共查询到12条相似文献,搜索用时 98 毫秒
1.
钛是自然界中最不活泼的金属元素之一,然而越来越多的证据显示钛可以在特定条件下能进入热液流体中发生迁移,其中氟可能在其中扮演着重要的角色。本文研究了300℃和50~400MPa压力条件下氟钛络合物(K2Ti F6)的稳定性以及沉淀-陈化-返溶作用和压力对氟钛络合物水解行为的影响。研究结果显示,氟钛络合物水解的过程中,由于Ti O2沉淀物的陈化作用,在稳定的温度和压力条件下,沉淀物的返溶很难发生;但在缓慢降温和机械性振荡过程中,沉淀物的返溶会明显发生。而且,在温度不变的情况下,压力的改变对K2Ti F6水解并没有显著的影响,显示氟钛络合物不管在高压还是低压环境下均遵循近似的水解规律。本文认为主要的原因在于压力的增高会促进水解反应沉淀物的陈化,进而抑制沉淀物的返溶,但并不破坏水解反应的平衡。最后,本文提出金属络合物的形成-水解-沉淀/返溶-陈化过程是水-岩作用或热液成矿过程中高场强元素活化、迁移和成矿的主要机制。 相似文献
2.
活动海岭俯冲对岛弧地质过程的影响 总被引:1,自引:0,他引:1
本文研究了海岭-岛弧体系的地质演化和海岭俯冲过程,通过有限元法对海岭俯冲的全过程进行了热模拟,分析了海岭俯冲过程中岛弧岩浆活动、变质作用及周围地区地表地形的变化。热模拟的计算结果表明:在海岭俯冲之前和俯冲完成之后,摩擦剪切生热使岛弧下100km深度形成温度反转,俯冲海洋板片内角闪岩相矿物在850-1000℃的相对高温下脱水,释放的水进入其上覆板块内热的地幔楔状体降低地幔岩石的熔点造成部分熔融,形成岛弧火山活动;而当热的活动海岭俯冲期间,近海岭处的年轻海洋地壳在较浅深度达到较高温度而提前脱水,原来的地幔楔状体内部分熔融区因缺水而使熔融停止,岛弧火山活动中断。但此时,活动海岭俯冲产生的热将会使前弧一定区域出现低温变质作用。在整个俯冲过程中,随海岭逼近海沟,温度升高,岛弧将因此逐渐抬升,因热作用而致的抬升高度可达440m左右. 相似文献
3.
砂岩型铀矿是世界和我国最主要的工业铀矿床类型。勘查和研究发现,部分砂岩型铀矿床中不仅有表生氧化流体作用而且也存在深部流体作用,因此,梳理和明晰盆地深部流体活动的类型及其与砂岩型铀成矿之间的关系对开展“三新”(新区、新层位和新类型)找矿至关重要。本文从宏观和微观角度分析深部流体活动参与砂岩型铀成矿的现状,结合矿床实例,探讨其对铀富集的影响。本次研究将盆地深部流体活动分为深部烃类流体、岩浆火山热液和深部建造水等3种类型,总结了不同类型流体的典型特征与识别标志,分类论述了深部流体活动与铀矿化的时- 空关系;阐述了深部流体活动参与下铀矿物、共- 伴生矿物、矿体形态和含矿砂岩物性等的变化特征。结果表明,深部流体活动主要通过提供新的成矿物质和改变成矿环境两个方面影响砂岩型铀矿的形成,与构造- 岩浆活动有关的流体和深部地层水,对成矿铀源和温度的影响最显著,而深部烃类流体对成矿环境的影响最大,其显著的还原性可弥补或强化赋矿层的还原能力,形成地球化学障或叠加富集效应。深部流体活动参与下的砂岩型铀矿成矿作用与浅部表生氧化流体成矿存在明显的差异,随着铀矿勘查向深部迈进,需要加强深部流体活动参与铀成矿过程的精细研究,丰富砂岩型铀矿成矿理论,推动铀矿勘查的突破。 相似文献
4.
铂族元素(简称PGE)通常被认为是不活动性元素,可以用来示踪地幔源区和镁铁-超镁铁质岩浆的演化过程。然而,越来越多的野外地质证据和实验研究表明,PGE具有热液活动性,其活动性在指示岩石和矿床成因、地幔交代作用等方面具有重要意义。本文在回顾实际样品中PGE流体活动性的基础上,重点收集和整理了前人有关PGE流体活动性的实验研究和模型计算。大量地质记录显示岩浆活动常常伴随着热液事件发生,并且铂族元素的富集常与岩浆后期热液叠加作用以及大洋或盆地的热液事件有密切联系。溶解度实验结果表明,PGE在富Cl~-流体中的溶解度最高可达100n×10~(-6),而在富HS~-流体中则低几个数量级,仅有n×10~(-12)级别。高温高压实验及模拟计算显示,PGE通常以络合物形式在流体中进行迁移和富集,涉及的主要无机配位阴离子有Cl~-、HS~-、OH~-以及NH_3。这些PGE络合物或络合阴离子团的稳定性受流体的温度、氧逸度、离子浓度、pH等诸多因素的制约。其中,PGE-Cl络合物种型在PGE的浅部迁移中可能贡献最大,其稳定条件为中低温(300℃)、高盐度、高氧逸度、高Cl~-浓度、酸性的地质流体环境。而在还原、碱性、高S~(2-)浓度、相对中低温的流体条件下,PGE-HS种型则占主导。当流体环境为高温和碱性条件时,PGE-OH络合物种型则较为常见。相对其他几种络合物形式,PGE-NH_3对于PGE迁移的贡献较小,其最佳稳定条件为相对中低温、中碱性、相对低氧逸度的地质环境。最后,本文探讨了前人工作的不足以及未来亟需解决的问题。 相似文献
5.
F. Masoudi B. Mehrabi M. Rezai Aghdam B. W. D. Yardley 《Journal of the Geological Society of India》2009,73(3):407-418
In the Sanandaj-Sirjan zone of metamorphic belt of Iran, the area south of Hamadan city comprises of metamorphic rocks, granitic
batholith with pegmatites and quartz veins. Alvand batholith is emplaced into metasediments of early Mesozoic age. Fluid inclusions
have been studied using microthermometry to evaluate the source of fluids from which quartz veins and pegmatites formed to
investigate the possible relation between host rocks of pegmatites and the fluid inclusion types. Host minerals of fluid inclusions
in pegmatites are quartz, andalusite and tourmaline. Fluid inclusions can be classified into four types. Type 1 inclusions
are high salinity aqueous fluids (NaCleq >12 wt%). Type 2 inclusions are low to moderate salinity (NaCleq <12 wt%) aqueous fluids. Type 3 and 4 inclusions are carbonic and mixed CO2-H2O fluid inclusions. The distribution of fluid inclusions indicate that type 1 and type 2 inclusions are present in the pegmatites
and quartz veins respectively in the Alvand batholith. This would imply that aqueous magmatic fluids with no detectable CO2 were present during the crystallization of these pegmatites and quartz veins. Types 3 and 4 inclusions are common in quartz
veins and pegmatites in metamorphic rocks and are more abundant in the hornfelses. The distribution of the different types
of fluid inclusions suggests that CO2 fluids generated during metamorphism and metamorphic fluids might also contribute to the formation of quartz veins and pegmatites
in metamorphic terrains. 相似文献
6.
7.
8.
Geological sequestration is one of the most effective ways to reduce greenhouse gases, such as carbon dioxide (CO2). The deep oceanic crust dominated by ultrabasic rock could store CO2 permanently. However, the storage mechanism has not been thoroughly understood because of the limited amount of research and experiments conducted. This study explored the reactive mechanisms of water–rock–gas in an ultrabasic system under different conditions. Forsterite, the most dominant mineral found in ultrabasic reservoirs, was used to conduct laboratory physical simulation experiments. Two experimental systems were designed including an scCO2–forsterite–water system and an N2–forsterite–water system. All experiments were performed for 1000 h at an experimental temperature of 150°C and a pressure of 150 bar, respectively, to mimic the geological conditions. The liquid products from the experiments were analysed by inductively coupled plasma-optical emission spectrometry, whereas the solid samples were analysed by scanning electron microscopy with energy disperse spectroscopy. Results showed that: (1) in the early stage during scCO2/N2–forsterite–water interaction, forsterite was dissolved with a reactive transitional zone forming on the surface, which caused H+ to enter into the silicate framework and accelerated the reaction; (2) in the N2 system, the dissolution of forsterite was inhibited by the Mg2+ concentration after reaching its saturation in the late stage; and (3) in the scCO2 system, magnesite was precipitated as a secondary mineral during the late stage, which promoted the dissolution of forsterite. As a result, the degree of dissolution of forsterite in the scCO2 system was far higher than in the N2 system. The experimental results are consistent with the numerical simulation using TOUGHREACT, a geochemical simulation procedure, which showed that CO2 promotes the dissolution of forsterite greatly at high temperature and pressure. 相似文献
9.
Xi Liu Norimasa Nishiyama Takeshi Sanehira Toru Inoue Yuji Higo Shizue Sakamoto 《Physics and Chemistry of Minerals》2006,33(10):711-721
In order to constrain the high-pressure behavior of kyanite, multi-anvil experiments have been carried out from 15 to 25 GPa, and 1,350 to 2,500°C. Both forward and reversal approaches to phase equilibria were adopted in these experiments. We find that kyanite breaks down to stishovite + corundum at pressures above ∼15 GPa, and stishovite + corundum should be the stable phase assemblage at the pressure–temperature conditions of the transition zone and the uppermost part of the lower mantle of the Earth, in agreement with previous multi-anvil experimental studies and ab initio calculation results, but in disagreement with some of the diamond-anvil cell experimental studies in the literature. The Al2O3 solubility in nominally dry stishovite has been tightly bracketed by forward and reversal experiments; it is slightly but consistently reduced by pressure increase. Its response to temperature increase, however, is more complicated: increases at low temperatures, maximizes at around 2,000°C, and perhaps decreases at higher temperatures. Consequently, the Al2O3 solubility in dry stishovite at conditions of high temperature–high pressure is very limited. 相似文献
10.
AbstractThroughout SE France, 13C-values of CO2releases suggest that a variable part of the C02 emission derives from mantle and/or lower crust. Carbon dioxide emission takes place in various geological settings. Geodynamical analyses lead to the identification of five provinces: the Sub-Alpine Ranges, the French Massif Central, the Mediterranean part of the Languedoc, the western Pyrénées and the Alps at the West of the Penninic front. Possible correlations are suggested between CO2 flux and tectonic history of the structural provinces.Possible processes by which CO2 is extracted from the mantle, stored and transferred to the surface are investigated for each of these provinces. Major crustal scale gas movements may have taken place during the Carboniferous (Variscan and Late Variscan tectogenesis), the Lias and Dogger (rifting), the Upper Cretaceous and the Cenozoic (Alpine tectogenesis), A model of successive circulations of fluids on the scale of the whole Southeastern France CO2-belt is proposed. This integrated isotopic and geodynamic approach contributes to a better understanding of the regional CO2flux. 相似文献
11.
Instances of gas leakage from naturally occurring CO2 reservoirs and natural gas storage sites serve as analogues for the potential release of CO2 from geologic storage sites. This paper summarizes and compares the features, events, and processes that can be identified
from these analogues, which include both naturally occurring releases and those associated with industrial processes. The
following conclusions are drawn: (1) carbon dioxide can accumulate beneath, and be released from, primary and secondary shallower
reservoirs with capping units located at a wide range of depths; (2) many natural releases of CO2 are correlated with a specific event that triggered the release; (3) unsealed fault and fracture zones may act as conduits
for CO2 flow from depth to the surface; (4) improperly constructed or abandoned wells can rapidly release large quantities of CO2; (5) the types of CO2 release at the surface vary widely between and within different leakage sites; (6) the hazard to human health was small in
most cases, possibly because of implementation of post-leakage public education and monitoring programs; (7) while changes
in groundwater chemistry were related to CO2 leakage, waters often remained potable. Lessons learned for risk assessment associated with geologic carbon sequestration
are discussed.
Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. 相似文献
12.
形成于中-深成条件下的造山型金矿的成矿流体属于H_(2)O-NaCl-CO_(2)体系,金矿化阶段的石英中发育大量的富CO_(2)流体包裹体。长期以来,用常规冷热台对其进行显微测温热力学研究时,较高的内压力会造成绝大多数CO_(2)充填度>0.4的包裹体在尚未达到完全均一状态前就发生爆裂或泄露,导致所测的完全均一温度值明显偏离真实值,甚至无法测得完全均一温度,这制约了对造山型金矿床成矿条件的认知。针对该问题,本文以东天山玉峰金矿床富金矿石中的H_(2)O-NaCl包裹体(A型)和H_(2)O-NaCl-CO_(2)包裹体(AC型)为研究对象,介绍了利用最新型热液金刚石压腔(HDAC-VT型号)测试富CO_(2)高内压的AC型包裹体完全均一温度的实验流程与结果,并将实验数据与Linkam THMSG600冷热台测得的A型、AC型包裹体的完全均一温度进行了对比分析。实验结果表明,热液金刚石压腔能够有效阻止富CO_(2)流体包裹体在升温过程中发生爆裂、泄露等非弹性体积改变现象的发生,从而获得有效的完全均一温度。同时,本文还提出了一个新的压力-温度拟合线两线相交法,对热液金刚石压腔所测富CO_(2)流体包裹体的完全均一温度数据进行校正,以最大程度上减少外压力造成的影响,获得更为接近真实成矿流体的完全均一温度。基于此,获得玉峰金矿床的成矿温度和成矿压力分别为312~343℃和181~268 MPa。本文的实验研究工作显示了热液金刚石压腔在中-深成造山型金矿富CO_(2)成矿流体的研究领域具有重要应用前景。 相似文献