) and strong enrichments in both large ion lithofile elements (Ba, Th and U) and light rare earth elements, indicating a strong subduction signature in the source of the volcanic rocks. Furthermore, petrochemical data obtained suggest that parental magmas of rhyolite lava and dykes, and trachyandesite lava and basaltic trachyandesite dykes were derived from subduction‐related enriched lithospheric mantle and metasomatized mantle (± asthenosphere), respectively. A detailed mineralogical study of the volcanic suite shows that plagioclase is the principal phenocryst phase in all of the rock units from the Orduzu volcano. The plagioclase phenocrysts are accompanied by quartz in the rhyolitic lava flows and by two pyroxenes in the trachyandesitic lava flows and basaltic trachyandesitic dykes. Oxide phases in all rocks are magnetite and ilmenite. Calculated crystallization temperatures range from 650°C to 800°C for plagioclase, 745°C–1054°C for biotite, 888°C–915°C for pyroxene and 736°C–841°C for magnetite–ilmenite pairs. Calculated crystallization pressures of pyroxenes vary between 1.24–5.81 kb, and oxygen fugacity range from −14.47 to −12.39. The estimates of magmatic intensive parameters indicate that the initial magma forming the Orduzu volcanic unit began to crystallize in a high‐level magma chamber and then was stored in a shallow reservoir where it underwent intermediate‐mafic mixing. The rhyolitic lava flow and dykes evolved in relatively shallower crustal magma chambers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
新疆延东斑岩铜矿床火山机构、容矿岩石及热液蚀变   总被引:5,自引:1,他引:4  
延东斑岩铜矿床位于新疆东天山晚古生代大南湖岛弧中。延东矿区出露地层是石炭纪企鹅山组火山-沉积岩,我们研究提出延东矿区出露的火山-沉积岩以及浅成侵入岩为石炭纪火山喷发-岩浆侵入产物,并将其划分成两个旋回五个岩相:第一旋回包括溢流相(玄武岩和安山岩)、爆发相(集块角砾熔岩)和爆发-沉积相(凝灰岩);第二旋回包括次火山相(闪长玢岩和闪长岩)和浅成侵入相(斜长花岗斑岩)。容矿岩石是次火山相的闪长玢岩和闪长岩以及浅成侵入相的斜长花岗斑岩。闪长玢岩发育中性斑岩蚀变系统,包括内部的绢云母-绿泥石蚀变带和绿泥石-绢云母蚀变带和外围的青磐岩化带,其中绢云母-绿泥石蚀变带控制本区部分富矿体的形成和分布;斜长花岗斑岩发育酸性斑岩蚀变系统,从中心向外依次为黄铁绢英岩化带、强绢云母化带和弱绢云母化带,黄铁绢英岩化带控制本区部分富矿体的形成和分布。这两个蚀变系统以钾硅酸盐化蚀变不发育和绢云母化广泛发育为特点。  相似文献   

3.
The Camagüey district, Cuba, is known for its epithermal precious metal deposits in a Cretaceous volcanic arc setting. Recently, the La Unión prospect was discovered in the southern part of the district, containing gold and minor copper mineralization interpreted as porphyry type. Mineralization is hosted in a 73.0 ± 1.5 Ma calc–alkaline I-type oxidized porphyry quartz diorite intrusive within volcanic and volcaniclastic rocks of the early Cretaceous Guáimaro Formation. The porphyry is affected by propylitic alteration and crosscut by a network of quartz and carbonate veinlets and veins. Chlorite, epidote, sericite, quartz, and pyrite are the main minerals in the early veins which are cut by late carbonate and zeolite veins. Late barite pseudomorphously replaces pyrite. Gold is associated with pyrite as disseminations in the altered quartz diorite and in the veins, occurring as inclusions or filling fractures in pyrite with 4 g/t Au in bulk samples, and up to 900 ppm Au in in pyrite. Fluid inclusion and oxygen isotope data are consistent with a H2O–NaCl–(KCl) mineralizing fluid, derived from the quartz diorite magma, and trapped at least at 425°C and 1.2 kbar. This primary fluid unmixed into two fluid phases, a hypersaline aqueous fluid and a low-salinity vapor-rich fluid. Boiling during cooling may have played an important role in metal precipitation. Pyrite δ34S values for the La Unión prospect range between 0.71‰ and 1.31‰, consistent with a homogeneous magmatic sulfur source. The fluids in equilibrium with the mineralized rocks have estimated δ18O values from 8‰ to 11.8‰, calculated for a temperature range of 480–505°C. The tectonic environment of the La Unión prospect, its high gold and low copper contents, the physical–chemical characteristics of the mineralizing fluids and the isotopic signature of the alteration minerals and fluids indicate that the La Unión gold mineralization is similar to the porphyry gold type, even though the ore-related epidote–chlorite alteration can be classified as propylitic and not the classic potassic and/or phyllic alteration. The low copper contents in the prospect could be due to a mineralizing fluid previously saturated in copper, which is indicated by trapped chalcopyrite crystals in high-temperature fluid inclusions. The low-temperature paragenesis, represented by carbonate, zeolite and barite, indicates epithermal overprint. The study shows the potential for other gold porphyry-type deposits in the Cretaceous volcanoplutonic arc of Cuba.  相似文献   

4.
Short-wave infrared (SWIR) reflectance spectroscopy was used to characterize hydrothermal minerals and map alteration zones in the Tuwu Cu–Au deposit, Xinjiang, China. The Palaeozoic hydrothermal system at Tuwu is structurally controlled, developed in andesitic volcanic rocks and minor porphyries. Hydrothermal alteration is characterized by horizontally zoned development of quartz, sericite, chlorite, epidote, montmorillonite and kaolin about individual porphyry dykes and breccia zones, as is shown by changes outward from a core of quartz veining and silicification, through an inner zone of sericite + chlorite to a marginal zone of chlorite + epidote. The alteration system comprises several such zoning patterns. Silicification and sericitization are spatially associated with Cu–Au mineralization. Zoning is also shown by compositional variations such that Fe-rich chlorite and Al-rich sericite occur preferentially toward the core and the most intensely altered parts, whereas Mg-rich chlorite and relatively Al-poor sericite are present on the margin and the relatively weakly altered parts of the hydrothermal alteration system. The compositions of chlorite and sericite, therefore, can be potentially used as vectors to Cu–Au mineralization. Montmorillonite and kaolinite, of probable weathering origin, are located near the surface, forming an argillic blanket overlying Cu–Au mineralization. Sporadic montmorillonite is also present at depth in the hydrothermal alteration system, formed by descending groundwater. Presence of a well-developed kaolinite-bearing zone on the surface is an indication of possible underlying Cu–Au mineralization in this region. Epidote occurs widely in regional volcanic rocks, as well as in variably altered rocks on the margin of the hydrothermal mineralization system at Tuwu. The widespread occurrence of epidote in volcanic country rocks probably reflects a regional hydrothermal alteration event prior to the localized, porphyry intrusion-related hydrothermal process that led to the Cu–Au mineralization at Tuwu.  相似文献   

5.
The Prince Lyell copper-gold-silver deposit occurs in the late Cambrian Mt Read Volcanics, at Queenstown, Tasmania. Steeply plunging, broadly conformable lenses of disseminated and stringer pyrite-chalcopyrite mineralisation occur in quartz-sericite-chlorite rocks derived from intense alteration of predominantly felsic lavas and volcaniclastic rocks. Middle Devonian deformation has substantially modified primary sulphide textures.Although extensively fractured, pyrite grains in the ore have retained their original pre-deformation internal structure and chemistry which are revealed by etching and electron microprobe analysis. Earliest sulphide mineralisation produced oscillatory zoned, cobalt-rich pyrite (Pyrite I), coeval with chalcopyrite mineralisation. Cobalt-rich pyrite is commonly associated with Cambrian volcanic rocks in western Tasmania and suggests a volcanogenic origin for the ore fluids at Prince Lyell. Pyrite I was corroded by later hydrothermal fluids and reprecipitated as unzoned, trace element-poor pyrite (Pyrite II), commonly as overgrowths on Pyrite I cores. Minor amounts of a second cobalt-rich pyrite (Pyrite III) occurs with Pyrite II in composite pyrite overgrowths. Sulphur isotope ratios from all pyrite generations fall within a small range (3 to 11‰). In situ isotopic analyses showed no consistent δ34S variation between the various pyrite generations, suggesting recycling of sulphur derived from a single Cambrian volcanogenic source.Hematite alteration, derived from oxidised fluids possibly from the adjacent hematitic Owen Conglomerate, occurs in the structural footwall volcanics and the Great Lyell fault zone. Hematite inclusions in Pyrite II and III indicate that these pyrite generations occurred after or during deposition of the conglomerate. It is postulated that Pyrite II and III were deposited during waning volcanism, contemporaneous with Owen Conglomerate sedimentation in the late Cambrian or early Ordovician. The Great Lyell fault would have acted as a growth fault margin between a terrestrial basin, filling rapidly from the east, and the volcanic terrane to the west. The scenario raises the possibility that the concentration of mineral deposits and hematitic alteration along the Great Lyell fault resulted from the subsurface interaction of reduced volcanogenic fluids and oxidised basin waters along the growth fault contact.  相似文献   

6.
The early Palaeozoic Macquarie Arc, southeastern Australia, hosts a variety of major late Ordovician to earliest Silurian subduction-related deposits (e.g., Cadia East, Ridgeway, Cadia Hill, Cowal and Northparkes). However, there is uncertainty about whether coeval high-sulfidation epithermal deposits, which occur in intra-oceanic metallogenic belts elsewhere in the West Pacific, (e.g., Lepanto and Chinkuashih), are also present in the Macquarie Arc. This has led to suggestions that their absence may be due to the poor preservation potential of deposits that form at relatively shallow crustal levels in ancient rocks. We present here an interpretation for evolution of the Peak Hill Au–Cu deposit based on the distribution of alteration facies, sulfur isotope data from several textural forms of pyrite and barite, and an assessment of the regional volcanic and sedimentary facies architecture. These data show that the Peak Hill deposit displays a distinct sub-vertical zoning with a pyrophyllite and vuggy-quartz core, that today extends about 350 m east–west and at least 550 m north–south, which grades out through paragonite+muscovite, kaolinite to a chlorite+epidote alteration zone at the margin. The alteration zoning reflects both lower temperatures and neutralisation of acid fluids with increasing distance from the core, which represents the conduit along which hot acidic hydrothermal fluids were channelled. Several temporally overlapping events of silicification, bladed-quartz-pyrite veining, brecciation and pyrite veining occurred during the last stages of hydrothermal alteration, although most appear to predate mineralisation. Au–Cu mineralisation was associated with late quartz-pyrite-barite veins, and the highest gold grades occur mainly in microcrystalline-quartz-altered rocks in the paragonite+muscovite alteration zone, generally within 50 m outward from the boundary of the pyrophyllite and vuggy-quartz core. Sulfur- and lead-isotope data, and the characteristic zoning of ore minerals and alteration assemblages support a magmatic source for the hydrothermal fluids. Similarities in many of the isotopic signatures between Peak Hill and deposits such as Northparkes support generation of the high-sulfidation mineralisation during the Late Ordovician to earliest Silurian (possibly ca. 440 Ma) metallogenic event. The Late Ordovician to Early Silurian volcanic and sedimentary facies associations at Peak Hill are consistent with alteration and mineralisation occurring in rocks deposited in a submarine setting.  相似文献   

7.
Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi’eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U–Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite–sericite–albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.  相似文献   

8.
The Murgul (Artvin, NE Turkey) massive sulfide deposit is hosted dominantly by Late Cretaceous calc-alkaline to transitional felsic volcanics. The footwall rocks are represented by dacitic flows and pyroclastics, whereas the hanging wall rocks consist of epiclastic rocks, chemical exhalative rocks, gypsum-bearing vitric tuff, purple vitric tuff and dacitic flows. Multi-element variation diagrams of the hanging wall and footwall rocks exhibit similar patterns with considerable enrichment in K, Rb and Ba and depletion in Nb, Sr, Ti and P. The chondrite-normalized rare earth element (REEs) patterns of all the rocks are characterized by pronounced positive/negative Eu anomalies as a result of different degrees of hydrothermal alteration and the semi-protected effects of plagioclase fractionation.Mineralogical results suggest illite, illite/smectite + chlorite ± kaolinite and chlorite in the footwall rocks and illite ± smectite ± kaolinite and chlorite ± illite in the hanging wall rocks. Overall, the alteration pattern is represented by silica, sericite, chlorite and chlorite–carbonate–epidote–sericite and quartz/albite zones. Increments of Ishikawa alteration indexes, resulting from gains in K2O and losses in Na2O and the chlorite–carbonate–pyrite index towards to the center of the stringer zone, indicate the inner parts of the alteration zones. Calculations of the changes in the chemical mass imply a general volume increase in the footwall rocks. Abnormal volume increases are explained by silica and iron enrichments and a total depletion of alkalis in silica zone. Relative K increments are linked to the sericitization of plagioclase and glass shards and the formation of illite/smectite in the sericite zone. In addition, Fe enrichment is always met by pyrite formation accompanied by quartz and chlorite. Illite is favored over chlorite, smectite and kaolinite in the central part of the ore body due to the increase in the (Al + K)/(Na + Ca) ratio. Although the REEs were enriched in the silicification zone, light REEs show depletion in the silicification zone and enrichment in the other zones in contrast to the heavy REEs' behavior. Hydrothermal alteration within the hanging wall rocks, apart from the gypsum-bearing vitric tuffs, is primarily controlled by chloritization with proportional Fe and Mg enrichments and sericitization.The δ18O and δD values of clay minerals systematically change with increasing formation temperature from 6.6 to 8.7‰ and − 42 to − 50‰ for illites, and 8.6 and − 52‰ for chlorite, respectively. The O- and H-stable isotopic data imply that hydrothermal-alteration processes occurred at 253–332 °C for illites and 136 °C for chlorite with a temperature decrease outward from the center of the deposit. The positive δ34S values (20.3 to 20.4‰) for gypsum suggest contributions from seawater sulfate reduced by Fe-oxide/-hydroxide phases within altered volcanic units. Thus, the hydrothermal alteration possibly formed via a dissolution–precipitation mechanism that operated under acidic conditions. The K–Ar dating (73–62 Ma) of the illites indicates an illitization process from the Maastrichtian to Early Danian period.  相似文献   

9.
江西冷水坑铅锌银矿床是我国重要的铅锌银矿床之一,也是世界上少有的斑岩型铅锌银矿床.冷水坑斑岩型铅锌银矿床位于中国东部中生代月凤山火山盆地边缘,含矿斑岩为燕山中期碱性花岗斑岩,侵位于上侏罗统火山岩地层内,斑岩体边部发育大量的隐爆角砾岩.矿区发育两种矿化类型,即斑岩型矿化与层状改造型矿化,此两种均与碱性花岗斑岩有关.矿化以Pb、Zn、Ag为主,伴生少量的Cu、Au.斑岩型的铅锌银矿化发生在斑岩体内以及接触带中,具有面型矿化特点并显示出明显的矿化分带性.层状改造型以铁锰银铅锌矿化为主,矿体均为隐伏状分布于碱性花岗斑岩附近的火山岩含铁锰地层中,产状与火山岩地层一致.铁锰碳酸盐铅锌银矿体在靠近斑岩体时,银铅锌矿化相应逐渐增强,而远离花岗斑岩体,矿化明显较弱.围岩蚀变作用明显,主要为绢云母化、绿泥石化、碳酸盐化、硅化和黄铁矿化.矿化蚀变特征、蚀变类型与典型的斑岩型铜(钼)矿床不同,缺少斑岩铜(钼)矿床早期蚀变的钾交代作用(黑云母化与钾长石化),发育大量铁锰碳酸盐蚀变.矿田矿化蚀变具有一定的分带性,由岩体内向外蚀变可以分为三个带:绿泥石绢云母化带、绢云母化碳酸盐化硅化黄铁矿化带和碳酸盐化绢云母化带.斑岩型矿床的铅锌银矿化与绢云母化和绿泥石化蚀变密切相关.通过对蚀变矿物绢云母的~(40)Ar/~(39)Ar同位素测定,获得冷水坑斑岩型铅锌银矿化年龄为162.8 ±1.6Ma,与含矿斑岩形成时间一致,说明冷水坑斑岩型铅锌银成矿作用发生于中国东部燕山中期陆内环境.  相似文献   

10.
The Heijianshan Fe–Cu (–Au) deposit, located in the Aqishan-Yamansu belt of the Eastern Tianshan (NW China), is hosted in the mafic–intermediate volcanic and mafic–felsic volcaniclastic rocks of the Upper Carboniferous Matoutan Formation. Based on the pervasive alteration, mineral assemblages and crosscutting relationships of veins, six magmatic–hydrothermal stages have been established, including epidote alteration (Stage I), magnetite mineralization (Stage II), pyrite alteration (Stage III), Cu (–Au) mineralization (Stage IV), late veins (Stage V) and supergene alteration (Stage VI). The Stage I epidote–calcite–tourmaline–sericite alteration assemblage indicates a pre-mineralization Ca–Mg alteration event. Stage II Fe and Stage IV Cu (–Au) mineralization stages at Heijianshan can be clearly distinguished from alteration, mineral assemblages, and nature and sources of ore-forming fluids.Homogenization temperatures of primary fluid inclusions in quartz and calcite from Stage I (189–370 °C), II (301–536 °C), III (119–262 °C) and V (46–198 °C) suggest that fluid incursion and mixing probably occurred during Stage I to II and Stage V, respectively. The Stage II magmatic–hydrothermal-derived Fe mineralization fluids were characterized by high temperature (>300 °C), medium–high salinity (21.2–56.0 wt% NaCl equiv.) and being Na–Ca–Mg–Fe-dominated. These fluids were overprinted by the external low temperature (<300 °C), medium–high salinity (19.0–34.7 wt% NaCl equiv.) and Ca–Mg-dominated basinal brines that were responsible for the subsequent pyrite alteration and Cu (–Au) mineralization, as supported by quartz CL images and H–O isotopes. Furthermore, in-situ sulfur isotopes also indicate that the sulfur sources vary in different stages, viz., Stage II (magmatic–hydrothermal), III (basinal brine-related) and IV (magmatic–hydrothermal). Stage II disseminated pyrite has δ34Sfluid values of 1.7–4.3‰, comparable with sulfur from magmatic reservoirs. δ34Sfluid values (24.3–29.3‰) of Stage III Type A pyrite (coexists with hematite) probably indicate external basinal brine involvement, consistent with the analytical results of fluid inclusions. With the basinal brines further interacting with volcanic/volcaniclastic rocks of the Carboniferous Matoutan Formation, Stage III Type B pyrite–chalcopyrite–pyrrhotite assemblage (with low δ34Sfluid values of 4.6–10.0‰) may have formed at low fO2 and temperature (119–262 °C). The continuous basinal brine–volcanic/volcaniclastic rock interactions during the basin inversion (∼325–300 Ma) may have leached sulfur and copper from the rocks, yielding magmatic-like δ34Sfluid values (1.5–4.1‰). Such fluids may have altered pyrite and precipitated chalcopyrite with minor Au in Stage IV. Eventually, the Stage V low temperature (∼160 °C) and low salinity meteoric water may have percolated into the ore-forming fluid system and formed late-hydrothermal veins.The similar alteration and mineralization paragenetic sequences, ore-forming fluid sources and evolution, and tectonic settings of the Heijianshan deposit to the Mesozoic Central Andean IOCG deposits indicate that the former is probably the first identified Paleozoic IOCG-like deposit in the Central Asian Orogenic Belt.  相似文献   

11.
争光金矿床(伴生锌)位于我国东北地区黑龙江省多宝山Cu-Au-Mo成矿带南东端,构造上处于古亚洲成矿构造域和滨太平洋成矿构造域的叠加部位。该金矿距北西向的多宝山铜金矿和铜山铜矿分别约为10km和5km,因此,深入研究其成矿时代、成因类型归属,理清与多宝山铜金矿-铜山铜矿的关系具有重要科学价值。争光金矿赋矿围岩为奥陶系多宝山组安山质火山岩地层,发育爆发相、溢流相、火山碎屑流相、火山沉积相等,且爆发相和喷溢相交替出现,具有喷发时期熔岩溢流与火山碎屑物的喷发交替进行或具多旋回火山活动的特征;根据火山集块岩、火山角砾岩、火山碎屑岩的空间展布及岩相变化特征,推测矿区内发育有古火山机构。受后期北西向构造影响,火山岩地层具北西向弱定向变形特征。含金脉系呈脉状、网脉状沿北西向、北东向及南北向构造产出;矿石矿物以黄铁矿、闪锌矿、黄铜矿、方铅矿为主,金以裂隙金、粒间金和包裹金的形式赋存于上述硫化物中,部分赋存在石英中。综合脉系特征、矿物组合、蚀变类型、闪锌矿Fe含量等,本文明确提出该矿床为中硫型浅成低温热液型金矿。对矿区内发育的成矿后闪长玢岩、花岗闪长斑岩及长石斑岩等脉岩的锆石U-Pb测年结果初步厘定争光金矿金成矿作用早于454Ma。综合判断争光金矿与多宝山含金斑岩铜矿、铜山铜矿同形成于480~454Ma受古亚洲洋俯冲作用控制的岛弧背景,构成完整的斑岩Cu-Au与中硫化型浅成低温热液Au成矿系统。  相似文献   

12.
安徽当涂杨庄铁矿床地质地球化学特征与成因研究   总被引:1,自引:0,他引:1  
金明 《江苏地质》2014,38(2):206-218
杨庄铁矿床位于宁芜中生代火山岩盆地西南段的钟姑山矿田内,属于宁芜地区玢岩型铁矿中次火山岩体与前火山岩系沉积岩接触带中的铁矿床。该矿床的主矿体呈层状、似层状、透镜状,产于闪长玢岩岩体与徐家山组接触带部位以及闪长(玢)岩岩体内部。矿石矿物主要为磁铁矿、假象赤铁矿,脉石矿物主要为辉石、角闪石、长石、绿泥石、石膏、绢云母等。通过对该矿床地质地球化学特征和控矿因素的研究,认为杨庄铁矿床成矿物质主要来源于岩浆,属于玢岩型热液充填-交代型铁矿床。  相似文献   

13.
The Middle-Lower Yangtze River Valley Metallogenic Belt (MLYB) is located on the northern margin of the Yangtze Plate (Eastern China). Ore deposits in the belt are mainly clustered in seven ore districts, and are closely associated with Mesozoic intermediate-felsic magmatic rock. Among the seven ore districts, the Luzong and Ningwu districts host large-scale iron resources in volcanic basins. The Makou magnetite-apatite deposit in the southern Luzong Basin was previously interpreted to be related to a quartz syenite porphyry. In this study, we conducted field geological studies and determined the age and geochemistry of the Makou intrusive rocks. Petrography and electron probe micro analysis (EPMA) indicated that the Makou ore-hosting rocks have intense albite alteration. The wallrock alteration is spatially restricted, and comprises albite alteration (Stage I), magnetite mineralization (Stage II), quartz-sulfide alteration (Stage III) and carbonate alteration (Stage IV) stages. Fluid inclusions in syn-mineralization apatite homogenized at 252.2–322.6 °C, which slightly lower than is typical for magnetite-apatite deposits in the region. Field study revealed that the quartz syenite porphyry at Makou disrupted the orebodies along clear-cut intrusive contacts, and that the quartz syenite porphyry does not contain iron mineralization, suggesting it has no direct genetic relationship with the iron mineralization. The ore-hosting albitite and ore-forming biotite diorite have LA-ICP-MS zircon U-Pb ages of 129.6 ± 1.2 Ma and 131.2 ± 3.3 Ma, respectively, and the iron mineralization was dated by mass spectrometer phlogopite 40Ar-39Ar at 130.76 ± 0.77 Ma. We propose that the Makou magnetite-apatite deposit is genetically related to the biotite diorite, rather than to the quartz syenite porphyry in the mine pit. The biotite diorite closely resembles intrusions related to magnetite-apatite deposits elsewhere in the region.  相似文献   

14.
Geology of the Gasa Island (Gasado), Korea, consists mainly of tuffaceous rocks, rhyolite and andesitic rocks related to Cretaceous volcanic activity. These rocks are hydrothermally altered, and are classified into the following four alteration zones based on the alteration mineral assemblages: advanced argillic alteration (alunite‐pyrophyllite‐kaolinite‐pyrite); sericitic alteration (sericite‐kaolinite‐quartz); propylitic alteration (quartz‐chlorite‐carbonate‐pyrite); and silicified zones. Alunite in the advanced argillic zone occurred in two types; a massive or disseminated type and a vein type. Most of the massive or disseminated alunites are ≥50 μm in size, whereas the size of vein alunites is <20–30 μm. Alunite grain size is greater in the central part of disseminated or massive alunite, while it is smaller toward the margins. The gold content of each alteration zone is 21–2900 ppb, 15–88 ppb, 57–1730 ppb, and 2–231 ppb, respectively. The gold content of quartz veins developed in the alteration zones is 39–715 ppb. Gold is enriched in the minerals and rocks around faults and fissures, and is strongly concentrated in the advanced argillic alteration zone around faults. Hydrothermal solutions traveling along the fracture systems might be responsible for the comparatively high gold content in the study area. δ34S of alunites occurring in the advanced argillic alteration zone range from +16.5 to +3.9‰, although most are in a comparatively narrow range from +8.6 to +5.2‰. There is no difference between disseminated or massive and vein alunites. The δ34S of pyrites in the advanced argillic alteration zone are from +4.8 to ?2.9‰. Oxygen and hydrogen isotope values of alunites are from +8.5 to 0‰ and from ?59.6 to ?97.3‰, respectively. With an assumed temperature of 200°C, δD and δ18O of hydrothermal solutions calculated for alunites are from ?53.6 to ?91.3‰, and from ?2.4 to ?8.1 for massive or disseminated alunites and from ?6.6 to ?10.9‰ for vein alunites, respectively. These data suggest that meteoric water dominated during the alunite formation. Isotopic data, geological setting, mineralogy, size of alunite and pure alunite composition (K end member) indicate that alunites of the study area were formed in the steam‐heated environment of acid sulfate alteration.  相似文献   

15.
安徽沙溪斑岩型铜金矿床成岩序列及成岩成矿年代学研究   总被引:3,自引:7,他引:3  
沙溪矿床是长江中下游成矿带中典型的斑岩型铜金矿床,位于庐枞盆地北外缘、郯庐断裂内,矿床成岩成矿时代确定对该矿床成因研究及区域成矿规律的认识具有重要意义。在详细野外地质工作的基础上,采集沙溪矿床与成矿有关的主要岩浆岩样品(粗斑闪长玢岩、黑云母石英闪长玢岩、中斑石英闪长玢岩、细斑石英闪长玢岩和闪长玢岩)和与黄铜矿密切共生的辉钼矿,分别利用Cameca、LA-ICP-MS U-Pb和Re-Os同位素定年方法,获得矿床内主要岩浆岩的成岩年龄(130.60±0.97Ma、129.30±1.00Ma、127.10±1.50Ma、129.46±0.97Ma和126.7±2.1Ma)以及成矿年龄(130.0±1.0Ma),并重新厘定了沙溪岩体从早到晚岩浆的侵位序列。通过区域对比,提出长江中下游存在两阶段斑岩型铜金矿化,沙溪矿床为长江中下游成矿带第二阶段形成的斑岩型矿床,沙溪矿床的成岩成矿作用既不同于庐枞盆地,也不同于断隆区第一阶段的斑岩矿床,而是受郯庐断裂和长江断裂动力学演化联合作用的产物。  相似文献   

16.
The eastern Lachlan Orogen in southeastern Australia is noted for its major porphyry–epithermal–skarn copper–gold deposits of late Ordovician age. Whilst many small quartz vein-hosted or orogenic lode-type gold deposits are known in the region, the discovery of the Wyoming gold deposits has demonstrated the potential for significant lode-type mineralisation hosted within the same Ordovician volcanic stratigraphy. Outcrop in the Wyoming area is limited, with the Ordovician sequence largely obscured by clay-rich cover of probable Quaternary to Cretaceous age with depths up to 50 m. Regional aeromagnetic data define a north–south trending linear belt interpreted to represent the Ordovician andesitic volcanic rock sequence within probable Ordo-Silurian pelitic metasedimentary rocks. Drilling through the cover sequence in 2001 to follow up the trend of historically reported mineralisation discovered extensive alteration and gold mineralisation within an andesitic feldspar porphyry intrusion and adjacent volcaniclastic sandstones and siltstones. Subsequent detailed resource definition drilling has identified a substantial mineralised body associated with sericite–carbonate–albite–quartz–(±chlorite ± pyrite ± arsenopyrite) alteration. The Wyoming deposits appear to have formed as the result of a rheological contrast between the porphyry host and the surrounding volcaniclastic rocks, with the porphyry showing brittle fracture and the metasedimentary rocks ductile deformation. The mineralisation at Wyoming bears many petrological and structural similarities to orogenic lode-style gold deposits. Although the timing of alteration and mineralisation in the Wyoming deposits remain problematic, a relationship with possible early to middle Devonian deformation is considered likely.  相似文献   

17.
Gold mineralisation at Zarshuran, northwestern Iran, is hosted by Precambrian carbonate and black shale formations which have been intruded by a weakly mineralised granitoid. Granitoid intrusion fractured the sedimentary rocks, thereby improving conditions for hydrothermal alteration and mineralisation. Silicification is the principal hydrothermal alteration along with decalcification and argillisation. Three hydrothermal sulphide mineral assemblages have been identified: an early assemblage of pyrrhotite, pyrite and chalcopyrite; then widespread base metal sulphides, lead-sulphosalts and zoned euhedral arsenical pyrite; and finally late network arsenical pyrite, massive and colloform arsenical pyrite, colloform sphalerite, coloradoite, and arsenic–antimony–mercury–thallium-bearing sulphides including orpiment, realgar, stibnite, getchellite, cinnabar, lorandite and a Tl-mineral, probably christite. Most of the gold at Zarshuran is detectable only by quantitative electron microprobe and bulk chemical analyses. Gold occurs mainly in arsenical pyrite and colloform sphalerite as solid solution or as nanometre-sized native gold. Metallic gold is found rarely in hydrothermal quartz and orpiment. Pure microcrystalline orpiment, carbon-rich shale, silicified shale with visible pyrite grains and arsenic minerals contain the highest concentrations of gold. In many ways Zarshuran appears to be similar to the classic Carlin-type sediment-hosted disseminated gold deposits. However, relatively high concentrations of tellurium at Zarshuran, evidenced by the occurrence of coloradoite (HgTe), imply a greater magmatic contribution in the mineralising hydrothermal solutions than is typical of Carlin-type gold deposits. Received: 13 May 1999 / Accepted: 2 February 2000  相似文献   

18.
Precaldera, caldera, and postcaldera cycles are recognized in the geological evolution of the Pleistocene-Holocene Elbrus volcanic center (EVC). During the caldera cycle, the magmatic activity was not intense, whereas hydrothermal metasomatic alteration of rocks was vigorous and extensive. The Kyukyurtli and Irik ore-magmatic systems have been revealed in the EVC, with the former being regarded as the more promising one. The ore mineralization in rocks of the caldera cycle comprises occurrences of magnetite, ilmenite, pyrite and pyrrhotite (including Ni-Co varieties), arsenopyrite, chalcopyrite, millerite, galena, and finely dispersed particles of native copper. Pyrite and pyrrhotite from volcanics of the caldera cycle and dacite of the Kyukyurtli extrusion are similar in composition and differ from these minerals of the postcaldera cycle, where pyrite and pyrrhotite are often enriched in Cu, Co, and Ni and millerite is noted as well. The composition of ore minerals indicates that the hydrothermal metasomatic alteration related to the evolution of the Kyukyurtli hydrothermal system was superimposed on rocks of the caldera cycle, whereas the late mineralization in rocks of the postcaldera cycle developed autonomously. The homogenization temperature of fluid inclusions in quartz and carbonate from crosscutting veinlets in the apical portion of the Kyukyurtli extrusion is 140–170°C and in quartz from geyserite, 120–150°C. The temperature of formation of the chalcopyrite-pyrite-pyrrhotite assemblage calculated using mineral geothermometers is 156 and 275°C in dacite from the middle and lower portions of the Malka lava flow and 190°C in dacite of the Kyukyurtli extrusion. The hydrothermal solutions that participated in metasomatic alteration of rocks pertaining to the Kyukyurtli ore-magmatic system (KOMS) and formed both secondary quartzite and geyserite were enriched in fluorine, as evidenced from the occurrence of F-bearing minerals-zharchikhite, ralstonite, α-ralstonite, and fluorite-identified in these metasomatic rocks for the first time. By analogy with porphyry Cu-Mo deposits in Chile and the United States, the ore mineralization of the KOMS may be classified by composition and textural and structural attributes as a supraore level of porphyry copper genetic type. The volcanic rocks of the KOMS and the EVC as a whole are enriched in Ag, Mo, Zn, As, Sb, Se, and Ba. Judging from the scale of argillic alteration and taking into account the data on porphyry Cu-Mo ore-magmatic systems of the Greater Caucasus, veined Pb-Zn ore mineralization may be expected in the propylitic zone at a depth down to 1000 m from the present-day erosion level of the KOMS. Stringer-disseminated Au-Ag, Cu, and Cu-Mo ore mineralization of the upper part of the porphyry ore-magmatic system related to subvolcanic dacitic intrusions may be localized somewhat deeper.  相似文献   

19.
The 43 t (1.4 Moz) of gold in the Woodcutters goldfield 50 km north of Kalgoorlie has wide geological significance in terms of gold in Archaean granite, as well as its local commercial and exploration significance. Woodcutters is already one of the largest Archaean gold systems in granite, and is unusual in being so far laterally from the nearest greenstone belt. Gold in the Federal zone, one of the deposits making up the Woodcutters goldfield, is hosted in hornblende‐biotite granodiorite,6 km from the mapped contact with greenstone. In Federal open pit, the granodiorite is coarse‐grained in the northern half, and a fine‐grained granodiorite in the south, with both hosting gold. These two types of granodiorite are rather similar in both mineralogy and geochemistry. There is also a subordinate fine‐grained monzodiorite. The Federal gold mineralisation is in a northwest‐striking, northeast‐dipping (315° strike/60°E dip) shear zone in the Scotia granite. Variation in grainsize of the host rocks might have affected the style of deformation with more brittle fabrics in the coarse‐grained phase and more ductile fabrics prominent in the fine‐grained granodiorite. Hydrothermal alteration is extensively developed around the Federal deposit and is a useful vector towards gold mineralisation. Distal epidote alteration surrounds a proximal muscovite‐biotite alteration zone that contains quartz‐sulfide veins. The alteration shares some of the common alteration characteristics of Archaean greenstone‐hosted gold, but differs in that carbonate‐chlorite alteration is only weakly developed. This difference is readily explained in terms of host‐rock composition and lower concentrations of Fe, Mg and Ca in the granite compared with greenstone. Fluid‐inclusion studies demonstrate that the fluids associated with the hydrothermal alteration at Woodcutters shared the common characteristics of fluids in Archaean greenstone gold, namely low‐salinity and dominant H2O–CO2. Fluid inclusions with moderate salinity were found in one fresh sample away from mineralisation, and are inferred to represent possible magmatic fluid. There is no evidence of a granite‐derived fluid being responsible for gold mineralisation. The granodiorite host rock had cooled, crystallised and had at least started to undergo deformation prior to gold introduction. The distribution of gold mineralisation in the Woodcutters goldfield has the style, shape and orientation comparable with greenstone‐hosted gold deposits in the same region. The northwest trend, the quartz veining and simple pyrite mineralogy are all features common to other greenstone‐hosted gold deposits near Kalgoorlie such as Mt Pleasant. The alteration fluid appears to have penetrated the granite on the scale of many hundreds of metres, causing large‐scale alteration. Woodcutters gold mineralisation resulted from the same metamorphic fluid processes that led to formation of greenstone gold deposits. In this metamorphic model, granitic rocks are predicted to be less‐favourable gold hosts than mafic rocks for two reasons. Granitic rocks do not generally fracture during regional deformation in such a way as to create large‐scale dilation. Furthermore, with less iron and no carbon, granitic rocks have lower potential to precipitate gold from solution by wall‐rock reaction. The metamorphic model predicts that those granite types with higher Fe should host better gold deposits, all other factors being equal. Accordingly, tonalite‐trondhjemite and hornblende‐bearing granodiorite should provide better environments for major gold deposits compared with monzogranite, and granite sensu stricto, as borne out by Woodcutters, but mafic rocks should be better hosts than any of these felsic to intermediate rocks.  相似文献   

20.
The Julie deposit is currently the largest gold prospect in NW Ghana. It is hosted in sheared granitoids of TTG composition of the Paleoproterozoic Julie greenstone belt. The main mineralization consists of a corridor of gold-bearing quartz veins forming a network of a few tens of metres in thickness, trending E–W and dipping 30–60° N, contained within the main shear zone that affects these rocks. The core of this vein corridor is altered by sericite, quartz, ankerite, calcite, tourmaline and pyrite, and is surrounded by an outer halo consisting of albite, sericite, calcite, chlorite, pyrite and rutile. A second set of veins, conjugate to the first set, occurs in the area. These veins have alteration halos with a similar mineralogy as the main corridor, however, their extent, as well as the size of the mineralization, is less important. In the main corridor, gold forms micron-sized grains that occur in pyrite as inclusions, on its edges, and in fractures crosscutting it. Silver, tellurium, bismuth, copper and lead commonly accompany the gold. Pyrite occurs disseminated in the veins and in the surrounding rocks. Up to several ppm Au occurs in the structure of pyrite from the main mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号