首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The northern part of the auriferous Bendigo Zone is obscured by thick Cenozoic sediments of the Murray Basin, and as such remains poorly explored. Consequently, in addition to the 2006 deep seismic line obtained in Central Victoria, a magnetotelluric (MT) survey was completed to provide a signature for the major structures previously defined in the Bendigo area. Based on these correlations a second MT line, which we present here, was completed some 50 km to the north of the original line in an attempt to trace the deep structural trends extending north to the Victorian/NSW border. Extending some 155 km across the central north of the state, data were collected at 52 sites along an east–west profile. The new electrical conductivity model generated correlates well with the results from the southern transect; it confirms previously identified structural trends to the north and identifies additional unknown deep structures, thus adding to the understanding of the geology of the covered region and to its gold-bearing potential.  相似文献   

2.
A ~400 km long deep crustal reflection seismic survey was acquired in central Victoria, Australia, in 2006. It has provided information on crustal architecture across the western Lachlan Orogen and has greatly added to the understanding of the tectonic evolution. The east-dipping Moyston Fault is confirmed as the suture between the Delamerian and western Lachlan Orogens, and is shown to extend down to the Moho. The Avoca Fault, the boundary between the Stawell and Bendigo Zones, is a west-dipping listric reverse fault that intersects the Moyston Fault at a depth of about 22 km, forming a V-shaped geometry. Both the Stawell and Bendigo Zones can be divided broadly into a lower crustal region of interlayered and imbricated metavolcanic and metasedimentary rocks and an upper crustal region of tightly folded metasedimentary rocks. The Stawell Zone was probably part of a Cambrian accretionary system along the eastern Gondwanaland margin, and mafic rocks may have been partly consumed by Cambrian subduction. Much of the Early Cambrian oceanic crust beneath the Bendigo Zone was not subducted, and is preserved as a crustal-scale imbricate thrust stack. The seismic data have shown that a thin-skinned structural model appears to be valid for much of the Melbourne Zone, whereas the Stawell and Bendigo Zones have a thick-skinned structural style. Internal faults in the Stawell and Bendigo Zones are mostly west-dipping listric faults, which extend from the surface to near the base of the crust. The Heathcote Fault Zone, the boundary between the Bendigo and Melbourne Zones, extends to at least 20 km, and possibly to the Moho. A striking feature in the seismic data is the markedly different seismic character of the mid to lower crust of the Melbourne Zone. The deep seismic reflection data for the Melbourne Zone have revealed a multilayered crustal structure that supports the Selwyn Block model.  相似文献   

3.
The magnetotelluric (MT) method was used to image the crust and upper mantle beneath the Delamerian and Lachlan orogens in western Victoria, Australia. During the Cambrian time period, this region changed from being the extended passive margin of Proterozoic Australia into an Andean-style convergent margin that progressively began to accrete younger oceanic terranes. Several broadband MT transects, which were collected in stages along coincident deep (full crust imaging) seismic reflection lines, have now been combined to create a continuous 500 km east–west transect over the Delamerian–Lachlan transition region in the Stawell Zone. We present the electrical resistivity structure of the lithosphere using both 3D and 2D inversion methods. Additionally, 1D inversions of long-period AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) MT data on a 55 km regionally spaced grid were used to provide starting constraints for the 3D inversion of the 2D profile. The Delamerian to Lachlan Orogen transition region coincides with the Mortlake Discontinuity, which marks an isotopic discontinuity in Cenozoic basalts, with higher strontium isotope enrichment ratios in the Lachlan Orogen relative to the Delamerian Orogen. Phase tensor ellipses of the MT data reveal a distinct change in electrical resistivity structure near the location of the Mortlake Discontinuity, and results of 3D and 2D inversions along the MT profile image a more conductive lower crust and upper mantle beneath the Lachlan Orogen than the Delamerian Orogen. Increased conductivity is commonly ascribed to mantle enrichment and thus supports the notion that the isotope enrichment of the Cenozoic basalts at least partially reflects an enriched mantle source rather than crustal contamination. Fault slivers of the lower crust from the more conductive Lachlan region expose Cambrian boninites and island arc andesites indicative of subduction, a process that can enrich the mantle isotopically, and also electrically, by introducing carbon (graphite) and water (hydrogen).  相似文献   

4.
The natural-field magnetotelluric (MT) method has proven very useful for mapping the geothermal fields as resistivity sections. The depth of investigation of the MT method is sufficiently large to penetrate deep into the upper crust. MT soundings along two transects across Mahallat geothermal field in Iran were carried out to determine the crustal structure in the region. The selected MT profiles in the region cross over the hydrothermally altered zones and different geological structures. Data were acquired along two profiles crossing the Mahallat hot springs with a total of 28 MT stations in a frequency range of 8,000 to 0.008 Hz. Spacing between stations was kept 500 m for a good resolution. We have used the code MT2DInvMATLAB for inversion using the method of finite elements for forward modeling. Apparent resistivity and phase data of transverse electric (TE), transverse magnetic (TM), and TE + TM modes along each profile were modeled. The geothermal fluid reservoir is resolved at 1,000 to 3,000 m depth and the geothermal resource is estimated to be located at 7,000 m or deeper.  相似文献   

5.
Magnetotelluric (MT) measurements at six locations along a 90-km profile across the area between Gölpazari and Akcaova have been modeled in two dimensions to increase understanding of the deep conductivity structure of the western part of the North Anatolian fault zone (NAFZ) and the Istanbul and Sakarya zones.

It is well known from surface geology that the branch of the NAFZ that passes through the Pamukova Valley with an E-W strike separates the region into two sub-areas, containing contrasting sets of geological features. These two areas also exhibit significant differences in terms of their deep conductivity structure. Electrical resistivity is quite low (10 ohmm) south of the fault at an approximate depth of 26 km, compared to the area north of the fault zone. This low-resistivity zone may provide an indication of partial melting at this depth.

In the northern part of the profile beneath Ücgaziler (DUC) and Akcaova (DAK), a five-layered conductivity sequence obtained by magnetotelluric modeling and the magnetotelluric model has been examined in light of the surface geology. It is concluded that layers in the conductivity model may correspond to fragments of the Istanbul zone and the Sakarya continent, as well as the ophiolitic slab in between.  相似文献   

6.
The Madurai Block in southern India is considered to represent the eroded roots of an arc-accretionary complex that developed during the subduction–collision tectonics associated with the closure of the Mozambique Ocean and final suturing of the crustal fragments within the Gondwana supercontinent in the Late Neoproterozoic–Cambrian. Here we present a magnetotelluric (MT) model covering the main collisional suture (Palghat–Cauvery Suture Zone) in the north into the central part of the Madurai Block in the south comprising data from 11 stations. Together with a synthesis of the available seismic reflection data along a N–S transect further south within the Madurai Block, we evaluate the crustal architecture and its implications on the tectonic development of this region. According to our model, the predominantly south dipping seismic reflectors beneath the Madurai Block define a prominent south-dipping lithological layering with northward vergence resembling a thrust sequence. We interpret these stacked layers as imbricate structures or mega duplexes developed during subduction–accretion tectonics. The layered nature and stacking of contrasting velocity domains as imaged from the seismic profile, and the presence of thick (>20 km) low resistivity layers ‘floating’ within high resistivity domains as seen from MT model, suggest the subduction of a moderately thick oceanic crust. We identify several low resistivity domains beneath the Madurai Block from the MT model which probably represent eclogitised remnants of oceanic lithosphere. Their metamorphosed and exhumed equivalents in association with ultrahigh-temperature metamorphic orogens have been identified from surface geological studies. Both seismic reflections and MT model confirm a southward subduction polarity with a progressive accretion history during the northward migration of the trench prior to the final collisional assembly of the crustal blocks along the Palghat–Cauvery Suture Zone, the trace of the Gondwana suture in southern India.  相似文献   

7.
Long-period natural-source electromagnetic data have been recorded using portable three-component magnetometers at 39 sites in 1998 and 2002 across the southern Eyre Peninsula, South Australia that forms part of the Gawler Craton. Site spacing was of order 5 km, but reduced to 1 km or less near known geological boundaries, with a total survey length of approximately 50 km. A profile trending east – west was inverted for a 2D electrical resistivity model to a depth of 20 km across the southern Eyre Peninsula. The main features from the models are: (i) on the eastern side of the Gawler Craton, the Donington Suite granitoids to the east of the Kalinjala Shear Zone are resistive (>1000 Ωm); (ii) the boundary between the Donington Suite granitoids and the Archaean Sleaford Complex, which has much lower resistivity of 10 – 100 Ωm, is almost vertical in the top 10 km and dips slightly westwards; and (iii) two very low resistivity (<1 Ωm) arcuate zones in the top 3 km of Hutchison Group sediments correlate with banded iron-formations, and are probably related to biogenic-origin graphite deposits concentrated in fold hinges. Such features suggest an extensional regime during the time period 2.00 – 1.85 Ga. We suggest that the resistivity boundary between the Donington Suite and the Archaean Sleaford Complex represents a growth fault, typical for rift systems that evolve into a half-graben structure. In the graben basin, low-resistivity shallow-marine Hutchison Group sediments were deposited. Folding of the sediments during the Kimban Orogeny between 1.74 and 1.70 Ga has led to migration of graphite to the fold hinges resulting in linear zones of very low resistivity that correlate with banded iron-formation magnetic anomalies.  相似文献   

8.
As part of a larger regional research program “KarstEAU”, the authors have applied electrical resistivity tomography (ERT) techniques to characterize heterogeneities in the Port-Miou coastal karst aquifer (Cassis, SE France). Field surveys were carried out on intensely fractured and karstified Urgonian carbonates. Extensive research has characterized macro- and micro-scale geology of the Port-Miou area and particularly underground water-filled conduits and fault/fracture and karst systems within a former quarry. The authors applied 2D ERT along two surface profiles of length 420 and 595 m to test capability for delineating subsurface conduits and possibly relationship between conduit and fault/fracture/karst orientation; and 3D ERT with a dense 120 electrode array at 1 m spacing (11 × 10 m) was applied over an area of the quarry that had been profiled using 3D georadar and which has had intensive nearby structural geological interpretation. The 2D profiling imaged several underground conduits at depths to >50 m below ground surface and below sea level, including possibly the main Port Miou submarine spring and smaller springs. The 2D profiling within the quarry provided a better understanding of the connectivity between major fractures and faults on the quarry walls and secondary springs along the coast supporting flow of the secondary springs along interpreted fracture orientations. In addition, 2D inversion-derived conductivity models indicate that high resistivity zones above sea-level are associated with non-saturated zones and low resistivity anomalies in the non-saturated zone are associated with residual clays in paleokarsts. A partitioned lower resistivity zone below sea-level can be associated with a higher porosity/permeability zone with fractures and karstic features. Inversion models of the dense 3D ERT data indicate a higher resistivity volume within the larger surveyed block. The survey characterized the non-saturated zone and the ERT resistivities are correlated with karst features interpreted by 3D georadar and visible in the inferior wall of the quarry.  相似文献   

9.
Joint Finnish—Hungarian MT (magnetotelluric) and AMT (audiomagnetotelluric) measurements were carried out in Finland in the framework of the international ELAS project. The conditions for MT measurements are favorable at these latitudes. Five MT and 150 AMT stations gave information on the electrical conductivity distribution in the area: AMT results guided the choice of MT sites with minimal near-surface distortion effects and helped the interpretation of the MT soundings; the MT measurements indicate the presence of large conductivity anomalies and can be best interpreted as lateral induction effects of near-surface dyke structures. This result is confirmed by a certain correspondence between the directions of the maximum impedances and of the tectonic zones of the area.Any information about the upper mantle would require the use of Sq harmonics because of the crustal conductivity anomalies detected by the MT measurements.  相似文献   

10.
This paper describes the application of magnetotelluric (MT) method to investigate Björkö impact structure located at west of Stockholm, Sweden. This structure has formed in crystalline rocks ca. 1.2 Ga ago and located relatively close to the district heating infrastructure of the Stockholm region, as the largest district heating system in Europe. Since impact structures mostly contain fractured rock volumes in the form of breccia formations, the occurred brecciation zones in this region are more favorable potential targets for geothermal investigations. The main objective is evaluating the capability of the study area to have potential for geothermal resources by mapping the subsurface structure. To image electrical characteristic of underground layers, 1D and 2D bimodal inversions of TE and TM modes of MT data are performed. The results are also compared with the outputs of the inversion of the determinant data (yielding a direction-independent average of the subsurface conductivity) along the same profiles, proving good accordance of the outputs. The processed resistivity sections at depth along with measuring various rock physical properties across two drilled boreholes at Björkö and Midsommar islands localized two conductors at depths of 1 km and from 2.5 to 4.5 km, which may be attributed to be a potential zone for geothermal energy retrieval.  相似文献   

11.
Abstract

Information, mainly from the granitic and silicic volcanic rocks in the Stawell, Bendigo and Melbourne structural zones in the state of Victoria, shows that the sources of both the S- and I-type rocks of the Stawell and Bendigo zones (SBZ) contrast in ages and chemistry with the sources of similar granitic rocks in the Melbourne Zone, consistent with the absence of the mainly Proterozoic Selwyn Block beneath most of the SBZ. Below a mid-crustal décollement in the SBZ, the crust is evidently highly variable and possibly includes thinned Proterozoic crust. There is geochronological evidence for ca 400 and ca 370?Ma granulite-grade metamorphic events here, and, after this double bout of metamorphism, and depletion in the silicic melt component, the constituents of the entire deep crust of the SBZ would have densities similar to those of overlying, much lower-grade Cambrian metabasaltic to boninitic rocks. Thus, granitic magmas may have formed here by partial melting of a variety of rock types, probably with back-arc affinities, with ages that may extend back to the Proterozoic. Therefore, the basement of the SBZ is unlikely to consist solely of thick ocean-floor rocks, as in some current interpretations.
  1. KEY POINTS
  2. The sources of the Devonian granitic rocks of the Stawell and Bendigo zones (SBZ) contrast in ages and chemistry with those of the Melbourne Zone granites.

  3. Two Devonian granulite-facies events left the melt-depleted deep SBZ crust with densities similar to those of overlying Cambrian metabasaltic rocks.

  4. The SBZ Devonian granitic magmas probably formed by partial melting of heterogeneous Proterozoic to Cambrian arc-related crust, below the mid-crustal décollement.

  相似文献   

12.
With a view towards understanding the evolutionary history of the complex South Indian shield, several geological and geophysical studies have been carried out. Recent geophysical studies include magnetotelluric (MT), deep seismic sounding (DSS), gravity, magnetic and deep resistivity soundings (DRS). In the present study, MT results along 140 km Andiyur-Turaiyur east-west profile is presented. The data are subjected to Groom-Bailey decomposition and static shift correction before deriving a 2-D model. The 2-D modeling results have shown that the upper crust (up to about 15 km) towards western part of the profile have exhibited high resistive character of about 40, 000 ohm-m as compared to the eastern part (less than 5, 000 ohm-m). The mid-lower crust has shown a decrease in resistivity in western part of the profile, the order of resistivity being 2, 000 ohm-m. An anomalous steep conductive feature (less than 100 ohm-m) is observed near Sankari at mid-lower crustal depths (>20 km) towards middle part of the profile. This feature is spatially correlatable with the well-known Moyar-Bhavani Shear Zone (MBSZ). The features obtained in the present study are consistent with earlier MT studies in this region and correlatable with other geophysical studies. DSS studies near the study region gave an evidence for differing crustal structure on either side of MBSZ. Variation in geoelectric character along the profile both in the upper crust and mid-lower crust indicate a block structure in the SGT with shear zones acting as boundaries. The new evidence in the form of distinct geoelectric structure and also variation in seismic structure indicate a continent-continent collision zone in this region and plays an important role for the Gondwana reconstruction models of South Indian shield.  相似文献   

13.
An analytical model is suggested to describe the electrostatic field produced by near-surface inhomogeneities responsible for galvanic shift in magnetotelluric (MT) apparent resistivity sounding curves. The near-surface inhomogeneities are modeled in thin-sheet approximation with laterally variable longitudinal conductance and transverse resistance. The model accounts for the TM (transverse magnetic) mode secondary electric field in the conductive layered subsurface below the thin sheet. Equations have been obtained to relate the subsurface geoelectric parameters and the spatial harmonics of the secondary electrostatic field. This secondary field, which is the source of galvanic shift in MT data, turns out to be in-phase with the primary field. The equations derived to simulate galvanic distortions are applicable to long-period MT data acquired by a synchronous array.  相似文献   

14.
HyLogger hyperspectral data obtained from seven orogenic gold deposits in central Victoria, including Bendigo, Ballarat, Maldon, Fosterville, Costerfield, Castlemaine and Wildwood, are presented. The data demonstrate that fresh diamond drill core displays substantial mineralogical variation that can be attributed to the effects of cryptic hydrothermal alteration that might not otherwise be recognised. The most significant hyperspectral response lies in the white mica compositions, which vary in a systematic manner between high-Al muscovitic zones (Al–OH absorption around 2208 nm) that define a phyllic alteration halo around mineralised structures, and low-Al phengitic–chlorite zones (Al–OH absorption >2014 nm) inferred to represent either more distal alteration or possibly regional metamorphic background. An extensive ferroan dolomite alteration halo overlaps the phyllic and sulfidic alteration zones and extends beyond the sampled core in most instances. This ferroan dolomite halo has previously been defined petrographically, geochemically and using carbonate staining techniques, and is further characterised using thermal infrared hyperspectral data in drill core from the Ballarat goldfield. The mineralogical trends identified by the hyperspectral data are best developed in diamond drill core from the Costerfield, Fosterville and Ballarat goldfields, and are less pronounced at the other deposits. At Bendigo and Castlemaine the reasons for this are not immediately clear, but may be related to the close timing of gold mineralisation relative to peak metamorphism. The Maldon area lies within the contact aureole of the Harcourt Batholith and so has been thermally overprinted leading to the recrystallisation of earlier hydrothermal assemblages. The Wildwood deposit is similar to the Magdala deposit at Stawell and differs from the other goldfields in its geological setting, host rock lithologies and style of hydrothermal alteration, with the development of Fe-rich chlorite closely associated with gold mineralisation. The results demonstrate how hyperspectral data can be used to define large hydrothermal alteration footprints associated with orogenic gold mineralisation in central Victoria that are of direct benefit to mineral explorers, as well as independently characterising lithological variations in drill core.  相似文献   

15.
New gravity data along five profiles across the western side of the southern New England Fold Belt and the adjoining Gunnedah Basin show the Namoi Gravity High over the Tamworth Belt and the Meandarra Gravity Ridge over the Gunnedah Basin. Forward modelling of gravity anomalies, combined with previous geological mapping and a seismic-reflection transect acquired by Geoscience Australia, has led to iterative testing of models of the crustal structure of the southern New England Fold Belt, which indicates that the gravity anomalies can generally be explained using the densities of the presently exposed rock units. The Namoi Gravity High over the Tamworth Belt results from the high density of the rocks of this belt that reflects the mafic volcanic source of the older sedimentary rocks in the Tamworth Belt, the burial metamorphism of the pre-Permian units and the presence of some mafic volcanic units. Modelling shows that the Woolomin Association, present immediately east of the Peel Fault and constituting the most western part of the Tablelands Complex, also has a relatively high density of 2.72 – 2.75 t/m3, and this unit also contributes to the Namoi Gravity High. The Tamworth Belt can be modelled with a configuration where the Tablelands Complex has been thrust over the Tamworth Belt along the Peel Fault that dips steeply to the east. The Tamworth Belt is thrust westward over the Sydney – Gunnedah Basin for 15 – 30 km on the Mooki Fault, which has a shallow dip (~25°) to the east. The Meandarra Gravity Ridge in the Gunnedah Basin was modelled as a high-density volcanic rock unit with a density contrast of 0.25 t/m3 relative to the underlying rocks of the Lachlan Fold Belt. The modelled volcanic rock unit has a steep western margin, a gently tapering eastern margin and a thickness range of 4.5 – 6 km. These volcanic rocks are assumed to be Lower Permian and to be the western extension of the Permian Werrie Basalts that outcrop on the western edge of the Tamworth Belt and which have been argued to have formed in an extensional basin. Blind granitic plutons are inferred to occur near the Peel Fault along the central and the southern profiles.  相似文献   

16.
Confidence in the use of macroalgae as an indicator of estuarine eutrophication is limited by the lack of quantitative data on the thresholds of its adverse effects on benthic habitat quality. In the present study, we utilized sediment profile imagery (SPI) to identify thresholds of adverse effects of macroalgal biomass, sediment organic carbon (% OC) and sediment nitrogen (% N) concentrations on the apparent Redox Potential Discontinuity (aRPD), the depth that marks the boundary between oxic near-surface sediment and the underlying suboxic or anoxic sediment. At 16 sites in eight California estuaries, SPI, macroalgal biomass, sediment percent fines, % OC, and % N were analyzed at 20 locations along an intertidal transect. Classification and Regression Tree (CART) analysis was used to identify step thresholds associated with a transition from "reference" or natural background levels of macroalgae, defined as that range in which no effect on aRPD was detected. Ranges of 3–15 g dw macroalgae m?2, 0.4–0.7 % OC and 0.05–0.07 % N were identified as transition zones from reference conditions across these estuaries. Piecewise regression analysis was used to identify exhaustion thresholds, defined as a region along the stress–response curve where severe adverse effects occur; levels of 175 g dw macroalgae m?2, 1.1 % OC and 0.1 % N were identified as thresholds associated with a shallowing of aRPD to near zero depths. As an indicator of ecosystem condition, shallow aRPD has been related to reduced volume and quality for benthic infauna and alteration in community structure. These effects have been linked to reduced availability of forage for fish, birds and other invertebrates, as well as to undesirable changes in biogeochemical cycling.  相似文献   

17.
<正> 岩石圈研究计划是继60年代国际上地幔计划和70年代国际地球动力学计划后,于80年代开展的一项大型国际合作研究项目,其全称是“岩石圈的动力学、组成和演化—自然资源和减轻灾害研究纲要”。国际岩石圈研究计划是一个跨地区、跨部门的多学科国际合作研究计划。它运用地质、地球物理和地球化学等多学科手段和方法,从三维空间研究岩石圈的结构、构造、动力学及其形成、演化过程,以满足人类对矿产资源和环境保护的需求,减轻地质灾害,并为板块构造理论发展作出贡献。岩石圈研究是一项大型地学基础性研究项目,是当前地球学科的前沿课题,也是各国致力研究的重大课题。  相似文献   

18.
The Bendigo and Castlemaine goldfields are classic examples of structurally controlled orogenic gold deposits in the Bendigo Zone of central Victoria, SE Australia. Detailed mapping and biostratigraphic interpretation has led to a better understanding of the regional structural controls of this type of gold-quartz mineralisation. Mineralised quartz veins are hosted by the Castlemaine Group, an Early-to-Middle Ordovician turbidite succession at least 3,000 m thick. Gold deposits are controlled by low-displacement faults that are clustered into several belts (the goldfields) indicating a regional structural control. The timing of mineralisation overlapped with that of the major period of deformation including folding, cleavage development and regional faulting. The Bendigo and Castlemaine goldfields are located in an area termed the Whitelaw thrust sheet bounded by two unmineralised, high-displacement, regional-scale faults. Mapping has revealed an interrelationship between the regional-scale faults, regional structural style and goldfield location. The goldfields lie immediately west of the boundary between the upper and lower portions of the thrust sheet and are characterised by symmetric folds with sub-horizontal to synclinal enveloping surfaces, relatively low co-axial strains and moderate cleavage development. The non-gold-bearing areas immediately east of each goldfield correspond with the lower part of the Whitelaw thrust sheet and are characterised by higher non-coaxial strains, stronger cleavage and folds with wide west-dipping limbs giving rise to easterly vergent sections and steeply west-dipping enveloping surfaces. That mineralisation was an integral part of the thin-skinned style of deformation in the central Bendigo Zone is indicated by timing relationships and the interrelationship between local-scale mineralised structures and regional-scale features such as large-displacement unmineralised faults, regional variations in fold style and overall thrust sheet geometry. The work supports previous models that suggest mineralised fluids were focussed along a linked system of deep-seated faults. The primary conduits may have been major regional-scale ‘intrazone’ faults, which are inferred to sole into detachments near the base of the Castlemaine Group. It is proposed that these structures linked with minor intrazone faults and then with networks of low-displacement mineralised faults that were strongly controlled by folds. The location of minor intrazone faults was probably controlled by internal thrust sheet geometry. The distribution of gold deposits and of gold production suggests that maximum fluid flow was concentrated along the eastern margins of networks of low-displacement faults.  相似文献   

19.
Geoelectrical methods involving electrical resistivity tomography (ERT), self-potential (SP), frequency domain electromagnetic (FDEM), and very low frequency (VLF) methods have been used to provide valuable information in locating a known sulfide ore body in Soap Gulch, Montana. The study develops basis of comparison for the geophysical techniques employed. Ranges of resistivity along the area have been established using interpreted ERT which can help to understand the subsurface distribution of sulfides in the area. A sulfide body was delineated from the survey area corresponding to anomalously low resistivity values on the ERT section, negative SP, and high apparent current density zone in VLF. Depth to the localized ore zone ranges approximately from 10 to 20 m. FDEM data reflect the conductivity distribution of the shallow subsurface (less than 6 m deep); hence, the delineated sulfide zone had minimal contribution to FDEM measurements. The results of the study show that SP, VLF, and ERT methods provide significant information in localizing ore bodies. The survey revealed that the resistivity values obtained from ERT profile corroborate the FDEM, SP, and VLF from the area.  相似文献   

20.
In the coastal western part of Saudi Arabia at Thuwal area located close from the Red Sea, the shallow groundwater specific electrical conductivities measured at the drill holes range from 6 to 13 mS/cm. In order to study the origin of this salinity, a good knowledge is required of the aquifer geometry with depth. Ninety nine transient electromagnetic (TEM) soundings were carried out over an area of about 100 km2. From the TEM profiles, a conductive substratum with a resistivity of 1–13 Ωm was identified at most of the sites at depth ranging from 50 to 150 m. This substratum is related to Oligocene–Miocene sediments (Shumaysi Formation) which are mainly red clay-rich formation containing brines at coastal zones. Clayey sediments are more likely present in the southeastern part and along the faults that run NE–SW across the study area and parallel to the Quaternary volcanic which runs NW–SE. The study demonstrated the effectiveness of the TEM sounding method to map conductive zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号